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Abstract

We introduce Appearance-MAT (AMAT), a generaliza-

tion of the medial axis transform for natural images, that

is framed as a weighted geometric set cover problem. We

make the following contributions: i) we extend previous me-

dial point detection methods for color images, by associ-

ating each medial point with a local scale; ii) inspired by

the invertibility property of the binary MAT, we also asso-

ciate each medial point with a local encoding that allows

us to invert the AMAT, reconstructing the input image; iii)

we describe a clustering scheme that takes advantage of the

additional scale and appearance information to group indi-

vidual points into medial branches, providing a shape de-

composition of the underlying image regions. In our ex-

periments, we show state-of-the-art performance in medial

point detection on Berkeley Medial AXes (BMAX500), a

new dataset of medial axes based on the BSDS500 database,

and good generalization on the SK506 and WH-SYMMAX

datasets. We also measure the quality of reconstructed im-

ages from BMAX500, obtained by inverting their computed

AMAT. Our approach delivers significantly better recon-

struction quality w.r.t. to three baselines, using just 10% of

the image pixels. Our code and annotations are available

at https://github.com/tsogkas/amat .

1. Introduction

Symmetry is a ubiquitous property in the natural world,

with a well-established role in human vision. Humans in-

stinctively recognize and use symmetry to analyze complex

scenes, as it facilitates the encoding of shapes and their dis-

crimination and recall from memory [7, 34, 52]. In the

context of computer vision, local symmetry is of particu-

lar interest, because of its robustness to viewpoint changes

and its connection to salient structures, such as object parts.

This intuition is fundamental to many milestones in object

representation theory, including generalized cylinders [10],

superquadrics [8], geons [9], and shock graphs [42].

Fundamental notions of local symmetry were introduced

(a) Input image (b) Binary MAT

(c) Appearance-MAT (d) Reconstructed image

Figure 1: Top: Input image (1a) and segmentation (1b)

from BSDS500, with color-coded ground-truth segments.

Medial axes (green) and a subset of medial disks (red) are

overlaid. Each (binary) segment can be reconstructed from

its medial points and radii. Bottom: Similarly, the AMAT

(1c) carries enough information to reconstruct the input im-

age (1d) with just ∼ 5% of the pixels.

decades ago by Blum in the context of binary shapes with

the medial axis transform (MAT) [11, 12]. The MAT is a

powerful shape abstraction, and provides a compact repre-

sentation that preserves topological properties of the input

shape. These properties are invariant to translation, rotation,

scaling, articulation, and their locality offers robustness to

occlusion. The MAT has been very effective in reducing the

computational complexity of algorithms for various tasks,

including shape matching [42] and recognition [35], mesh

editing [26, 55], and shape manipulation [15]. For these rea-

sons many researchers have tried to achieve a good balance

between MAT sparsity and reconstruction quality [46, 25].

Extending the notion of the MAT to natural images can

correspondingly benefit applications that rely on a sparse
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set of highly informative keypoints/landmarks, such as reg-

istration [56], retrieval [44, 5], pose estimation and body

tracking [40], and structure from motion [2]. It could also

assist segmentation by enforcing region-based constraints

through their medial point representatives [48], and by pro-

viding a practical alternative to manual scribbles/seeds for

interactive segmentation [13, 32, 20, 27]. Another inter-

esting application is artistic rendering of images: [18] use

approximate medial axes to simulate brush strokes and gen-

erate a painting-like version of the input photograph.

Unfortunately, the MAT has not found widespread use

in tasks involving natural images, due to the lack of a gen-

eralization that accommodates color and texture. Previous

works have mostly attacked medial point detection [49, 38],

which amounts to determining the locations of points ly-

ing on medial axes but not the scale of the respective me-

dial disks. The type of axes considered is also typically

constrained to make the problem more concrete: [49] only

considers elongated structures, on either foreground objects

or background; [38] focuses on object skeletons, ignor-

ing background structures. These methods lack another key

characteristic of the MAT: medial point locations alone do

not provide sufficient information to reconstruct the input.

In this paper we introduce the first “complete” MAT for

natural images, dubbed Appearance-MAT (AMAT). First,

we provide a new definition in the context of natural im-

ages by framing MAT as a weighted geometric set cover

(WGSC) problem. Our definition is centered around the

MAT invertibility property and elicits a straightforward cri-

terion for quality assessment, in terms of the reconstruc-

tion of the input image. Second, our algorithm asso-

ciates each medial point with scale as well as local ap-

pearance information that can be used to reconstruct the

input. Thus, the AMAT encompasses all the fundamental

features of its binary counterpart. Third, we describe a sim-

ple bottom-up grouping scheme that exploits the additional

scale and appearance information to connect points into me-

dial branches. These branches correspond to meaningful

image regions, and extracting them can support image seg-

mentation and object proposal generation, while offering a

shape decomposition of the underlying structure as well.

Being bottom-up in nature, our method does not assume

object-level knowledge. It computes medial axes of both

foreground and background structures, yielding a compact

representation that only uses ∼ 10% of the image pixels.

Yet, this sparse set of points carries most of image signal,

differing from other sparse image descriptions, e.g. edge

maps, which strip the input of all appearance information.

We perform experiments in medial point detection on

a new dataset of medial axes, the Berkeley-Medial AXes

(BMAX500), which is built on the popular BSDS500

dataset, showing state-of-the-art performance. We also

measure the quality of reconstructions obtained by inverting

the AMAT of images from the same dataset, using a variety

of standard image quality metrics. We compare with three

reconstruction baselines: one built on the medial point de-

tection algorithm from [49] and two built from the ground-

truth segmentations in BSDS500. Our method significantly

outperforms the baselines in terms of reconstruction quality,

while attaining a 11× compression ratio.

The outline of the paper is as follows: we start by review-

ing related work on medial axis extraction for binary shapes

and natural images in Section 2. In Section 3 we describe

our approach. Section 4 includes implementation details

and in Section 5 we present our results. Finally, in Section 6

we conclude and discuss ideas for future directions.

2. Related Work

Binary shapes: Blum introduced the medial axis trans-

form, or skeleton, of 2D shapes in his seminal works [11,

12]. Since then, researchers have developed algorithms for

reliable and efficient medial axis extraction, its extension to

3D shapes, and its application to computer vision tasks.

Siddiqi et al. define shocks as the singularities of a curve

evolution process acting on the boundaries of a shape, and

they organize them into a directed, acyclic shock graph [42].

Shock graphs were successfully used in shape match-

ing [42], recognition [35], and database indexing [36]. Bone

graphs [29] offer improved stability and a more intuitive

representation of an object’s parts, by identifying and ana-

lyzing ligature structures. Visual part correspondences are

also established and used to measure part and aggregated

shape similarity in [22]. The correspondence of skeleton

branches to object parts is further explored in [28, 6]. More

recently, Stolpner et al. deal with the problem of approxi-

mating a 3D solid via a union of overlapping spheres [45].

The value of the MAT has been equally appreciated by

the graphics community, where object shapes are routinely

represented as point clouds or triangular meshes. Giesen et

al. [17] introduced the scale axis transform, a skeletal shape

representation that yields a hierarchy of successively sim-

plified skeletons, which are obtained by multiplicative scal-

ing of the MAT’s radii. Li et al. [25] use quadratic error

minimization to compute an accurate linear approximation

of the MAT, called Q-MAT. They show experiments on me-

dial axis simplification where they reduce the number of

nodes of an initial medial mesh by three orders of magni-

tude, while preserving good surface reconstruction. A com-

prehensive compilation of medial methods and their appli-

cations in the binary setting can be found in [41].

Natural images: Compared to the binary setting, the

number of works on medial axis detection for natural im-

ages is rather limited. Levinstein et al. [23] detect sym-

metric parts of objects by learning to merge adjacent de-

formable, maximally inscribed disks, modeled as superpix-
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els. Learned attachment relations are then used to com-

bine detected parts into coarse skeletal representations. Lee

et al. extend that work by introducing a deformable disk

model that can capture curved and tapered parts, and also

add continuity constraints to the medial point grouping pro-

cess [43]. In other works medial point detection is posed

as a classification problem where pixels are labeled as

“medial” or “not-medial”, inspired by similar methods for

boundary detection [30]. Tsogkas and Kokkinos use multi-

ple instance learning (MIL) to deal with the unknown scale

and orientation during training [49], while Shen et al. adapt

a CNN with side outputs [53] for object skeleton extrac-

tion [38]. All these approaches exploit appearance informa-

tion by incorporating a machine learning algorithm.

Our work can be regarded as lying at the intersection of

previous work on binary and natural images. From a techni-

cal standpoint, it shares more similarities with binary meth-

ods, for instance [45], which solves the set cover problem

for volumes in the 3D space. At the same time, it can be

applied to real images, without assuming a figure-ground

segmentation, but it also demonstrates unique character-

istics. Our method does not involve learning, and is not

constrained in detecting a particular subset of medial axes

as [49, 38]. It also complements existing methods by aug-

menting point locations with scale and appearance descrip-

tions, which are necessary for reconstructing the input.

3. AMAT definition

Consider a 2D binary shape, O, like the one in Figure 2,

and its boundary ΘO. The medial axis of O is the set of

points p that are centers of the maximally inscribed (me-

dial) disks, bitangent to ΘO in the interior of the shape. The

medial (disk) radius rp ≡ r(p) is the distance between p

and the points where the disk touches ΘO. The process of

mapping O to the set of pairs (p, rp) ∈ R
2×R is called the

medial axis transform (MAT). Given these pairs, we can re-

construct O as a union of overlapping disks that sweep-out

its interior by “expanding” a value of one (1) inside the area

covered by each medial disk.

We argue that a MAT for real images should satisfy a

similar principle: given the MAT of an image, we should

be able to “invert” it, reconstructing the image itself. There

are several reasons why extending this idea to real images is

a challenging task: natural images depict complex scenes,

cluttered with numerous objects, instead of just a single

foreground shape. Moreover, unlike binary images, real

images exhibit complicated color and texture distributions.

Nevertheless, we can exploit image redundancies and as-

sume that an image is composed of many small regions of

relatively uniform appearance. This is the same assump-

tion that underlies most superpixel algorithms which break

up an image into non-overlapping patches, while respecting

perceptually meaningful region boundaries [39, 24, 1].

Notation. In the rest of the paper we denote a disk of ra-

dius r, centered at point p, as Dp,r ≡ D(p, r). For brevity,

we often refer to such a disk as a r-disk or (p, r)-disk. D
is a collection of such disks of varying centers and radii,

D = {Dpi,rpi
}, i ∈ N. The intersection of a (p, r)-disk

with an image I is a disk-shaped region of the image, and

is denoted by I ∩ Dp,r = DI
p,r ⊂ D

I = {DI
pi,rpi

}. Fi-

nally, we use ◦ to denote function composition, and ‖·‖ for

an appropriate error metric (e.g., the L2 norm).

Formulation. Consider an RGB image I ⊂ R
3, and a

disk-shaped region DI
p,r ⊂ I . Let f : DI → R

K be a

function that maps DI
p,r to a vector fp,r = f ◦ DI

p,r; we

call fp,r the encoding of DI
p,r. Now let g : RK → DI be a

function that maps fp,r back to a disk patch D̃I
p,r = gp,r =

g ◦ fp,r. We call g the decoding function. In the general

case, f and g will be lossy mappings, which means that the

reconstruction error ep,r =
∥

∥

∥
D̃I

p,r −DI
p,r

∥

∥

∥
≥ 0. Using

the above, we define the AMAT as the set of tuples M :
{(p1, rp1

, fp1,rp1
), . . . , (pm, rpm

, fpm,rpm
)}, such that:

M = argmin
p,r

m
∑

i=1

epi,ri , I =

m
⋃

i=1

DI
pi,ri

. (1)

In Section 3.1 we discuss constraining m.

Encoding and decoding functions. Our framework al-

lows f, g to take any form; for example, f could be a his-

togram representation of color in DI
p,r and g could return

the mode of the distribution. In this paper we opt for sim-

plicity: f computes the mean of each color channel “sum-

marizing” DI
p,r, in a 3 × 1 vector fp,r. Conversely, g con-

structs an approximation D̃I
p,r ≈ DI

p,r by replicating fp,r

in the respective disk-shaped area. When the (p, r)-disk is

fully enclosed in a uniform region the reconstruction error

ep,r is low, whereas when the disk crosses a strong image

boundary, the encoding fp,r cannot accurately represent the

underlying image region, resulting in a higher error.

Note that the definition in Equation (1) suggests concep-

tual similarities with superpixel representations. Selecting

the points {(pi, ri, fpi,ri)}, i = 1, . . . ,m is equivalent to

covering the input image with m disk-shaped superpixels.

Minimizing the total reconstruction error implies that these

“superdisks” do not cross region boundaries, as this would

incur a high reconstruction error, as shown in Figure 2.

However, there are two important differences: First, in our

case a canonical shape (disk) is used, whereas superpixels

can have any form. Second, our disks are overlapping, in

contrast to standard, non-overlapping superpixels.

Using canonical shapes helps achieve sparsity of the fi-

nal MAT. Disks are optimal in that sense, as they are ro-

tationally invariant and are fully defined using only their
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Figure 2: Left: We can reconstruct a binary shape by expanding a value of “1” within the area of all medial disks. Middle:

Disks are represented by their mean RGB value; disks that cross region boundaries have a high reconstruction error. Right:

Toy example: depending on the task, the user can favor a dense representation with low reconstruction error (green disks) or

a sparse representation with high reconstruction error (red disk) by varying the scale parameter ws.

center and radius. By contrast, a free-form element requires

storing coordinates of all its boundary points. On the other

hand, using one shape and no overlap would not reduce re-

construction quality, but it would result in disjointed medial

points instead of smooth, connected medial axes.

3.1. AMAT as a Geometric Set Cover Problem

The geometric set cover is the extension of the well stud-

ied set cover problem, in a geometric space. Here we only

consider the case of a two-dimensional space and we partic-

ularly focus on the weighted version of the problem, which

is defined as follows: Consider a universe of N points

X ∈ R
2 and subsets D = {D1, D2, . . . , Dk} ⊆ X , called

ranges. A common choice for Di is intersections of X with

simple shape primitives, such as disks or rectangles.

Now assume that each element in D is associated with

a non-negative weight or cost ci. Solving the WGSC prob-

lem amounts to finding a sub-collection D̄ ⊂ D that cov-

ers the entire X (all N elements of X are contained in at

least one set in D̄), while having the minimum total cost

C; the total cost is simply the sum of costs of individual

elements in D̄. WGSC is a strongly NP-hard problem for

which polynomial-time approximate solutions (PTAS) ex-

ist. The interested reader can find more details on WGSC

and related algorithms in [31, 50, 19, 14].

The AMAT formulation lends itself naturally to a WGSC

interpretation. The spatial support XI of an input image I ,

is the universe of N points. As D we consider the set of r-

disks with r chosen from a finite set R : {r1, r2, . . . , rR}.
The r-disks can be placed at any position p = (x, y) ∈ XI

such that Dp,r is fully contained in XI . We also as-

sign a cost cij ≡ cpi,rj ∝ eij to each (pi, rj)-disk,

i ∈ [1, N ], j ∈ [1, R]. Note that for brevity, we drop the

subscripts pi, rj and simply use ij. We provide more de-

tails regarding computation of cij in Section 4.

As Equation (1) suggests, the goal is to find a subset

of disks that cover the entire image, while maintaining a

low total reconstruction cost. A trivial solution would be

to select each pixel as a disk of radius r = 1, in which

case M = {(p1, rp1
, fp1,rp1

), . . . , (pN , rpN
, fpN ,rpN

)},

and
∑N

i=1
epi,ri = 0; each pixel can be perfectly repre-

sented by its mean value. Such a solution is of no practical

use. Staying true to the spirit of the MAT, we seek a solu-

tion that is sparse (low number of medial points m), while

being able to adequately reconstruct the input image. One

possible way to do this would be to agree on a fixed “bud-

get” of points, and look for the optimal solution, given m.

However, choosing an acceptable m can be a nuisance, as

its value can vary significantly from image to image.

In the original MAT, sparsity is implicitly induced

through the use of maximal disks, touching the shape

boundary at two or more points. Extending the maximal-

ity principle to real images is not straightforward because

color and texture boundaries are not robustly defined. Re-

lying on the output of an edge extraction algorithm is not a

viable option either, as it would make our method sensitive

to errors from which it would be impossible to recover.

Instead, we choose to regularize the minimization cri-

terion in Equation (1) by adding a scale-dependent term

sj = ws

rj
∝ 1

rj
to the costs cij . This way we favor the

selection of larger disks at each point, as long as sj is not

“too” large with respect to the error incurred by picking

Dp,rj+1
instead of Dp,rj . Selecting a high value for ws

leads to a sparser solution with higher total reconstruction

error, whereas a low value for ws aims for a better recon-

struction, by utilizing more, smaller disks to cover XI . Fig-

ure 2 (right) shows a toy example of these two cases and

Figure 3 shows how varying ws progressively removes de-

tails in a real image, keeping only the coarser structures.

Greedy approximation algorithm. There are many

polynomial-time-approximate-solution (PTAS) algorithms

for the vanilla set cover problem and its geometric variants.

Here we use the simple, greedy algorithm described in [51],
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Algorithm 1 AMAT greedy algorithm.

Input: XI = {p1, . . . ,pN},R = {r1, . . . , rR}, f, g
Output: M

1: Initialization: M ← ∅, Xc ← ∅ ⊲ Xc : covered pixels.

2: Compute fp,r, gp,r = g ◦ fp,r, cp,r, ∀p ∈ I, ∀r ∈ R
3: while Xc ⊂ XI do

4: ce
p,r ←

cp,r

|Dp,r\Xc| +
ws

r
, ∀p ∈ XI , ∀r ∈ R

5: (p∗, r∗)← argmin
p,r c

e
p,r,

6: cp,r ← cp,r −
cp,r

|Dp∗,r∗\Xc| ,

∀p, r : Dp∗,r∗ ∩Dp,r 6= ∅
7: M ←M ∪ (p∗, r∗, fp∗,r∗)
8: Xc ← Xc ∪Dp∗,r∗

9: end while

adapted for the weighted case. The steps of our method are

described in Algorithm 1. We start by computing the costs

cij for all possible disks Dij . We define the effective cost

of Dij as ceij =
cij
Aij

+ sj , where Aij is the number of new

pixels covered by Dij (pixels that have not been covered by

a previously selected disk). Starting from an empty set M ,

we pick the disk with the lowest ceij and add it to the solu-

tion, removing the area Dij from the remaining pixels to be

covered. We also adjust the cost of all disks that intersect

with Dij , because each disk should be penalized only for

the new pixels it is covering. This process is repeated until

all image pixels have been covered by at least one disk.

3.2. Grouping Medial Points Into Branches

The scale and appearance associated with each medial

point provide a rich description that can be used to group

points belonging to the same region into medial branches.

The beneficial effects of grouping in low-level vision tasks

have been observed in previous works [16, 57, 21, 33]. In

our case, grouping pixels into branches can help us refine

the final medial axis, by aggregating consensus from neigh-

boring points, and break the image into meaningful regions.

We group detected medial points using an agglomerative

scheme that starts at fine scales and progressively merges

together nearby points at coarser scales. Our grouping cri-

terion relies on proximity in scale-space and appearance.

Intuitively, points that lie close have higher probability of

belonging to the same branch. We also expect that the

scale of points will change gradually along a branch, so

points that lie close to each other but have very different

radii should probably not be grouped together. Finally, two

points should not be grouped if their encodings are very dis-

similar, regardless of their proximity in scale-space.

We initialize branches as the connected components of

the AMAT output. Starting at a scale rj , we consider one

branch at a time, and examine all other branches within

a neighborhood of size rj × rj and a scale neighborhood

[rj−3, rj ]. If two branches coexist in this scale-space neigh-

borhood and their average encodings (summed along the

branch curve) are similar, they are merged. The grouping

algorithm terminates when all scales have been considered.

3.3. Medial Branch Simplification

The output of our algorithm captures mostly region cen-

terlines but there are still imperfections in the form of noisy,

disconnected medial point responses or “lumps”, instead

of thin contours. Such imperfections are expected because

of the approximate solution to the minimization problem

of Equation (1) and the use of a discrete grid.

Grouping MAT points into branches makes it possible

to process each branch individually, enabling the correc-

tion of these errors post hoc. We perform simple morpho-

logical operations (dilation and thinning) on the points of

each branch to merge neighboring and isolated pixels to-

gether, while removing redundant responses. We also ad-

just the scales of the medial points, to ensure that the me-

dial disks corresponding to the simplified structure span the

same image area. Because grouped branches correspond to

relatively homogeneous regions, reconstruction results after

simplification are practically identical. Examples of simpli-

fied medial axes are illustrated in Figure 4.

4. Implementation Details

Disk Cost Computation. Using a simple error metric

such as MSE to compute cij is not effective since disks with

low MSE scores do not necessarily respect image bound-

aries. We propose the following alternative heuristic: First,

we convert the RGB image to the CIELAB color space

which is more suitable for measuring perceptual distances.

Then, we define the cost of Dij as

cij =
∑

k

∑

l

‖fij − fkl‖
2 ∀k, l : Dkl ⊂ Dij . (2)

Intuitively, a low cost cij implies that the encoding fij is

representative of all disks that are fully contained in Dij ,

hence Dij is not crossing any region boundaries.

Dealing With Texture. The main motivation behind the

choice of simple functions f, g, was simplicity and compu-

tational efficiency. Such functions also allow us to inject

certain desired characteristics in the AMAT solution, such

as appearance uniformity and alignment with boundaries.

However, natural images often contain high-frequency

textures or noise, which can lead to the accumulation of

large errors in Equation (2), and promote the selection of

disks that do not correspond to perceptually coherent re-

gions. Simple processing techniques (e.g., Gaussian filter-

ing) can reduce noise but they also degrade image bound-

aries and blend together neighboring regions.
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(a) Input image (b) ws = 10
−4 (c) ws = 10

−3 (d) ws = 10
−2

Figure 3: Using a progressively larger scale-cost factor ws removes details, keeping only coarse image structures.

To alleviate this problem, we “simplify” the input im-

age before extracting the AMAT, using a method that

smooths high frequency regions, while preserving impor-

tant edges [54]. In practice, this preprocessing produces an

image that is perceptually very similar to the original, but

without high-frequency textures that can cause the greedy

algorithm to fail by placing disks at undesired locations.

Inverting the AMAT. Generating the reconstruction of

a single disk-shaped region, D̃I
p,r, is trivially achieved by

replicating fp,r. However, since medial disks overlap, most

pixels in the image domain will be covered by multiple

disks with different encodings. We resolve this ambiguity

in a simple way: while computing the AMAT, we keep track

of the number of disks each pixel is covered by; this quan-

tity is called depth in the context of the set cover problem.

We then use the average f of all disks covering a point pi

with depth di as its reconstructed value:

Ĩ(pi) =
1

dpi

∑

p,r

fp,r, ∀p, r : pi ∈ Dp,r. (3)

Parameter Values. For the smoothing algorithm we use

the default values λ = 2 · 10−4 and κ = 2 that the authors

suggest for natural images [54]. Regarding the scale cost

term described in Section 3.1, we found that ws = 10−4 is

a value that strikes a good balance between reconstruction

quality and sparsity of the generated medial axis. The max-

imum radius R must be finite to keep complexity manage-

able, but large enough to capture large uniform structures in

the image. Based on the size of images used in our experi-

ments we used 40 scales, excluding r = 1 to force disks to

be larger than single pixels; thus r ∈ [2, 41].

Complexity and Running Time. Computing cij requires

computing differences for all disks in Dij . If rj is large, this

number can grow quickly, yielding O(NR4) complexity.

However, the most time-consuming step is the greedy ap-

proximation algorithm: At each iteration we cover at most

O(R2) pixels, but we also have to update the costs of all

overlapping disks. This has O(NR2
∑R

r=1
r2) = O(NR5)

complexity. One could parallelize the procedure by par-

titioning an image, simultaneously processing individual

parts, and combining the results. Our single-thread MAT-

LAB implementation takes ∼ 30 sec for the AMAT, group-

ing, and simplification steps, on a 256× 256 image.

5. Experiments

We evaluate the performance of our method on two tasks:

i) localization of medial points in an image; and ii) generat-

ing accurate reconstructions of images, given their AMAT.

5.1. Medial Point Detection

We want to emphasize the difference between the prob-

lem we are addressing and the objectives pursued in other

works. In [49] the authors focus on detecting local reflective

symmetries of elongated structures, and they build a dataset

with annotations of segments in the BSDS300 that fit this

description. As a result, a large portion of the segments in

BSDS is not used in performance evaluation. In [38] the au-

thors are explicitly interested in extracting object skeletons,

completely ignoring background structures. Although ex-

tracting object skeletons may be convenient for some tasks,

it does not constitute a generalized notion of MAT.

In our work we do not make such distinctions. The cen-

tral idea behind the AMAT is to be able to reproduce the full

input image, so we view all parts of the image as equally

important. This is also the reason we choose BSDS500 as a

basis for constructing medial axes annotations. BSDS500

contains multiple segmentations for each image, offering

higher probability of capturing segments at varying scales,

making it more relevant to the problem we are trying to

solve than datasets with object-level annotations.

Following [49], we individually apply a skeletonization

algorithm [47] to binary masks of all segments in a given

segmentation, extracting segment skeletons. The medial

axis ground-truth for the image is formed by taking the

union of all the segment skeletons, and this process is re-

peated for all available annotations (usually 5-7 per image).

To conduct a fair comparison, we retrain the CG+BG+TG

variant (MIL-color) from [49] on BMAX500. We also tried

to retrain the CNN used in [38], but the outputs we obtained
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Figure 4: From left to right: Input image, AMAT axes (unused points in black), medial point groups (color-coded), ground-

truth skeletons. Note that semantically coherent image regions (e.g., sky, grass) tend to be grouped together.

were too noisy, and of no practical use. We hypothesize that

this is because of the lack of consensus among the multiple

ground-truth maps available for each image, which leads to

convergence problems for the network; this has been previ-

ously reported in [53]. We evaluate performance using the

standard precision, recall and F-measure metrics, and show

the superior results of our method in Table 1. Note that

our algorithm outputs binary skeletons, so plotting a PR-

curve by varying a score threshold is not applicable in our

case. “Human” performance is defined in the same manner

as in [30, 49]. For all methods, detections within a distance

of 1% of the image diagonal from a ground-truth positive

are considered as true positives. We show qualitative results

of the medial axes and the grouped branches in Figure 4.

Segmentation + skeletonization: As an additional base-

line we compute skeletons after running Arbelaez’s seg-

mentation algorithm [3, 4] at scales 0.2 (F=0.61), 0.3

(F=0.58), 0.4 (F=0.54), 0.5 (F=0.5). We point out that the

performance of UCM + skeletonization depends critically

on the threshold selection. The optimal threshold is not

known a-priori and, given a desired level of skeleton de-

tail, the appropriate value varies from image to image. By

contrast, AMAT’s scale parameter is more intuitive to select

and provides image-independent control of skeleton detail.

SK506 and WH-SYMMAX: We also evaluate the per-

formance of the AMAT on two additional datasets: WH-

SYMMAX [37] (F=0.44) and SK506 [38] (F=0.33). We

compare with the pretrained FSDS [38] evaluating only on

foreground skeletons, since our approach does not distin-

guish foreground from background. FSDS performs better

than AMAT (F=0.67 and F=0.45 respectively). This is un-

surprising, given that FSDS is a supervised method trained

on these datasets in a way that allows it to take advantage of

Metric Precision Recall F-measure

MIL [49] 0.49 0.55 0.52

AMAT 0.52 0.63 0.57

Human 0.89 0.66 0.77

Table 1: Medial point detection on the BSDS500 val set.

rich, object-specific information. However, this specializa-

tion comes at a cost: FSDS cannot generalize well to struc-

tures it has not seen before, which is evident when running

it on BMAX500 (F=0.34 vs. F=0.56 for AMAT).

5.2. Image Reconstruction

We now assess the quality of reconstructions we ob-

tain by inverting the computed AMAT of images from the

BSDS500 dataset. We compare with a baseline reconstruc-

tion algorithm based on the MIL approach of [49] (after

retraining MIL-color on BMAX500). Their method uses

features extracted in rectangular areas to produce a map of

medial point strength at 13 scales and 8 orientations, for

each pixel. A single confidence value for each point is de-

rived through a noisy-or operation, which does away with

scale and orientation information. As a surrogate, in our ex-

periments we associate each point with the scale/orientation

combination that has the highest score.

The scheme we use to create a crude reconstruction with

their approach is the following: We start by sorting medial

point scores in decreasing order and we pick the highest-

scoring point. The rectangular region at the respective scale

and orientation is then marked as covered, and the process

is repeated until the whole image has been reconstructed.

Similarly to our own method, point encodings are the mean

RGB values within the rectangle, and local reconstructions

are computed by averaging overlapping encodings. We also
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Figure 5: Image reconstruction. From left to right: Input image, MIL [49], GT-seg, GT-skel, AMAT.

Metric MSE PSNR (dB) SSIM Compression

MIL [49] 0.0258 16.6 0.53 20×
GT seg 0.0149 18.87 0.64 9×
GT skel 0.0114 20.19 0.67 14×
AMAT 0.0058 22.74 0.74 11×

Table 2: Image reconstruction quality in BSDS500 val set.

compare with two more baselines: one obtained by con-

sidering ground-truth (GT) segments in BSDS500 and rep-

resenting them by their mean RGB values (GT-seg); and

a second, obtained through the GT skeletons and radii in

BMAX500 (GT-skel). For the latter, we use the reconstruc-

tion process described in Section 4.

We consider three standard evaluation metrics for image

similarity: MSE, PSNR, and SSIM. Results are reported

in Table 2 and visual examples are shown in Figure 5. MIL

uses rectangle filters at a finite set of scales and orientations

that do not always match the scale and orientation of struc-

tures present in an image. As a result, MIL reconstructions

are very blurred. GT-based reconstructions, on the other

hand, have sharp edges but tend to have less texture detail,

because people tend to undersegment images, favoring per-

ceptual coherence over region appearance coherence. Note

that, for each image, we choose the GT annotation that pro-

duces the best SSIM score, to ensure we are always com-

paring against the best possible GT-based reconstruction.

6. Discussion

We have defined the first complete medial axis transform

for natural images. Our approach bridges the gap between

MAT methods for binary shapes and medial axis/local sym-

metry detection methods for real images. We have demon-

strated state-of-the-art performance in medial point detec-

tion and shown that we can produce a high-quality render-

ing of the input image using as few as 10% of its pixels.

That said, it is important to note that AMAT is not de-

signed to be optimal for either of these tasks. Instead, it is

designed to strike a balance between two conflicting objec-

tives: i) capturing an image’s salient structures (in the form

of medial axes and their respective scale/appearance infor-

mation); ii) providing an accurate reconstruction of the orig-

inal image from this abstracted representation. Therefore,

performance should be assessed on both objectives jointly.

We also want to emphasize that AMAT is a purely

bottom-up algorithm, completely unsupervised and train-

free. We consider this an important advantage of our ap-

proach, as it means that it can generalize well and in a pre-

dictable way to new datasets, without the need for additional

tuning. Despite the lack of training, we have shown that

it performs surprisingly well, and can even be competitive

with supervised methods fine-tuned to specific datasets.

In future work, our goal is to parameterize our method

to accommodate the relative roles of shape and appear-

ance, and allow for flexible hierarchical grouping of me-

dial branches to support segmentations of varying granular-

ities. Furthermore, although our current choice of f/g fa-

vors simplicity and compactness at the cost of texture, our

framework can accommodate any encoding/decoding func-

tions. Designing alternatives to better capture and recon-

struct texture, or for specific discriminative tasks, is another

exciting future direction.
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