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Abstract

Researchers have developed excellent feed-forward

models that learn to map images to desired outputs, such as

to the images’ latent factors, or to other images, using su-

pervised learning. Learning such mappings from unlabelled

data, or improving upon supervised models by exploiting

unlabelled data, remains elusive. We argue that there are

two important parts to learning without annotations: (i)

matching the predictions to the input observations, and (ii)

matching the predictions to known priors. We propose Ad-

versarial Inverse Graphics networks (AIGNs): weakly su-

pervised neural network models that combine feedback from

rendering their predictions, with distribution matching be-

tween their predictions and a collection of ground-truth

factors. We apply AIGNs to 3D human pose estimation

and 3D structure and egomotion estimation, and outper-

form models supervised by only paired annotations. We

further apply AIGNs to facial image transformation using

super-resolution and inpainting renderers, while deliber-

ately adding biases in the ground-truth datasets. Our model

seamlessly incorporates such biases, rendering input faces

towards young, old, feminine, masculine or Tom Cruise-

like equivalents (depending on the chosen bias), or adding

lip and nose augmentations while inpainting concealed lips

and noses.

1. Introduction

Humans imagine far more than they see. In Figure 1 (b),

we imagine the hidden arms and legs of the sitting woman.

In Figure 1 (c), we imagine forward motion of the camera,

as opposed to the road drifting backwards underneath the

camera. We arrive at these interpretations – i.e., predictions

of latent factors – by referring to priors on how the world

works.

This work proposes Adversarial Inverse Graphics Net-

works (AIGNs), a model that learns to map images to la-
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Figure 1. Adversarial Inverse Graphics Networks combine

feedback from differentiable rendering of the predictions, with pri-

ors, imposed through distribution matching between predictions

and “memories”. The general architecture is shown (a) with Dal-

lenbach’s classic cow illusion [4], and subsequently with our ex-

perimental tasks: (b) 3D human pose estimation, (c) extraction of

3D depth and camera motion from a pair of frames, and (d) cre-

ative and controllable image generation. Each task uses a unique

domain-specific renderer, depicted in orange dashed arrows.

tent factors using feedback from the rendering of its predic-

tions, as well as distribution matching between the predic-
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Figure 2. Adversarial inverse graphics architectures for (a) 3D

human pose estimation, (b) Structure from motion, (c) super-

resolution, and (d) inpainting.

tions and a stored collection of ground truth latent factors.

The ground-truth collection does not need to be directly re-

lated to the current input – it can be a disordered set of la-

bels. We call this unpaired supervision. The renderers em-

ployed are differentiable, parameter-free, and task specific,

e.g., camera projection, camera motion, downsampling, and

masking. Figure 2 depicts architectures for AIGNs for the

tasks of structure from motion, 3D human pose estimation,

super-resolution, and in-painting.

When we (deliberately) bias the ground truth collection

of an AIGN to reflect a distorted reality, surprising renders

arise. For super-resolution, AIGNs can make people look

older, younger, more feminine, more masculine or more like

Tom Cruise, by simply curating the discriminators’ ground

truth to include images of old, young, female, male, or Tom

Cruise pictures, respectively. For inpainting, AIGNs can

make people appear with bigger lips or bigger noses, again

by curating the discriminators’ ground truth to include faces

with big lips or big noses. These observations inspire a

compelling analogy: the AIGN’s ground truth collection is

its memory, and the renders are its imagination. When the

memories are biased, the imaginations reflect a distorted re-

ality.

Our model is related to, and builds upon, many recent

works in the literature. Inverse-graphics networks [17]

use parametric deconvolutional networks and strong super-

vision (i.e., annotation of images with their ground truth

imaginations) for decomposing an image into interpretable

factors, e.g., albedo and shading. Our model instead em-

ploys parameter-free renderers, and makes use of unpaired

weak supervision. Similar to our approach, 3D interpreter

networks [28] use a reconstruction loss in the form of a

2D re-projection error of predicted 3D keypoints, along

with paired supervised training for 3D human pose estima-

tion. Our model complements the reconstruction loss with

adversarial losses on the predicted 3D human poses, and

shows performance superior to the 3D interpreter. Condi-

tional Generative Adversarial Networks (GANs) have used

a combination of adversarial and L2 losses, e.g., for in-

painting [20], 3D voxel generation [30], super-resolution

[5], and image-to-image translation [14]. In these models,

the adversarial loss is used to avert the regression-to-mean

problem in standard L2 regression (i.e. blurring). Such

models are feed-forward; they do not have a renderer and

reconstruction feedback. As a result, they can only ex-

ploit supervision in the form of annotated pairs e.g., of an

RGB image and its corresponding 3D voxel grid [30]. Our

model extends such supervised conditional GAN formula-

tions through self-consistency via inverse rendering, and

matching between rendered predictions and the visual in-

put, rather than between predictions and the ground truth.

This feedback loop allows weakly supervised distribution

matching to work (using unpaired annotations for the dis-

criminators), removing the need for direct label matching.

As unsupervised models, AIGNs do not discriminate be-

tween training and test phases. Extensive experiments in

a variety of tasks show that their performance consistently

improves over their supervised alternatives, by adapting in

a self-supervised manner to the statistics of the test set.

2. Adversarial Inverse Graphics Networks

AIGN architectures for various tasks are shown in Fig-

ure 2. Given an image or image pair x, generator net-

works Gi, i ∈ 1..K map x to a set of predictions G(x) =
{Gi(x), i ∈ 1..K}. Then, a task-specific differentiable ren-

derer P (G(x)) renders predictions back to the original input

space. Discriminator networks Di, i ∈ 1..K are trained to

discriminate between predictions Gi(x) and true memories

of appropriate form Mi. Discriminators have to assign large

probability to true memories and low probability to gener-

ators’ predictions. Given a set of images (or image pairs

depending on the task) X = {x1, x2, .., xn}, generators are

trained to minimize L2 distance between rendered imagina-

4355



tions and input x and simultaneously maximize discrimina-

tors’ confusion. Our loss then reads:

min
G

max
D

Ex∈X ‖P (G(x))− x‖2
︸ ︷︷ ︸

reconstruction loss

+

β

K∑

i=1

logDi(Mi) + log(1−Di(Gi(x)))
︸ ︷︷ ︸

adversarial loss

, (1)

where D denotes the set of discriminator networks and G
the set of generator networks and β the relative weight

of reconstruction and adversarial losses. Since paired

ground-truth is not used anywhere, both reconstruction

and adversarial losses can be used both at train and test

time. Our model can also benefit from strong supervision

through paired annotations -pairs of visual input with de-

sired predictions- at training time for training the generator

networks. We will use the term adversarial priors to denote

adversarial losses over latent predicted factors of our model.

In the next sections, we present applications of AIGNs

to the tasks of (i) 3D human pose estimation, (ii) extraction

of 3D depth and egomotion from a pair of frames, which

we call Structure from Motion (SfM), (iii) super-resolution,

and (iv) inpainting. For application of AIGNs to intrinsic

image decomposition, please see our earlier unpublished

manuscript [26].

2.1. 3D Human Pose Estimation

The AIGN architecture for 3D human pose estimation

is depicted in Figure 2 (a). Given an image crop centered

around a person detection, the task is to predict a 3D skele-

ton for the depicted person. We decompose the 3D human

shape into a view-aligned 3D linear basis model and a rota-

tion matrix: x3D = R ·
∑|B|

j=1
αjBj Our shape basis B is

obtained using PCA on orientation-aligned 3D poses in our

training set, where orientation is measured by the direction

of the normal to the hip vector. We keep 60 components

out of a total of 96 (three coordinates of 32 keypoints). The

dimensionality reduction is small, and indeed, we just use

bases weights for ease of prediction, relying on our adver-

sarial priors (rather than PCA) to regularize the 3D shape

prediction.

Our generator network first predicts a set of 2D bodyjoint

heatmaps and then maps those to basis weights w ∈ R
60,

focal length f , and Euler rotation angles α, β, γ so that the

3D rotation of the shape reads R = Rx(α)Ry(β)Rz
t (γ),

where Rx(θ) denotes rotation around the x-axis by angle

θ. Our renderer then projects the 3D keypoints x3D to 2D

keypoints x
proj
2D , all in homogeneous coordinates:

x
proj
2D = P · x3D +





cx
cy
0



 , (2)

where P =





f 0 0 0
0 f 0 0
0 0 1 0



 is the camera projection ma-

trix. The reconstruction loss is the L2 norm between the

reprojected coordinates x
proj
2D and 2D coordinates obtained

by the argmax of predicted 2D heatmaps. A discrimina-

tor network discriminates between our generated keypoints

x3D and a database of 3D human skeletons, which does not

contain the ground-truth (paired) 3D skeleton for the input

image, but rather previous poses (i.e., “memories”).

2.2. Structure from Motion

Simultaneous Localization And Mapping (SLAM) meth-

ods have shown impressive results on estimating camera

pose and 3D point clouds from monocular, stereo, or RGB-

D video sequences [22, 16] using alternate optimization

over camera poses and the 3D scene pointcloud. There has

been a recent interest in integrating learning to aid geomet-

ric approaches handle moving objects and low-texture im-

age regions. The work of Handa et al. [11] contributed a

deep learning library with many geometric operations in-

cluding a differentiable camera projection layer, similar to

those used in SfM networks [21, 33], 3D image interpreters

[29], and depth from stereo CNN [9]. Our SfM AIGN ar-

chitecture, depicted in Figure 2 (b), build upon those works.

Given a pair of consecutive frames, the task is to predict the

relative camera motion and a depth map for the first frame.

We have two generator networks: an egomotion network

and a depth network. The egomotion network takes the fol-

lowing inputs: a concatenation of two consecutive frames

I1, I2, their 2D optical flow estimated using our implemen-

tation of FlowNet [6], the angles of the optical flow, and

a static angle field. The angle field denotes each pixel’s

angle from the camera’s principal point (in radians), while

the flow angles denote the angular component of the opti-

cal flow. The egomotion network produces the camera’s 3D

relative rotation and translation {R, T} ∈ SE(3) as output.

We represent 3D camera relative rotation using an Euler an-

gle representation:R = Rx(α)Ry(β)Rz
t (γ) where Rx(θ)

denotes rotation around the x-axis by the angle θ. The

egomotion network is a standard convolutional architecture

(similar to VGG16 [23]), but following the last convolution

layer, there is a single fully-connected layer producing a 6D

vector, representing the Euler angles of the rotation matrix,

and the translation vector.

The depth network takes as input the first frame I1 and

estimates 3D scene log depth at every pixel, {d} ∈ R
w×h.

The architecture of this network is the same as that of the

egomotion network, except deconvolution layers (with skip

connections) replace the fully-connected layer, producing a

depth estimate at every pixel. Given generated depth d for

the first frame I1 and known camera intrinsics – focal length

f and principal point (cx, cy) – we obtain the correspond-
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ing 3D point cloud for I1: Xi
1
=





Xi
1

Y i
1

Zi
1



 = di

f





xi
1
− cx

yi
1
− cy
f



,

where (xi
1
, yi

1
) are the column and row coordinates and di

the predicted depth of the ith pixel in frame I1. Our renderer

in this task transforms the point cloud X1 according to the

estimated camera motion: X2 = R·X1+T (similar to SE3-

Nets [3] and the recent SfM-Nets [21, 33]), and projects the

3D points back to image pixels x2, y2 using camera projec-

tion.

The optical flow vector of pixel i is then (U i, V i) =
(xi

2
− xi

1
, yi

2
− yi

1
). Our reconstruction loss corresponds

to the well known brightness constancy principle, that pixel

appearance does not change under small pixel motion:

Lphoto =
1

w h

∑

x,y

‖I1(x, y)−I2(x+U(x, y), y+V (x, y))‖1

(3)

We have two discriminator networks: D1 manages the

realism of predicted camera motions by enforcing physics

constraints in a statistical manner: when the camera is fixed

to the top of a car, the roll and pitch angles are close to

zero due to the nature of the car motion. This network has

three fully-connected layers (of size 128, 128, and 64), and

discriminates between real and fake relative transformation

matrices. The second discriminator, D2, manages the real-

ism of 3D depth predictions, using a collection of ground-

truth depth maps from unrelated sequences. This discrimi-

nator is fully convolutional. That is, it has one probabilistic

output at each image sub-region, as we are interested in the

realism of local depth texture. We found the depth discrim-

inator to effectively handle the scale ambiguity of monocu-

lar 3D reconstruction: in a monocular setup without priors,

the re-projection error cannot tell if an object is far and big,

or near and small. The depth discriminator effectively im-

poses a prior regarding world scale, as well as depth realism

on fine-grained details.

2.3. Superresolution

Deep neural network architectures have recently shown

excellent performance on the task of super-resolution [5, 2]

and non-blind inpainting [20, 32] (inpainting where the

mask is always at the same part of the image). Adversar-

ial losses have been used to resolve the regression to the

mean problem of standard L2 loss [18, 20]. Our model

unifies recent works of [24] and [32] that combine adver-

sarial and reconstruction losses for super-resolution and in-

painting respectively, without paired supervision, same as

our model. However, weak (unpaired) supervision might

be unnecessary for super-resolution or inpainting as an un-

limited amount of ground-truth pairs can be easily collected

by downsampling or masking images. Our AIGN focuses

instead on biased super-resolution and inpainting, as a tool

for creative and controllable image generation.

The AIGN architecture for super-resolution is depicted

in Figure 2 (c). Our generator network takes as input a low-

resolution image x ∈ R
w×h and produces a high resolution

image G(x) ∈ R
4W×4H after a number of residual neural

blocks [12]. Our renderer P (G(x)) is a downsampler that

reduces the size of the output image by four times. We im-

plement it using average pooling with the appropriate stride.

Our reconstruction loss is the L2 distance between the in-

put image and the rendered imagination P (G(x)). Our dis-

criminator takes as input high resolution predicted images,

as well as memories of high resolution images, unrelated

to the current input. Thus far, our model is similar to the

concurrent work Sønderby et al. [24].

Unsupervised super-resolution networks [24] may not be

necessary, since large supervised training datasets of low-

and high-resolution image pairs can be collected by Gaus-

sian blurring and downsampling. We instead focus on what

we call biased super-resolution for face images. We bias

our discriminator ground-truth memories to contain high

resolution images of a particular image category, e.g., fe-

males, males, young, old faces, or faces of a particular in-

dividual. AIGNs then mix the low-frequencies of the input

image (preserved via our reconstruction loss) with high fre-

quencies from the memories (imposed by the adversarial

losses), the relative weight β between reconstruction and

adversarial loss in Eq. 1 controls such mixing. The result

is realistically looking faces whose age, gender or identity

has been transformed, as shown in Figure 5. Such facial

transformations are completely unsupervised; the model has

never seen a pair of the same person old and young (or male

and female).

2.4. Inpainting

The AIGN architecture for inpainting is depicted in Fig-

ure 2 (d). The input is a “masked” image x, that is, an im-

age whose content is covered by a black contiguent mask

m. Our generator produces a complete (inpainted) image

G(x). The rendering function P in this case is a mask-

ing operation: P (G(x),m) = m ⊙ G(x), where ⊙ de-

notes pointwise multiplication. Our discriminator receives

inpainted imaginations G(x) and memories of complete

face images M , unrelated to our current input images. Our

model is trained then to predict complete, inpainted images

that when masked will match the input image x. Thus far,

our model is similar to [32].

Unsupervised inpainting networks [32] may not be nec-

essary, since large supervised training datasets of paired

masked and complete images can be collected via image

masking. We instead focus on biased inpainting of face im-

ages. We bias the discriminator’s ground-truth memories

to contain complete images with a particular desired char-

acteristic, in the location of the mask m. For example, if

the mask covers the mouth of a person, we can bias dis-
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Direct Discuss Eat Greet Phone Photo Pose Purchase Sit SitDown Smoke Wait Walk Average

Forward2Dto3D 75.2 118.4 165.7 95.9 149.1 154.1 77.7 176.9 186.5 193.7 142.7 99.8 74.7 128.9

3Dinterpr [28] 56.3 77.5 96.2 71.6 96.3 106.7 59.1 109.2 111.9 111.9 124.2 93.3 58.0 88.6

Monocap [34] 78.0 78.9 88.1 93.9 102.1 115.7 71.0 90.6 121.0 118.2 102.5 82.6 75.62 92.3

AIGN (ours) 53.7 71.5 82.3 58.6 86.9 98.4 57.6 104.2 100.0 112.5 83.3 68.9 57.0 79.0

Table 1. 3D reconstruction error in H3.6M using ground-truth 2D keypoints as input.

Direct Discuss Eat Greet Phone Photo Pose Purchase Sit SitDown Smoke Wait Walk Average

Forward2Dto3D 80.2 92.4 102.8 92.5 115.5 79.9 119.5 136.7 136.7 144.4 109.3 94.2 80.2 104.6

3Dinterpr [28] 78.6 90.8 92.5 89.4 108.9 112.4 77.1 106.7 127.4 139.0 103.4 91.4 79.1 98.4

AIGN (ours) 77.6 91.4 89.9 88 107.3 110.1 75.9 107.5 124.2 137.8 102.2 90.3 78.6 97.2

Table 2. 3D reconstruction error in H3.6M using detected 2D keypoints as input.

criminators’ ground-truth memories to only contain people

with big lips. In this case, our generator will produce in-

painted images G(x), that have this localized characteristic

in a smooth photorealistic blend, in order to confuse the dis-

criminator D.

For further details on the proposed architectures please

see the supplementary material.

3. Experiments

3.1. 3D human pose estimation from a static image

We use the Human3.6M (H3.6M) dataset of Ionescu et

al. [13], the largest available dataset with annotated 3D hu-

man poses. This dataset contains videos of actors perform-

ing activities and provides annotations of body joint loca-

tions in 2D and 3D at every frame, recorded from a Vicon

system. We split the videos by the human subjects, with five

subjects (S1, S5, S6, S7, S8) for training and two subjects

(S9, S11) for testing, following the split of previous works

[34]. For both sets, we use one third of the original frame

rate.

We consider a variety of supervised setups and baselines

for our 3D human pose predictor, which we detail below.

We first train our network using synthetic data augmen-

tation (Sup 1), following the protocol of Wu et al. [28]:

A 3D example skeleton is first perturbed, a 3D rotation

R and focal length f are sampled, and the resulting ro-

tated shape is projected to 2D. We further train our net-

work using real paired 2D-to-3D training data from H3.6M

(Sup 2). Our generator network trained with Sup1+Sup2

we will call it Forward2DTo3D net, as it resembles a stan-

dard supervised model for 3D human pose estimation. We

further finetune using a reconstruction loss (2D reprojec-

tion error) in the test data (Sup 3). Our generator network

trained with Sup1+Sup2+Sup3 we will call it 3D inter-

preter due to its clear similarity with Wu et al. [28]. Since

the original source code is not available, we re-implement

it and use it as one of our baselines. Our AIGN model,

along with Sup1+Sup2+Sup3, uses unsupervised adversar-

ial losses in the test data using randomly selected 3D train-

ing poses (Sup4). We compare AIGN to 3D interpreter and

Forward2Dto3D baselines in two setups for 3D lifting: (a)

using ground-truth 2D body joints provided by H3.6M as

input, and (b) using 2D body joints provided by the state-

of-the-art Convolutional Pose Machine detector [27]. We

used an SVM regressor to map keypoint definitions of Wei

et al. [27] to the one of H3.6M dataset. When using ground-

truth 2D body joints as input we also compare against the

publicly available 3D pose code for MonoCap [34], an op-

timization method that uses a sparsity prior across an over-

complete dictionary of 3D poses, and minimizes the repro-

jection error via Expectation-Maximization. We consider

one image as input for all the models for a fair compari-

son (MonoCap was originally proposed assuming a video

sequence as input).

Evaluation metrics. Given a set of estimated 3D joint

locations x̂1 · · · x̂K and corresponding ground-truth 3D

joint locations x
∗
1
· · ·x∗

K , the reconstruction error is de-

fined as the 3D per-joint error after the torsos are aligned

to face the front with transformation T : 1

K

∑K

i=1
‖T (x̂i)−

T (x∗
i )‖. We show the 3D reconstruction error (in millime-

ters) of our model and baselines in Tables 1 and 2, organized

according to activity, following the presentation format of

Zhou et al. [34], though only one model was used across

all activities for our method and baselines (for MonoCap

this means using the same dictionary for optimization in all

images).

The AIGN outperforms the baselines, especially for

ground-truth keypoints. This suggests it would be valuable

to finetune 2D keypoint detector features as well, instead

of keeping them fixed. Adversarial priors allow the model

not to diverge when finetuned on new (unlabelled) data, as

they ensure anthropomorphism and plausibility of the de-

tected poses. For additional 3D pose results, please see the

supplementary material.

4358



 magnitude translation differenceangular translation difference

depth loss

iteration

photometric loss

iteration

wo advers priors 
wo advers priors smooth 
with depth GAN 

with depth/cam GAN

wo advers priors 
wo advers priors smooth 
with depth GAN 
with depth/cam GAN

distance error

iteration

 rotation angle error

iteration

wo advers priors 
wo advers priors smooth 
with depth GAN 
with depth/cam GAN

wo advers priors 
wo advers priors smooth 
with depth GAN 
with depth/cam GAN

AIGN
depth-AIGN
smooth-IGN

IGN

AIGN
depth-AIGN
smooth-IGN

IGN

AIGN
depth-AIGN
smooth-IGN

IGN

AIGN
depth-AIGN
smooth-IGN

IGN

Figure 3. Depth, camera motion (relative rotation and translation)

and photometric reprojection error curves during training of (a)

the AIGN model with adversarial losses on both depth and cam-

era motion (AIGN), (b) an AIGN with adversarial losses only

on depth (depth-AIGN), (c) a model with reconstruction loss and

depth smoothness loss (smooth-IGN) and (d) a model with a re-

construction loss only (IGN). Adversarial priors handle scale am-

biguity of reconstruction loss, and thus models do not diverge.

3.2. Structure from Motion

We use Virtual KITTI (VKITTI) [8], a synthetic dataset

that depicts videos taken from a camera mounted on a car

driving in an urban center. This dataset contains scenes and

camera viewpoints similar to the real KITTI dataset [10].

We use the VKITTI dataset rather than KITTI, because the

real-world dataset has large errors in the ground truth cam-

era motion for short sub-sequences, whereas the synthetic

ground truth is precise. We use the first VKITTI sequence

(in all weather conditions) as the validation set, and the re-

maining four sequences as the training set. We consider the

tasks of (i) single-frame depth estimation, and (ii) egomo-

tion estimation from pairs of frames.

Evaluation metrics. We evaluate the error between our

camera motion predictions using four metrics, as defined

in prior works [25, 15]. These are: (a) distance error: the

camera end point error distance in meters; (b) rotation an-

gle error: the camera rotational error in radians, (c) angular

translation error: the error in the angular direction of the

camera translation; and (d) magnitude translation error: the

error in the magnitude of the camera translation.

We evaluate the error between our depth prediction and

the true depth with an L1 distance in log depth space. The

use of log depth is inspired by Eigen et al. [7], but we do

not use the scale-invariant error from that work, because it

assumes the presence of an oracle indicating the true mean

depth value at test time.

We consider two supervision setups: (a) unsupervised

learning of SfM, where the AIGN is trained from scratch us-

ing (self-supervised) reconstruction and adversarial losses,

and (b) supervised pretraining, where depth and camera mo-

tion in the training set are used to pretrain our generators,

before applying unsupervised learning in the test set.

Self-supervised learning of SfM. We compare the fol-

lowing models: (a) our full model, AIGN, with adversarial

losses on depth and camera motion, (b) our model with ad-

versarial losses only on depth, but not on camera motion

(depth-AIGN), (c) our model without adversarial losses but

instead with a smoothness loss on depth (smooth-IGN), and

(d) our model without any adversarial priors (IGN).

We show depth, camera error and photometric errors

against number of training iterations for all models in Figure

3 in the test set. Models without depth adversarial priors di-

verge after a number of iterations (the depth map takes very

large values). This is due to the well known scale ambigu-

ity of monocular reconstruction: objects can be further away

or simply be smaller in size, and the 2D re-projection will

be the same. Adversarial priors enforce constraints regard-

ing the general scale of the world scene, as well as depth-

like appearance and camera motion-like plausibility on the

predictions, and prevent depth divergence. While the ad-

versarial model has higher photometric error that the one

without priors (naturally, since it is more constrained), the

intermediate variables, namely depth and camera motion,

are much more accurate when adversarial priors are present.

The model that uses depth smoothness (depth-IGN) falls in-

between the AIGN model and the model without any pri-

ors, and diverges as well. In Figure 4, we show the esti-

mated depth and geometric flow predicted by models with

and without adversarial priors.

Supervised pretraining. In this setup, we pretrain our

camera pose estimation sub-network and depth sub-network

using the VKITTI training set using supervised training

against ground-truth depthmaps and camera motions sup-

plied with the dataset (pretrain baseline). We then finetune

our model in the test set using self-supervision, i.e., repro-

jection error and adversarial constraints (Pretrain+SelfSup).

We evaluate camera pose estimation performance of our

models in the test set, and compare against the geomet-

ric model of Jaegle et al. [15], a monocular camera mo-

tion estimation method that takes optical flow as input, and

solves for the camera motion with an optimization-based

method that attenuates the influence of outlier flows. We

show our translation and rotation camera motion errors in

Table 3. The pretrained model performs worse than the ge-

ometric baseline. When pretraining is combined with self-

supervision, we obtain a much lower error than the geo-

metric model. Monocular geometric methods, such as [15],

do not have a good way to resolve the scale ambiguity in

reconstruction, and thus have large translation errors. The

AIGN for SfM, while being monocular, learns depth and
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Figure 4. Structure from motion results with and without adversarial priors. The results of the baseline (columns 5th and 8th) are

obtained from a model with depth smoothness prior (smooth-IGN), trained with early stopping at 40K iterations (before divergence).

does not suffer from such ambiguities. Further, we out-

perform [15] with respect to the angle of translation that

a geometric method can in principle estimate (no ambigu-

ity). These results suggest that our adversarial SfM model

improves by simply watching unlabeled videos, without di-

verging.

trl err rot err trl mag. trl ang.

Geometric [15] 0.4588 0.0014 0.4579 0.3423

Pretrain 0.4876 0.0017 0.4865 0.3306

Pret.+SelfSup 0.1294 0.0014 0.1247 0.3333

Table 3. Camera motion estimation in our Virtual KITTI test

set. The self-supervised model outperforms the geometric base-

line of Jaegle et al. [15]. The translation error (column 1) is de-

composed into magnitude and angular error in columns 3-4.

3.3. Imagetoimage translation

We use the CelebA dataset [19] which contains 202,599

face images, with 10,177 unique identities, and is annotated

with 40 binary attributes. We preprocess the data by crop-

ping each face image to the largest bounding box that in-

cludes the whole face using the OpenFace library [1].

Biased super-resolution. We train female-to-male and

male-to-female gender transformation by applying adver-

sarial super-resolution to new face input images, while

discriminator memories contain only male or only female

faces, respectively. We train old-to-young and young-

to-old age transformations by applying adversarial super-

resolution to new face images while discriminator memo-

ries contain only young or only old faces, respectively –

as indicated by the attributes in the CelebA dataset. We

train identity mixing transformations by applying adversar-

ial super-resolution to new face images while discrimina-

tor memories contain only a particular person identity, for

demonstration we choose Tom Cruise. We show results in

Figure 5 (a-c). We further compare our model against the

recent work of Attribute2Image[31] in Figure 5(d) using

code available by the authors. The AIGN better preserves

the fidelity of the transformation and is more visually de-

tailed. Though we demonstrate age, gender transformation

and identity mixing, AIGN could be used for any creative

image generation task, with appropriate curation of the dis-

criminator’s ground-truth memories.

Biased Inpainting. We train “bigger lips” and “bigger

nose” transformations by applying adversarial inpainting to

new input face images where the mouth or nose region has

been masked, respectively, and discriminator’s memories

contain only face images with big lips or with big noses, re-

spectively. Note that “big lips” and “big nose” are attributes

annotated in the CelebA dataset. We show results in Fig-

ure 6. From top to bottom, we show the original image, the

masked image input to adversarial inpainting, the output of

our generator, and in the last row, the output of our genera-

tor superimposed over the original image.

Renderers versus parametric decoders for image-to-

image translation. We compare the results of domain-

specific, non-parametric renderers, and parametric decoders

in image-to-image translation tasks. For our model with

parametric decoder we use the full res image as input

and instead of the downsampling module in the pro-

posed super-resolution renderer we instead use convolu-

tional/deconvolutional layers so that the decoder can freely

adjust its weights through training. This is similar to the

one way transformation proposed in the concurrent work

of [35]. We trained both models on gender transforma-
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(a) Female-to-male transformation.

(b) Male-to-female transformation.

(c) Anybody-to-Tom Cruise transformation.

(d) Comparison with Attribute2Image [31] for male-to-female

(left) and old-to-young transformation (right).

Input 
cropped 

Input 
Our 

approach
Attribute2

Image

cr

to young
Input 

cropped 

Input 
Our 

approach
Attribute2

Image
input inputcropped  

input

cropped  

input

Figure 5. Biased adversarial super-resolution.

bigger lips transformation bigger nose transformation

Figure 6. Biased adversarial inpainting for bigger lips transfor-

mation (left) and bigger nose transformation (right). From left to

right: the original image, the masked image input to our model,

and the generated output superimposed over the masked image.

tion, and results are shown in Figure 7. While both mod-

els produce photorealistic results, the model with the ren-

derer produces females “more paired” to their male counter-

parts, while parametric renderers may alter other properties

of the face considerably, e.g., in the last row of Figure 7, the

age of the produced females does not match their male ori-

gins. Parameter-free rendering is an important element of

unsupervised learning with AIGNs; We have observed that

parametric decoders (instead of parameter-free renderers)

can cause the reconstruction loss to drop without learning

meaningful predictions but rather exploiting the capacity of

the decoder. We provide a comprehensive experiment in the

supplementary material.

input input
non-param 

renderer

parametric 

decoder
non-param 

renderer

parametric 

decoder

Figure 7. Comparing male-to-female transformation using render-

ers and parametric decoder.

4. Conclusion

We have presented Adversarial Inverse Graphics Net-

works, weakly supervised neural networks for 2D-to-3D

lifting and image-to-image translation that combines feed-

back from renderings of predictions with data-driven priors

on latent semantic factors, imposed using adversarial net-

works. We showed AIGNs outperform previous supervised

models that do not use adversarial priors, in the tasks of

3D human pose estimation and 3D structure and egomotion

extraction. We further showed how biasing discriminators’

priors for inpainting and super-resolution results in creative

image editing, and outperforms supervised variational au-

toencoder models of previous works, in terms of the fidelity

of the transformation, and the amount of visual detail. Deep

neural networks have shown that we do not need to engineer

our features; AIGNs shows we do not need to engineer our

priors either.
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