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Abstract

In this work we propose a new CNN+LSTM architecture

for camera pose regression for indoor and outdoor scenes.

CNNs allow us to learn suitable feature representations for

localization that are robust against motion blur and illumi-

nation changes. We make use of LSTM units on the CNN

output, which play the role of a structured dimensionality

reduction on the feature vector, leading to drastic improve-

ments in localization performance. We provide extensive

quantitative comparison of CNN-based and SIFT-based lo-

calization methods, showing the weaknesses and strengths

of each. Furthermore, we present a new large-scale indoor

dataset with accurate ground truth from a laser scanner.

Experimental results on both indoor and outdoor public

datasets show our method outperforms existing deep archi-

tectures, and can localize images in hard conditions, e.g.,

in the presence of mostly textureless surfaces, where classic

SIFT-based methods fail.

1. Introduction

Being able to localize a vehicle or device by estimating

a camera pose from an image is a fundamental requirement

for many computer vision applications such as navigating

autonomous vehicles [34], mobile robotics and Augmented

Reality [36], and Structure-from-Motion (SfM) [46].

Most state-of-the-art approaches [31, 44, 50, 62] rely on

local features such as SIFT [35] to solve the problem of

image-based localization. Given a SfM model of a scene,

where each 3D point is associated with the image features

from which it was triangulated, one proceeds in two stages

[32, 43]: (i) establishing 2D-3D matches between features

extracted from the query image and 3D points in the SfM

model via descriptor matching; (ii) using these correspon-

dences to determine the camera pose, usually by employing

a n-point solver [29] inside a RANSAC loop [13]. Pose es-

timation can only succeed if enough correct matches have

been found in the first stage. Consequently, limitations of

both the feature detector, e.g., motion blur or strong illumi-

nation changes, or the descriptor, e.g., due to strong view-

point changes, will cause localization approaches to fail.

Recently, two approaches have tackled the problem of

(a) PoseNet result [24] (b) Our result

Figure 1: Our approach achieves accurate outdoor image-

based localization even in challenging lighting conditions

where other deep architectures fail.

localization with end-to-end learning. PlaNet [57] formu-

lates localization as a classification problem, where the cur-

rent position is matched to the best position in the training

set. While this approach is suitable for localization in ex-

tremely large environments, it only allows to recover posi-

tion but not orientation and its accuracy is bounded by the

spatial extent of the training samples. More similar in spirit

to our approach, PoseNet [23,24] formulates 6DoF pose es-

timation as a regression problem. In this paper, we show

that PoseNet is significantly less accurate than state-of-the-

art SIFT methods [31, 44, 50, 62] and propose a novel net-

work architecture that significantly outperforms PoseNet.

1.1. Contributions

In this paper, we propose to directly regress the camera

pose from an input image. To do so, we leverage, on the

one hand, Convolutional Neural Networks (CNNs) which

allow us to learn suitable feature representations for local-

ization that are more robust against motion blur and illu-

mination changes. As we can see from the PoseNet [24]

results, regressing the pose after the high dimensional out-

put of a FC layer is not optimal. Our intuition is that the

high dimensionality of the FC output makes the network

prone to overfitting to training data. PoseNet deals with

this problem with careful dropout strategies. We propose to

make use of Long-Short Term Memory (LSTM) units [22]

on the FC output, which performs structured dimensionality

reduction and chooses the most useful feature correlations

for the task of pose estimation. Overall, we improve lo-

calization accuracy by 32-37% wrt. previous deep learning

architectures [23, 24]. Furthermore, we are the first to pro-
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vide an extensive comparison with a state-of-the-art SIFT-

based method [44], which shreds a light on the strengths

and weaknesses of each approach. Finally, we introduce

a new dataset for large-scale indoor localization, consist-

ing of 1,095 high resolution images covering a total area of

5,575m2. Each image is associated with ground truth pose

information. We show that this sequence cannot be handled

with SIFT-based methods, as it contains large textureless

areas and repetitive structures. In contrast, our approach

robustly handles this scenario and localizes images on av-

erage within 1.31m of their ground truth location.

To summarize, our contribution is three-fold: (i) we pro-

pose a new CNN+LSTM architecture for camera pose re-

gression in indoor and outdoor scenes. Our approach sig-

nificantly outperforms previous work on CNN-based local-

ization [23, 24]. (ii) we provide the first extensive quantita-

tive comparison of CNN-based and SIFT-based localization

methods. We show that classic SIFT-based methods still

outperform all CNN-based methods by a large margin on

existing benchmark datasets. (iii) we introduce TUM-LSI1,

a new challenging large indoor dataset exhibiting repetitive

structures and weakly textured surfaces, and provide accu-

rate ground truth poses. We show that CNN-based methods

can handle such a challenging scenario while SIFT-based

methods fail completely. Thus, we are the first to demon-

strate the usefulness of CNN-based methods in practice.

1.2. Related work

Local feature-based localization. There are two tradi-

tional ways to approach the localization problem. Loca-

tion recognition methods represent a scene by a database of

geo-tagged photos. Given a query image, they employ im-

age retrieval techniques to identify the database photo most

similar to the query [2,42,52,53,61]. The geo-tag of the re-

trieved image is often used to approximate the camera pose

of the query, even though a more accurate estimate can be

obtain by retrieving multiple relevant images [45, 60, 63].

More relevant to our approach are structure-based local-

ization techniques that use a 3D model, usually obtained

from Structure-from-Motion, to represent a scene. They de-

termine the full 6DoF camera pose of a query photo from a

set of 2D-3D correspondences established via matching fea-

tures found in the query against descriptors associated with

the 3D points. The computational complexity of matching

grows with the size of the model. Thus, prioritized search

approaches [10, 32, 44] terminate correspondence search as

soon as a fixed number of matches has been found. Simi-

larly, descriptor matching can be accelerated by using only

a subset of all 3D points [9, 32], which at the same time re-

duces the memory footprint of the 3D models. The latter

can also be achieved by quantizing the descriptors [36, 41].

1Dataset available at https://tum-lsi.vision.cs.tum.edu

For more complex scenes, e.g., large-scale urban en-

vironments or even large collections of landmark scenes,

2D-3D matches are usually less unique as there often are

multiple 3D points with similar local appearance [31].

This causes problems for the pose estimation stage as ac-

cepting more matches leads to more wrong matches and

RANSAC’s run-time grows exponentially with the ratio

of wrong matches. Consequently, Sattler et al. use co-

visibility information between 3D points to filter out wrong

matches before pose estimation [41, 44]. Similarly, Li et

al. use co-visibility information to adapt RANSAC’s sam-

pling strategy, enabling them to avoid drawing samples un-

likely to lead to a correct pose estimate [31]. Assuming

that the gravity direction and a rough prior on the camera’s

height are known, Svärm et al. propose an outlier filtering

step whose run-time does not depend on the inlier ratio [50].

Zeisl et al. adapt this approach into a voting scheme, reduc-

ing the computational complexity of outlier filtering from

O(n2 log n) [50] to O(n) for n matches [62].

The overall run-time of classical localization approaches

depends on the number of features found in a query im-

age, the number of 3D points in the model, and the number

of found correspondences and/or the percentage of correct

matches. In contrast, our approach directly regresses the

camera pose from a single feed-forward pass through a net-

work. As such, the run-time of our approach only depends

on the size of the network used.

As we will show, SIFT-based methods do not work

for our new challenging indoor LSI dataset due to repeti-

tive structures and large textureless regions present in in-

door scenes. This further motivates the use alternative ap-

proaches based, e.g., on deep learning.

Localization utilizing machine learning. In order to boost

location recognition performance, Gronat et al. and Cao &

Snavely learn linear classifiers on top of a standard bag-of-

words vectors [8,18]. They divide the database into distinct

places and train classifiers to distinguish between them.

Donoser & Schmalstieg cast feature matching as a classi-

fication problem, where the descriptors associated with each

3D model point form a single class [12]. They employ an

ensemble of random ferns to efficiently compute matches.

Aubry et al. learn feature descriptors specifically for the

task of localizing paintings against 3D scene models [3].

In the context of re-localization for RGB-D images,

Guzman-Rivera et al. and Shotton et al. learn random

forests that predict a 3D point position for each pixel in an

image [19, 47]. The resulting 2D-3D matches are then used

to estimate the camera pose using RANSAC. Rather than

predicting point correspondences, Valentin et al. explicitly

model the uncertainty of the predicted 3D point positions

and use this uncertainty during pose estimation [54], allow-

ing them to localize more images. Brachmann et al. adapt

the random forest-based approach to not rely on depth mea-
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surements during test time [6]. Still, they require depth data

during the training stage as to predict 3D coordinates for

each pixel. In contrast, our approach directly regresses the

camera pose from an RGB image, and thus only needs a set

of image-pose pairs as input for training.

Deep learning. CNNs have been successfully applied

to most tasks in computer vision since their major suc-

cess in image classification [21, 28, 48] and object detec-

tion [14,15,39]. One of the major drawbacks of deep learn-

ing is its need for large datasets for training. A common

approach used for many tasks is that to fine-tune deep ar-

chitectures pre-trained on the seemingly unrelated task of

image classification on ImageNet [40]. This has been suc-

cessfuly applied, among others, to object detection [14], ob-

ject segmentation [27, 37], semantic segmentation [20, 38],

and depth and normal estimation [30]. Similarly, we take

pre-trained networks, e.g. GoogLeNet [51], which can be

seen as feature extractors and then fine-tune them for the

task of camera pose regression.

LSTM [22] is a type of Recurrent Neural Network

(RNN) [16] designed to accumulate or forget relevant con-

textual information in its hidden state. It has been success-

fully applied for handwriting recognition [17] and in natural

language processing for machine translation [49]. Recently,

CNN and LSTM have been combined in the computer vi-

sion community to tackle, for example, visual recognition

in videos [11]. While most methods in the literature apply

LSTM on a temporal sequence, recent works have started

to use the memory capabilities of LSTMs to encode con-

textual information. ReNet [56] replaced convolutions by

RNNs sweeping the image vertically and horizontally. [55]

uses spatial LSTM for person re-identification, parsing the

detection bounding box horizontally and vertically in order

to capture spatial dependencies between body parts. [7] em-

ployed the same idea for semantic segmentation and [33] for

semantic object parsing. We use LSTMs to better correlate

features coming out of the convolutional and FC layers, effi-

ciently reducing feature dimensionality in a structured way

that improves pose estimation compared to using dropout on

the feature vector to prevent overfitting. A similar approach

was simultaneously proposed in [4], where LSTMs are used

to obtain contextual information for object recognition.

End-to-end learning has also been used for localization

and location recognition. DSAC [5] proposes a differen-

tiable RANSAC so that a matching function that optimizes

pose quality can be learned. Arandjelović et al. employ

CNNs to learn compact image representations, where each

image in a database is represented by a single descrip-

tor [1]. Weyand et al. cast localization as a classification

problem [57]. They adaptively subdivide the earth’s sur-

face in a set of tiles, where a finer quantization is used for

regions exhibiting more images. The CNN then learns to

predict the corresponding tile for a given image, thus pro-

viding the approximate position from which a photo was

taken. Focusing on accurate 6DoF camera pose estimation,

the PoseNet method by Kendall et al. uses CNNs to model

pose estimation as a regression problem [24]. An extension

of the approach repeatedly evaluates the CNN with a frac-

tion of its neurons randomly disabled, resulting in multiple

different pose estimates that can be used to predict pose un-

certainty [23]. One drawback of the PoseNet approach is

its relative inaccuracy [6]. In this paper, we show how a

CNN+LSTM architecture is able to produce significantly

more accurate camera poses compared to PoseNet.

2. Deep camera pose regression

In this section, we develop our framework for learning

to regress camera poses directly from images. Our goal is

to train a CNN+LSTM network to learn a mapping from an

image to a pose, I
f
→ P, where f(·) is the neural network.

Each pose P = [p,q] is represented by its 3D camera posi-

tion p ∈ R
3 and a quaternion q ∈ R

4 for its orientation.

Given a dataset composed of training images Ii and their

corresponding 3D ground truth poses Pi, we train the net-

work using Adam [25] with the same loss function already

used in [24]:

Li =‖pi − p̂i‖2 + β ·

∥

∥

∥

∥

qi −
q̂i

‖q̂i‖

∥

∥

∥

∥

2

, (1)

where (p,q) and (p̂, q̂) are ground truth and estimated

position-orientation pairs, respectively. We represent the

orientation with quaternions and thus normalize the pre-

dicted orientation q̂i to unit length. β determines the rel-

ative weight of the orientation error wrt. to the positional

error and is in general bigger for outdoor scenes, as errors

tend to be relatively larger [24]. All hyperparameters used

for the experiments are detailed in Section 4.

2.1. CNN architecture: feature extraction

Training a neural network from scratch for the task of

pose regression would be impractical for several reasons:

(i) we would need a really large training set, (ii) compared

to classification problems, where each output label is cov-

ered by at least one training sample, the output in regres-

sion is continuous and infinite. Therefore, we leverage a

pre-trained classification network, namely GoogLeNet [51],

and modify it in a similar fashion as in [24]. At the end of

the convolutional layers average pooling is performed, fol-

lowed by a fully connected layer which outputs a 2048 di-

mensional vector (c.f . Figure 2). This can be seen as a fea-

ture vector that represents the image to be localized. This

architecture is used in [24] to predict camera poses by using

yet another fully connected regression layer at the end that

outputs the 7-dimensional pose and orientation vector (the

quaternion vector is normalized to unit length at test time).
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Figure 2: Architecture of the proposed pose regression LSTM network.

2.2. Structured feature correlation with LSTMs

After the convolutional layers of GoogleNet, an average

pooling layer gathers the information of each feature chan-

nel for the entire image. Following PoseNet [24], we use a

fully connected (FC) layer after pooling to learn the corre-

lation among features. As we can see from the PoseNet [24]

results shown in Section 4, regressing the pose after the high

dimensional output of a fully connected (FC) layer is not

optimal. Intuitively, the dimensionality of the 2048D em-

bedding of the image through the FC layer is typically rel-

atively large compared to the amount of available training

data. As a result, the linear pose regressor has many degrees

of freedom and it is likely that overfitting leads to inaccu-

rate predictions for test images dissimilar to the training im-

ages. One could directly reduce the dimensions of the FC,

but we empirically found that dimensionality reduction per-

formed by a network with LSTM memory blocks is more

effective. Compared to applying dropout within PoseNet to

avoid overfitting [23], our approach consistently estimates

more accurate positions, which justifies our use of LSTMs.

Even though Long Short-Term Memory (LTSM) units

have been typically applied to temporal sequences, recent

works [4, 7, 33, 55, 56] have used the memory capabilities

of LSTMs in image space. In our case, we treat the out-

put 2048 feature vector as our sequence. We propose to

insert four LSTM units after the FC, which have the func-

tion of reducing the dimensionality of the feature vector in a

structured way. The memory units identify the most useful

feature correlations for the task of pose estimation.

Reshaping the input vector. In practice, inputting the

2048-D vector directly to the LSTM did not show good re-

sults. Intuitively, this is because even though the memory

unit of the LSTM is capable of remembering distant fea-

tures, a 2048 length vector is too long for LSTM to corre-

late from the first to the last feature. We thereby propose

to reshape the vector to a 32 × 64 matrix and to apply four

LSTMs in the up, down, left and right directions as depicted

in Figure 2. These four outputs are then concatenated and

passed to the fully connected pose prediction layers. This

imitates the function of structured dimensionality reduction

which greatly improves pose estimation accuracy.

3. A large-scale indoor localization dataset

Machine learning and in particular deep learning are in-

herently data-intensive endeavors. Specifically, supervised

learning requires not only data but also associated ground

truth labelling. For some tasks such as image classifica-

tion [40] or outdoor image-based localization [24] large

training and testing datasets have already been made avail-

able to the community. For indoor scenes, only small

datasets covering a spatial extent the size of a room [47]

are currently available.

We introduce the TU Munich Large-Scale Indoor (TUM-

LSI) dataset covering an area that is two orders of magni-

tude larger than the typically used 7Scenes dataset [47].

It comprises 1,095 high-resolution images (4592 × 3448
pixels) with geo-referenced pose information for each im-

age. The dataset spans a whole building floor with a to-

tal area of 5,575 m2. Image locations are spaced roughly

one meter apart, and at location each we provide a set of

six wide-angle pictures, taken in five different horizontal

directions (full 360◦) and one pointing up (see Figure 3).

Our new dataset is very challenging due to repeated struc-

tural elements with nearly identical appearance, e.g. two

nearly identical stair cases, that create global ambiguities.

Notice that such global ambiguities often only appear at

larger scale and are thus missing from the 7Scenes dataset.

In addition, there is a general lack of well-textured regions,

whereas 7Scenes mostly depict highly textured areas. Both

problems make this dataset challenging to approaches that

only considers (relatively) small image patches.

In order to generate ground truth pose information for

each image, we captured the data using the NavVis M32 in-

door mapping platform. This mobile system is equipped

with six Panasonic 16-Megapixel system cameras and three

2www.navvis.com
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Figure 3: Example images from our TUM-LSI dataset. At each capture-location, we provide a set of six high-resolution

wide-angle pictures, taken in five different horizontal directions and one pointing up.

Hokuyo laser range finders. Employing SLAM, the plat-

form is able to reconstruct the full trajectory with sub-

centimeter accuracy.

4. Experimental results

We present results on several datasets, proving the effi-

cacy of our method in outdoor scenes like Cambridge [24]

and small-scale indoor scenes such as 7Scenes [47]. The

two datasets are very different from each other: 7Scenes

has a very high number of images in a very small spatial ex-

tent, hence, it is more suited for applications such as Aug-

mented Reality, while Cambridge Landmarks has sparser

coverage and larger spatial extent, the perfect scenario for

image-based localization. In the experiments, we show that

our method can be applied to both scenarios and delivers

competitive results. We provide comparisons to previous

CNN-based approaches, as well as a state-of-the-art SIFT-

based localization method [44]. Furthermore, we provide

results for our new TUM-LSI dataset. SIFT-based methods

fail on TUM-LSI due to textureless surfaces and repetitive

structures, while our method is able to localize images with

an average accuracy of 1.31m for an area of 5,575 m2.

Experimental setup. We initialize the GoogLeNet part of

the network with the Places [64] weights and randomly ini-

tialize the remaining weights. All networks take images of

size 224 × 224 pixel as input. We use random crops dur-

ing training and central crops during testing. A mean image

is computed separately for each training sequence and is

subtracted from all images. All experiments are performed

on an NVIDIA Titan X using TensorFlow with Adam [25]

for optimization. Random shuffling is performed for each

batch, and regularization is only applied to weights, not bi-

ases. For all sequences we use the following hyperparam-

eters: batch size 75, regularization λ = 2−4, auxiliary loss

weights γ = 0.3, dropout probability 0.5, and the param-

eters for Adam: ǫ = 1, β1 = 0.9 and β2 = 0.999. The

β of Eq. 1 balances the orientation and positional penalties.

To ensure a fair comparison, for Cambridge Landmarks and

7Scenes, we take the same values as PoseNet [24]: for the

indoor scenes β is between 120 to 750 and outdoor scenes

between 250 to 2000. For TUM-LSI, we set β = 1000.

Comparison with state-of-the-art. We compare results

to two CNN-based approaches: PoseNet [24] and Bayesian

PoseNet [23]. On Cambridge Landmarks and 7Scenes, re-

sults for the two PoseNet variants [23, 24] were taken di-

rectly from the author’s publication [23]. For the new TUM-

LSI dataset, their model was fine-tuned with the training

images. The hyperparameters used are the same as for our

method, except for the Adam parameter ǫ = 0.1, which

showed better convergence.

To the best of our knowledge, CNN-based approaches

have not been quantitatively compared to SIFT-based local-

ization approaches. We feel this comparison is extremely

important to know how deep learning can make an impact

in image-based localization, and what challenges are there

to overcome. We therefore present results of a state-of-the-

art SIFT-based method, namely Active Search [44].

Active Search estimates the camera poses wrt. a SfM

model, where each 3D point is associated with SIFT de-

scriptors extracted from the training images. Since none

of the datasets provides both an SfM model and the SIFT

descriptors, we constructed such models from scratch using

VisualSFM [58,59] and COLMAP [46] and registered them

against the ground truth poses of the training images. Thus,

the camera poses reported for Active Search contain both

the errors made by Active Search and the reconstruction and

registration processes. The models used for localization do

not contain any contribution from the testing images.

Active Search uses a visual vocabulary to accelerate de-

scriptor matching. We trained a vocabulary containing 10k

words from training images of the Cambridge dataset and a

vocabulary containing 1k words from training images of the

smaller 7Scenes dataset. Active Search uses these vocabu-

laries for prioritized search for efficient localization, where

matching is terminated once a fixed number of correspon-

dences has been found. We report results both with (w/) and

without (w/o) prioritization. In the latter case, we simply do

not terminate matching early but try to find as many corre-
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Table 1: Median localization results of several RGB-only methods on Cambridge Landmarks [24] and 7Scenes [47].

Scene
Area or

Volume

Active Search

(w/o) [44]

Active Search

(w/) [44]
PoseNet [24]

Bayesian

PoseNet [23]

Proposed +

Improvement(pos,ori)

King’s College 5600 m
2

0.42m, 0.55◦ (0) 0.57m, 0.70◦ (0) 1.92m, 5.40◦ 1.74m, 4.06◦ 0.99m, 3.65◦ (48,32)

Old Hospital 2000 m
2

0.44m, 1.01◦ (2) 0.52m, 1.12◦ (2) 2.31m, 5.38◦ 2.57m, 5.14◦ 1.51m, 4.29◦ (35,20)

Shop Façade 875 m
2

0.12m, 0.40◦ (0) 0.12m, 0.41◦ (0) 1.46m, 8.08◦ 1.25m, 7.54◦ 1.18m, 7.44◦ (19,8)

St Mary’s Church 4800 m
2

0.19m, 0.54◦ (0) 0.22m, 0.62◦ (0) 2.65m, 8.48◦ 2.11m, 8.38◦ 1.52m, 6.68◦ (43,21)

Average All – – – 2.08m, 6.83◦ 1.92m, 6.28◦ 1.30m, 5.52◦ (37,19)

Average by [44] – 0.29m, 0.63◦ 0.36m, 0.71◦ – – 1.37m, 5.52◦

Chess 6 m
3

0.04m, 1.96◦ (0) 0.04m, 2.02◦ (0) 0.32m, 8.12◦ 0.37m, 7.24◦ 0.24m, 5.77◦ (25,29)

Fire 2.5 m
3

0.03m, 1.53◦ (1) 0.03m, 1.50◦ (1) 0.47m, 14.4◦ 0.43m, 13.7◦ 0.34m, 11.9◦ (28,17)

Heads 1 m
3

0.02m, 1.45◦ (1) 0.02m, 1.50◦ (1) 0.29m, 12.0◦ 0.31m, 12.0◦ 0.21m, 13.7◦ (27,-14)

Office 7.5 m
3

0.09m, 3.61◦ (34) 0.10m, 3.80◦ (34) 0.48m, 7.68◦ 0.48m, 8.04◦ 0.30m, 8.08◦ (37,-5)

Pumpkin 5 m
3

0.08m, 3.10◦ (71) 0.09m, 3.21◦ (68) 0.47m, 8.42◦ 0.61m, 7.08◦ 0.33m, 7.00◦ (30,17)

Red Kitchen 18 m
3

0.07m, 3.37◦ (0) 0.07m, 3.52◦ (0) 0.59m, 8.64◦ 0.58m, 7.54◦ 0.37m, 8.83◦ (37,-2)

Stairs 7.5 m
3

0.03m, 2.22◦ (3) 0.04m, 2.22◦ (0) 0.47m, 13.8◦ 0.48m, 13.1◦ 0.40m, 13.7◦ (15,0.7)

Average All – – – 0.44m, 10.4◦ 0.47m, 9.81◦ 0.31m, 9.85◦ (29,5)

Average by [44] – 0.05m, 2.46◦ 0.06m, 2.54◦ – – 0.30m, 9.15◦

spondences as possible. For querying with Active Search,

we use calibrated cameras with a known focal length, ob-

tained from the SfM reconstructions, but ignore radial dis-

tortion. As such, camera poses are estimated using a 3-

point-pose solver [26] inside a RANSAC loop [13]. Poses

estimated from only few matches are usually rather inaccu-

rate. Following common practice [31, 32], Active Search

only considers a testing image as successfully localized if

its pose was estimated from at least 12 inliers.

4.1. Large­scale outdoor localization

We present results for outdoor image-based localization

on the publicly available Cambridge Landmarks dataset

[24] in Table 1. We report results for Active Search only

for images with at least 12 inliers and give the number of

images where localization fails in parenthesis. In order to

compare the methods fairly, we provide the average accu-

racy for all images (Average All), and also the average ac-

curacy for only those images that [44] was able to localize

(Average by [44]). Note, that we do not report results on

Figure 4: The class activation map is overlaid on an input

image from King’s College as a heat map. Red areas indi-

cate parts of the image the network considers important for

pose regression. The visualization shows how the network

focuses on distinctive building elements.

the Street dataset of Cambridge Landmarks. It is a unique

sequence because the training database consists of four dis-

tinct video sequences, each filmed in a different compass

direction. This results in training images at similar posi-

tions, but with very different orientations. Even with the

hyperparameters set by the author of [24], training did not

converge for any of the implemented methods.

In parenthesis next to our results, we show the rounded

percentage improvement wrt. PoseNet in both position and

orientation, separated by a comma. As we can see, the

proposed method on average reduces positional error by

37.5% wrt. PoseNet and the orientation error by 19%.

For example, in King’s College the positional error is re-

duced by more than 40%, going from 1.92m for Posenet

to 0.99m for our method. This shows that the proposed

LSTM-based structured output is efficient in encoding fea-

ture correlations, leading to large improvements in localiza-

tion performance. It is important to note that none of the

CNN-based methods is able to match the precision of Ac-

tive Search [44], especially when computing the orientation

of the camera. Since [44] requires 12 inliers to consider

an image as localized, it is able to reject inaccurate poses.

In contrast, our method always provides a localization re-

sult, even if it is sometimes less accurate. Depending on

the application, one behavior or the other might be more

desirable. As an example, we show in Figure 6 an image

from Old Hospital, where a tree is occluding part of the

building. In this case, [44] is not able to localize the im-

age, while our method still produces a reasonably accurate

pose. This phenomenon becomes more important in indoor

scenes, where Active Search is unable to localize a substan-
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tially larger number of images, mostly due to motion blur.

Interestingly, for our method, the average for all images

is lower than the average only for the images that [44] can

also localize. This means that for images where [44] cannot

return a pose, our method actually provides a very accu-

rate result. This “complementary” behavior between SIFT-

and CNN-based methods could be exploitable in future re-

search. Overall, our method shows a strong performance

in outdoor image-based localization, as seen in Figure 7,

where PoseNet [24] provides less accurate poses. In order

to better understand how the network localizes an image,

Figure 4 plots the class activation maps for the King’s Col-

lege sequence. Notice how strong activations cluster around

distinctive building elements, e.g., the towers and entrance.

4.2. Small­scale indoor localization

In this section, we focus on localization on small indoor

spaces, for which we use the publicly available 7Scenes

dataset [47]. Results at the bottom of Table 1 show that

we also outperform previous CNN-based PoseNet by 29%

in positional error and 5.3% orientation error. For exam-

ple on, Pumpkin we achieve a positional error reduction

from the 0.61m for Posenet to 0.33m for our method. As

for the Cambridge Landmarks dataset, we observe that our

approach consistently outperforms Bayesian PoseNet [23],

which uses dropout to limit overfitting during training.

These experimental results validate our strategy of using

LSTMs for structured dimensionality reduction in an effort

to avoid overfitting.

There are two methods that use RGB-D data and achieve

a lower error but still higher than Active Search: [6]

achieves 0.06m positional error and 2.7◦orientation error,

while [47] scores 0.08m and 1.60◦. Note, that these meth-

ods require RGB-D data for training [6] and/or testing [47].

It is unclear though how well such methods would work in

outdoor scenarios with stereo data. In theory, multi-view

stereo methods could be used to obtain the required depth

maps for outdoor scenes. However, such depth maps are

usually substantially more noisy and contain significantly

more outliers compared to the data obtained with RGB-D

sensors. In addition, the accuracy of the depth maps de-

creases quadratically with the distance to the scene, which

is usually much larger for outdoor scenes than for indoor

scenes. In [54], authors report that 63.4% of all test im-

ages for Stairs can be localized with a position error less

than 5cm and an orientation error smaller than 5◦. With

and without prioritization, Active Search localizes 77.8%

and 80.2%, respectively, within these error bounds. Un-

fortunately, median registration errors of 2-5cm observed

when registering the other SfM models against the 7Scene

datasets prevent us from a more detailed comparison.

As we can see in Table 1, if an image can be localized,

we notice that Active Search performs better than CNN-

Table 2: Median localization accuracy on TUM-LSI.

Area # train/test PoseNet [24] Proposed

5575m
2 875/220 1.87m, 6.14◦ 1.31m, 2.79◦ (30,55)

Figure 5: Failed SfM reconstructions for the TUM-LSI

dataset, obtained with COLMAP. The first reconstruction

contains two stairwells collapsed into one due to repetitive

structures. Due to a lack of sufficient matches, the method

was unable to connect a sequence of images and therefore

creates a second separate model of one of the hallways.

based approaches. However, we note that for Office and

Pumpkin the number of images not localized is fairly large,

34 and 71, respectively. We provide the average accuracy

for all images (Average All), and also the average accuracy

for only those images that [44] was able to localize (Aver-

age by [44]). Note that for our method, the two averages are

extremely similar, i.e., we are able to localize those images

with the same accuracy as all the rest, showing robustness

wrt. motion blur that heavily affect SIFT-based methods.

This shows the potential of CNN-based methods.

4.3. Complex large­scale indoor localization

In our last experiment, we present results on the new

TUM-LSI dataset. It covers a total area of 5,575 m2, the

same order of magnitude as the outdoor localization dataset,

and much larger than typical indoor datasets like 7Scenes.

Figure 3 shows an example from the dataset that con-

tains large textureless surfaces. These surfaces are known

to cause problems for methods based on local features. In

fact, we were not able to obtain correct SfM reconstruc-

tions for the TUM-LSI dataset. The lack of texture in most

parts of the images, combined with repetitive scene ele-

ments, causes both VisualSFM and COLMAP to fold repet-

itive structures onto themselves. For example, the two sep-

arate stairwells (red floor in Figure 3) are mistaken for a

single stairwell (c.f . Figure 5). As the resulting 3D model
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(a) Original image (b) Posenet result [24] (c) Our result

Figure 6: Examples from the Old Hospital sequence. The 3D scene model is projected into the image using the poses

estimated by (b) PoseNet [24] and (c) our method. Active Search [44] did not localize the image due to the occlusion caused

by the tree. Note the inaccuracy of PoseNet compared to the proposed method (check the top of the building for alignment).

(a) Active Search (w/) [44] result (b) Posenet result [24] (c) Our result

Figure 7: Examples of localization results on King’s College for Active Search [44], PoseNet [24], and the proposed method.

does not reflect the true 3D structure of the scene, there is

no point in applying Active Search or any other SIFT-based

method. Notice that such repetitive structures would cause

Active Search to fail even if a good model is provided.

For the experiments on the TUM-LSI dataset, we ignore

the ceiling-facing cameras. As we can see in Table 2, our

method outperforms PoseNet [24] by almost 30% in po-

sitional error and 55% orientation error, showing a simi-

lar improvement as for other datasets. To the best of our

knowledge, we are the first to showcase a scenario where

CNN-based methods succeed while SIFT-based approaches

fail. On this challenging sequence, our method achieves an

average error of around 1m. In our opinion, this demon-

strates that CNN-based methods are indeed a promising av-

enue to tackle hard localization problems such as repetitive

structures and textureless walls, which are predominant in

modern buildings, and are a problem for classic SIFT-based

localization methods.

5. Conclusion

In this paper, we address the challenge of image-based
localization of a camera or an autonomous system with a
novel deep learning architecture that combines a CNN with

LSTM units. Rather than precomputing feature points and
building a map as done in traditional SIFT-based localiza-
tion techniques, we determine a direct mapping from input
image to camera pose. With a systematic evaluation on ex-
isting indoor and outdoor datasets, we show that our LSTM-
based structured feature correlation can lead to drastic im-
provements in localization performance compared to other
CNN-based methods. Furthermore, we are the first to show
a comparison of SIFT-based and CNN-based localization
methods, showing that classic SIFT approaches still out-
perform all published CNN-based methods to date on stan-
dard benchmark datasets. To answer the ensuing question
whether CNN-based localization is a promising direction of
research, we demonstrate that our approach succeeds in a
very challenging scenario where SIFT-based methods fail.
To this end, we introduce a new challenging large-scale in-
door sequence with accurate ground truth. Besides aiming
to close the gap in accuracy between SIFT- and CNN-based
methods, we believe that exploring CNN-based localization
in hard scenarios is a promising research direction.
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