
The Pose Knows: Video Forecasting by Generating Pose Futures

Jacob Walker, Kenneth Marino, Abhinav Gupta, and Martial Hebert

Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213

{jcwalker, kdmarino, abhinavg, hebert}@cs.cmu.edu

Abstract

Current approaches to video forecasting attempt to gen-

erate videos directly in pixel space using Generative Ad-

versarial Networks (GANs) or Variational Autoencoders

(VAEs). However, since these approaches try to model all

the structure and scene dynamics at once, in unconstrained

settings they often generate uninterpretable results. Our in-

sight is that forecasting needs to be done first at a higher

level of abstraction. Specifically, we exploit human pose de-

tectors as a free source of supervision and break the video

forecasting problem into two discrete steps. First we explic-

itly model the high level structure of active objects in the

scene (humans) and use a VAE to model the possible fu-

ture movements of humans in the pose space. We then use

the future poses generated as conditional information to a

GAN to predict the future frames of the video in pixel space.

By using the structured space of pose as an intermediate

representation, we sidestep the problems that GANs have in

generating video pixels directly. We show through quantita-

tive and qualitative evaluation that our method outperforms

state-of-the-art methods for video prediction.

1. Introduction

Consider the image in Figure 1. Given the context of

the scene and perhaps a few past frames of the video, we

can infer what likely action this human will perform. This

man is outside in the snow with skis. What is he going to

do in the near future? We can infer he will move his body

forward towards the viewer. Visual forecasting is a fun-

damental part of computer vision with applications rang-

ing from human computer interaction to anomaly detection.

If computers can anticipate events before they occur, they

can better interact in a real-time environment. Forecasting

may also serve as a pretext task for representation learn-

ing [6, 47, 48].

Given this goal of forecasting, how do we proceed? How

can we predict events in a data-driven way without relying

on explicit semantic classes or human-labeled data? In or-

(a) Input Clip (b) Start Pose

(c) Future Pose (d) Future Video

Figure 1: In this paper, we train a generative model that

takes in (a) an initial clip with (b) a detected pose. Given

this information, we generate different motions in (c) pose

space using a Variational Autoencoder and utilize a Gen-

erative Adversarial Network to generate (d) pixels of the

forecast video. Best seen in video.

der to forecast, we first must determine what is active in the

scene. Second, we then need to understand how the struc-

ture of the active object will deform and move over time.

Finally, we need to understand how the pixels will change

given the action of the object. All of these steps have a level

of uncertainty; however, the second step may have far more

uncertainty than the other two. In Figure 1, we can already

tell what is active in this scene, the skier, and given a de-

scription of the man’s motion, we can give a good guess as

to how that motion will play out at the pixel level. He is

wearing dark pants and a red coat, so we would expect the

colors of his figure to still be fairly coherent throughout the

motion. However, the way he skis forward is fairly uncer-

tain. He is moving towards the viewer, but he might move

to the left or right as he proceeds. Models that either try

to directly forecast pixels [27, 33, 42, 47, 54] or pixel mo-

tion [9,30,48,50,55] are forced to perform all of these tasks

simultaneously. What makes the problem harder for a com-

13332

Pose-VAE Pose-GAN

Figure 2: Overview of our approach. We use an LSTM, the Past Encoder, to encode the past input into a hidden state. We

then input this hidden state into an LSTM with a Variational Autoencoder, the Future Decoder, which predicts future pose

velocities based on random samples from latent variables. Given a rendered video of a pose video, we feed this with the input

clip into an adversarially trained generator to output the final future video.

plete end-to-end approach is that it has to simultaneously

learn the underlying structure (what pixels move together),

the underlying physics and dynamics (how the pixels move)

and the underlying low-level rendering factors (such as il-

lumination). Forecasting models may instead benefit if they

explicitly separate the structure of objects from their low-

level pixel appearance.

The most common agent in videos is a human. In terms

of obtaining the underlying structure, there have been ma-

jor advances in human pose estimation [1, 2, 4, 53] in im-

ages, making 2D human pose a viable “free” signal in video.

In this paper, we exploit these advances to self-label video

and aid forecasting. We propose a new approach to video

forecasting by leveraging a more tractable space—human

pose—as intermediate representation. Finally, we combine

the strengths of VAE with those of GANs. The VAE esti-

mates the probability distribution over future poses given a

few initial frames. We can then forecast different plausible

events in pose space. Given this structure, we then can use

a Generative Adversarial Network to fill in the details and

map to pixels, generating a full video. Our approach does

not rely on any explicit class labels, human labeling, or any

prior semantic information beyond the presence of humans.

We provide experimental results that show our model is able

to account for the uncertainty in forecasting and generate

plausible videos.

2. Related Work

Activity Forecasting: Much work in activity forecast-

ing has focused on predicting future semantic action

classes [14, 24, 26] or more generally semantic informa-

tion [36, 46]. One way to move beyond semantic classes

is to forecast an underlying aspect of human activity—

human motion. However, the focus in recent work has been

in specific data domains such as pedestrian trajectories in

outdoor scenes [21, 32, 37] or pose prediction on human-

labeled mocap data [10, 17]. In our paper, we aim to rely

on as few semantic assumptions as possible and move to-

wards approaches that can utilize large amounts of unla-

beled data in unconstrained settings. The only assumption

we make on our data is that there is at least one detectable

human in the scene. While the world of video consists of

more than humans, we find that the great majority of video

data in computer vision research focuses on human actions

[8, 12, 19, 23, 40, 41].

Generative Models: Our paper incorporates ideas from

recent work in generative models of images. This body

of work views images as samples from a distribution and

seeks to build parametric models (usually CNNs) that can

sample from these distributions to generate novel images.

Variational Autoencoders (VAEs) are one such approach

which have been employed in a variety of visual domains.

These include modeling faces [20,35] and handwritten dig-

its [20, 39]. Furthermore, Generative Adversarial Networks

(GANs) [5,11,16,28,31] have shown promise as well, gen-

erating almost photo-realistic images for particular datasets.

There is also a third line of work including PixelCNNs and

PixelRNNs [44, 45] which model the conditional distribu-

tion of pixels given spatial context. In our paper, we com-

bine the advantages of VAEs with GANs. VAEs are inher-

ently designed to estimate probability distributions of in-

puts, but utilizing them for estimating pixel distributions

often leads to blurry results. On the other hand, GANs

can produce sharp results, especially when given additional

structure [16, 28, 34, 52]. Our VAE estimates a probability

distribution over the more tractable space of pose while a

GAN conditions on this structure to produce pixel videos.

Forecasting Video: In the last few years there have been a

3333

great number of papers focusing specifically on data-driven

forecasting in videos. One line of work directly predicts

pixels, often incorporating ideas from generative models.

Many of these papers used LSTMs [29, 33, 42], VAEs [54],

or even a PixelCNN approach [18]. While these approaches

work well in constrained domains such as moving MNIST

characters, they lead to blurring when applied to more re-

alistic datasets. A more promising direction for direct pixel

prediction may be the use of adversarial loss [27,47]. These

methods seem to yield better results for unconstrained, re-

alistic videos, but they still struggle with blurriness and un-

interpretable outputs.

Given the difficulty of modeling direct pixels in video,

many works [3, 30, 48, 50, 55] have resorted to pixel mo-

tion for forecasting. This seems reasonable, as motion tra-

jectories are much more tractable than direct pixel appear-

ances. These approaches can generate interpretable results

for short time spans, but over longer time spans they are

untenable. They depend on warping existing pixels in the

scene. However, this general approach is a conceptual dead-

end for video prediction—all it can do is move existing pix-

els. These methods cannot model occluded pixels coming

into frame or model changes in pixel appearance.

Modeling low-level pixel space is difficult, and motion-

based approaches are inherently limited. How then can we

move forward with data-driven forecasting? Perhaps we can

use some kind of intermediate representation that is more

tractable than pixels. One paper [49] explored this idea us-

ing HOG patches as an intermediate representation for fore-

casting. However, this work focused on specific domains

involving cars or pedestrians and could only model rigid ob-

jects and rough appearances. In this paper, we use an inter-

mediate representation which is now easy to acquire from

video—human pose. Human pose is still visually mean-

ingful, representing interpretable structure for the actions

human perform in the visual world. It is also fairly low

dimensional—many 2D human pose models only have 18

joints. Estimating a probability distribution over this space

is going to be far more tractable than pixels. Yet human

pose can still serve as a proxy for pixels. Given a video of a

moving skeleton, it is an easier task to fill in the details and

output a final pixel video. We find that training a Video-

GAN [47] on completely unconstrained videos leads to re-

sults that are many times visually uninterpretable. However,

when given prior structure of pose, performance improves

dramatically.

3. Methodology

In this paper we break down video forecasting into two

steps. We first predict the high-level movement in pose

space using the Pose-VAE. Then we use this structure to

predict a final pixel level video with the Pose-GAN.

Past E ncoder

Past Decoder

AlexNet

Figure 3: Past Encoder-Decoder Network. This por-

tion of Pose-VAE encodes the past input deterministically.

The Past Encoder reads in image features from Xt, corre-

sponding past poses P1..t, and their corresponding veloci-

ties Y1...t. The Past Decoder replays the pose velocities in

reverse order. The Past Decoder is only used for training

and is discarded during testing.

3.1. PoseVAE

The first step in our pipeline is forecasting in pure pose

space. At time t, given a series of past poses P1..t and the

last frame of in input video Xt, we want to predict the fu-

ture poses up to time step T , Pt+1..T . Pt ∈ R36 is a 2D

pose as timestep t represented by the (x, y) locations of 18
key-points. We actually predict a series of pose velocities

Yt+1..T . Given the pose velocities and an initial pose we

can then construct the future pose sequence.

To accomplish this forecasting task, we build upon ideas

related to sequential encoder-decoder networks [10,42]. As

in these papers we can use an LSTM to encode the past in-

formation sequence. We call this the Past Encoder which

takes in the past information Xt, P1..t, and Y1..t and en-

codes it in a hidden representation Ht. We also have Past

Decoder module to reconstruct the past information from

the hidden state. Given this encoding Ht of the past, it

would be tempting to use another LSTM to simply pro-

duce the future sequence of poses similar to [42]. However,

forecasting the future is not a deterministic problem; there

may be multiple plausible outcomes of a video. Forecasting

actually requires estimating a probability distribution over

3334

possible events. To solve this problem, we use a probabilis-

tic Future Decoder. Our probabilistic decoder is nothing

but a conditional variational autoencoder where the future

velocity Yt+1 is predicted given the past information Ht,

the current pose Pt+1 (estimated from Pt and Yt), and the

random latent vector zt+1. The hidden states of the Future

Decoder are updated using the standard LSTM update rules.

Variational Autoencoders: A Variational Autoen-

coder [20] attempts to estimate the probability distribution

P (Y |z) of its input data Y given latent variables z. An en-

coder Q(z|Y) learns to encode the inputs into a stochastic

latent variable z. The decoder P (Y |z) then reconstructs the

inputs based on what is sampled from z. During training,

z is regularized to match N (0, 1) through KL-Divergence.

During testing we can then sample our distribution of

Y by first sampling z ∼ N (0, 1) and then feeding our

sample through a neural network P (Y |z) to create a

sample from the distribution of Y. Another interpretation is

that the decoder P transforms the latent random variable

z ∼ N (0, 1) into random variable Y ∼ P (Y |z).

In our case, we want to estimate a distribution of future

pose velocities given the past. Thus we aim to “encode”

the future into latent variables z = [zt+1, zt+2, ...zT]. Con-

cretely, we wish to learn a way to estimate the distribution

P (Yt+1..T |z,Ht) of future pose velocities Yt+1..T given our

encoded knowledge of the past Ht. Thus we need to train

a “Future Encoder” that learns an encoding for latent vari-

ables z ∼ Q(z|Yt+1..T , Ht), where Q is trained to match

N (0, 1) as closely as possible. During testing, as in [48],

we sample z ∼ N (0, 1) and feed sampled z values into

the future decoder network to output different possible fore-

casts.

Past Encoder-Decoder: Figure 3 shows the Past Encoder-

Decoder. The Past Encoder takes as input a frame Xt, a se-

ries of previous poses P1..t, and the previous pose velocities

Y1..t. We apply a convolutional neural network on Xt. The

units from the pose information and the image features are

concatenated and then fed into an LSTM. After encoding

the entire sequence, we use the hidden state of the LSTM

at step t, Ht to condition the Future Decoder. To enforce

that Ht encodes the pose velocity, the hidden state of of

the encoding LSTM is fed into a decoder LSTM, the Past

Decoder, which is trained through Euclidean loss to recon-

struct Y1..t in reverse order. This enforces that the network

learns a “memory” of past inputs [42]. The Past Decoder

exists only as an aid for training, and at test time, only the

Past Encoder is used.

Future Encoder-Decoder: Figure 4 shows the Future

Encoder-Decoder. The Future Encoder-Decoder is com-

posed of a VAE encoder (Future Encoder) and a VAE de-

coder (Future Decoder) both conditioned on past informa-

tion Ht. The Future Encoder takes the future pose veloc-

ity Yt+1..T and the past information Ht and encodes it as

TrainingTesting
, ,)

Future Decoder

Future E ncoder

Figure 4: Future Encoder-Decoder Network. This por-

tion of Pose-VAE encodes the future stochastically. The Fu-

ture Encoder is a Variational Autoencoder which takes the

past Ht and the future pose information Yt+1...T , Pt+1...T

as input and outputs a Normal Distribution Q. The Fu-

ture Decoder then samples z from Q to reconstruct the

pose motions Yt+1...T given past Ht and poses Pt+1....T .

During testing, the future is not known, so the Future En-

coder is discarded, and only the Future Decoder is used with

z ∼ N (0, 1).

a mean and variance µ(Yt+1..T , Ht) and σ(Yt+1..T , Ht).
We then sample a latent variable z ∼ Q(z|Yt+1..T , Ht) =
N (µ, σ). During testing, we sample z from a standard nor-

mal, so during training we incorporate a KL-divergence loss

such that Q matches N (0, 1) as closely as possible. Given

the latent variable z and the past information Ht, the Future

Decoder recovers an approximation of the future pose se-

quence Ŷt+1..T (z,Ht). The training loss for this network is

the usual VAE Loss. It is Euclidean distance from the pose

trajectories combined with KL-divergence loss of Q from

N (0, 1).

L(Ŷt+1..T , Yt+1..T) = ||Yt+1..T − Ŷt+1..T ||
2+

KL [Q(z|Yt+1..T , Ht)‖N (0, 1)]
(1)

We found in many cases the KL-term in practice can eas-

ily overwhelm the total loss, quickly reducing to the term to

0 and causing the latent variables to encode little to no use-

ful information. In our experiments we multiply the KL-

divergence loss by a constant λ in order to avoid this over-

regularization.

3335

At every future step tf , the Future Decoder takes in ztf ,

as well as the current pose Ptf and outputs the pose motion

Ytf . At training time, we use the ground truth poses, but at

test time, we recover the future poses by simply adding the

pose trajectory information Ptf+1 = Ptf + Ytf .

Implementation Details: We train our network with Adam

Solver at a learning rate of 0.001 and β1 of 0.9. For the KL-

divergence loss we set λ = 0.00025 for 60000 iterations

and then set λ = 0.0005 for an additional 20000 iterations

of training. Every timestep t represents 0.2 second. We con-

ditioned the past on 2 timesteps and predict for 5 timesteps.

For the convolutional network over the image network, we

used an architecture almost identical to AlexNet [22] with

the exception of a smaller (7x7) receptive field at the bot-

tom layer and the addition of batch normalization layers.

All layers in the entire network were trained from scratch.

The LSTM units consist of two layers, both 1024 units. The

Future Encoder is a simple single hidden layer network with

ReLU activations and a hidden size of 512.

3.2. PoseGAN

Generative Adversarial Networks: Once we sample a

pose prediction from our Pose-VAE, we can then render

a video of a moving skeleton. Given an input image and

a video of the skeleton, we train a Generative Adversar-

ial Network to predict a pixel level video of future events.

As described in [52], GANs consist of two models pitted

against each other: a generator G and a discriminator D.

The generator G takes the input skeleton video and image

and attempts to generate a realistic video. The discrimi-

nator D, trained as a binary classifier, attempts to classify

videos as either real or generated. During training, G will

try to generate videos which fool D, while D will attempt

to distinguish the fake videos generated by G from ones

sampled from the future video frames. Following the work

of [16, 47] we do not use any noise variables for the adver-

sarial network. All the noise is contained in the Pose-VAE

through z.

The loss for discriminator D is:

LD =

M/2∑

i=1

l(D(Vi), lr) +

M∑

i=M/2+1

l(D(G(I, ST)), lf) (2)

Where V are videos, M is the batch size, I is an input

image, and ST is a video of a pose skeleton, lr is the real

label (1), and lf is the fake label (0). Inside the batch M ,

half of videos V are generated, and the rest are real. The

loss function l here is the binary entropy loss.

The loss for generator G is:

LG=
M∑

i=M/2+1

l(D(G(I, ST)), lr) + α||G(I, ST)− Vi||1 (3)

4x4x4

4x4x4

4x4x4

4x4x4

4x6x6

4x7x6

4x4x4

4x4x4

4x4x4

4x4x4

32
64

128
256

64

256
128

64
32

3

64

80

64

80

80

64

Skip Layer

Figure 5: Generator Architecture. We use volumetric

convolutions at each layer. Receptive field size represents

time, width, and length. For each frame in the input pose

video we stack the input frame as an extra 3 channels, mak-

ing each input frame 80x64x6. The number of input and

output frames is 32. The output consists of 32 frames,

80x64 pixels.

Given our Pose-VAE, we can now generate plausible

pose motions given a very short clip input. For each sam-

ple, we can render a video of a skeleton visualizing how

a human will deform over the last frame of the input im-

age. Recent work in adversarial networks has shown that

GANs benefit from given structure [16, 28, 34]. In particu-

lar, [34] showed that GANs improve on generating humans

when given initial keypoints. In this paper we build on this

work by extending this idea to Conditional Video GANs.

Given an image and a generated skeleton video, we train

a GAN to generate a realistic video at the pixel level. Fig-

ure 5 shows the Pose-GAN network. The architecture of the

discriminator D is nearly identical to that of [47].

Implementation Details: The Pose-GAN consists of five

volumetric convolutional layers with receptive fields of 4,

stride of 2, and padding of 1. At each layer LeakyReLU

units and Batch Normalization are used. The only differ-

ence is that the input is a 64x80 video. For the generator

G, we first encode the input using a series of five Volumen-

tric Convolutional Layers with receptive fields of 4, stride

of 2, and padding of 1. We use LeakyReLU and Batch Nor-

malization at each layer. In order to handle the modified

aspect ratio of the input (80x64), the fifth layer has a recep-

tive field of 6 in the spatial dimensions. The top five layers

are the same but in reverse, gradually increasing the spatial

and temporal resolution to 64x80 pixels at 32 frames. Our

training parameters are identical to [47], except that we set

our regularization parameter α = 1000. Similar to [16], we

utilize skip layers for the top part of the network. For the

top five layers, ReLU activation and Batch Normalization

is used. The final layer is sent through a TanH function in

order to scale the outputs.

4. Experiments

We evaluate our model on UCF-101 [41] as well as the

Penn Action Dataset [56] in both pose space and video

3336

space. For the UCF-101, we utilized the training split de-

scribed in [50] which uses a large portion for training data.

In total we use around 1500 one-second clips for testing.

To label the data in UCF-101 we utilize the pose detector

of Cao et al. [1] and use the videos above an average confi-

dence threshold. We perform temporal smoothing over the

pose detections as a post-processing step. For the Penn Ac-

tion Dataset, we use the standard training split.

4.1. Pose Evaluation

First we evaluate how well our Pose-VAE is able to fore-

cast actions in pose space. There has been some prior

work [10, 17] on forecasting pose in mocap datasets such

as the H3.6M dataset [15]. However, to the best of our

knowledge there has been no evaluation on 2D pose fore-

casting on unconstrained, realistic video datasets such as

UCF101. We compare our Pose-VAE against state-of-the-

art baselines. First, we study the effects of removing the

VAE from our Future Decoder. In that case, the forecast-

ing model becomes a Encoder-Recurrent-Decoder network

similar to [10]. We also implemented a deterministic Struc-

tured RNN model [17] for forecasting with LSTMs ex-

plictly modeling arms, legs and torso. Finally, we take a

feed-forward VAE [48] and apply it to pose trajectory pre-

diction. In our case, the feed-forward VAE is conditioned

on the image and past pose information, and it only predicts

pose trajectories.

Quantitative Evaluations: For evaluation of pose forecast-

ing, we utilize Euclidean distance from the ground-truth

pose velocities. However, specifically taking the Euclidean

distance over all the samples from our model in a given clip

may not be very informative. Instead, we follow the evalu-

ation proposed by [48]. For a set number of samples n, we

see what is the best possible prediction made by the model

and consider the error of closest sample from the ground-

truth. We then measure how this minimum error changes

as the sample size n increases and the model is given more

chances. One may also consider using the highest likeli-

hood prediction for evaluation. However, while VAEs give

a distribution we can sample from, we do not know explic-

itly know the density function of this distribution to easily

extract modes. In our qualitative results we use kmeans to

approximate the mode of the distribution. A cluster with

many samples means that sampling points in that cluster is

likely, implying that there is a mode in that neighborhood.

We show the error of the largest cluster in Figure 6 (Pose-

VAE-Top). We make our deterministic baselines stochastic

by treating the output as a mean of a multivariate normal

distribution. For these baselines, we derive the bandwidth

parameters from the variance of the testing data. Attempt-

ing to use the optimal MLE bandwidth via gradient search

led to inferior performance. We describe the possible rea-

sons for this phenomenon in the results section.

4.2. Video Evaluation

We also evaluate the final video predictions of our

method. These evaluations are far more difficult as pixel

space is much higher-dimensional than pose space. How-

ever, we nonetheless provide quantitative and qualitative

evaluations to compare our work to the current state of the

art in pixel video prediction. Specifically, we compare our

method to Video-GAN [47]. For this baseline, we only

make two small modifications to the original architecture—

Instead of a single frame, we condition Video-GAN on 16

prior frames. We also adjust the aspect ratio of the network

to output a 64x80 video.

Quantitative Evaluations: To evaluate the videos, we use

the Inception score, first introduced in [38]. In the orig-

inal method, the authors use the Inception model [43] to

get a conditional label distribution for their generated im-

ages. In our case, we are generating videos, so we use a

two-stream action classifier [51] to get a conditional label

distribution p(y|x) where x is our generated video and y

is the action class. We calculate the label distribution by

taking the average classification output of both the rgb and

flow stream in the classifier. As in [38], we use the metric

exp(ExKL(p(y|x)||p(y)). In our case, our x is generated

from an input video sequence fr and in some models a la-

tent variable z, giving us the metric exp(Efr,zKL(p(y|x =
G(f, z))||p(y)). The intuition behind the metric is diver-

sity; if a given classifier is highly confident of particular

classes in the generated videos, then the Inception score will

be large. If it has low confidence and is unsure what classes

are in the videos, the conditional distribution will be close

to the prior and the Inception score will be low.

We also propose a new evaluation metric based on the

test statistic Maximum Mean Discrepancy (MMD) [13].

MMD was proposed as a test statistic for a two sample

test—given samples drawn from two distributions P and Q,

we test whether or not the two distributions are equal.

While the MMD metric is based on a two sample test,

and thus is a metric for how similar the generated distri-

bution is from the ground truth, the Inception score is a

rather an ad hoc metric measuring the entropy of the condi-

tional label distribution and marginal label distribution. We

present scores for both metrics, but we believe MMD to be

a more statistically justifiable metric

The exact MMD statistic for a class of functions F is:

MMD[F ,P,Q] = sup
f∈F

(Ex∼P[f(x)]− Ey∼Q[f(y)]). (4)

Two distributions are equal if and only if for all functions

f ∈ F , Ex[f(x)] = Ey[f(y)], so if P
d
= Q, MMD = 0

where F is the set of all functions. Since evaluating over the

set of all functions is intractable, we instead evaluate for all

functions in a Reproducing Kernel Hilbert Space to approx-

imate. We use the unbiased estimator for MMD from [13].

3337

0 10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Samples

M
in

im
u

m
 E

u
c
li

d
e
a

n
 D

is
ta

n
c
e

UCF101 Minimum Euclidean Distance

Pose−VAE

Pose−VAE−Top

FF−VAE

SRNN

ERD

ERD−Mean

SRNN−Mean

0 10 20 30 40 50 60 70 80 90 100
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of Samples

M
in

im
u

m
 E

u
c
li

d
e
a

n
 D

is
ta

n
c
e

Penn Minimum Euclidean Distance

Pose−VAE

Pose−VAE−Top

FF−VAE

SRNN

ERD

ERD−Mean

SRNN−Mean

Figure 6: Here we show Minimum Euclidean Distance av-

eraged over the testing examples. We take this nearest pre-

diction in each example and plot the average of the error as

the number of samples grows.

Table 1: Quantitative results. Higher Inception scores are

better, while lower MMD scores are better.

Inception Scores

Dataset UCF101 Penn

Real 3.81± 0.04 3.05± 0.03

Ours 3.14± 0.04 2.73± 0.03

[47] 1.74± 0.01 2.09± 0.01

MMD Scores

Dataset UCF101 Penn

Real 0.003 0.006

Ours 0.022 0.009

[47] 0.139 0.060

Some nice properties of this test statistic are that the em-

pirical estimate is consistent and converges in O(1√
n
) where

n is the sample size. This is independent of the dimension

of data [13]. MMD has been used in generative models be-

fore, but as part of the training procedure rather than as an

evaluation criteria. [7] uses MMD as a loss function to train

a generative network to produce better images. [25] extends

this by first training an autoencoder and then training the

generative network to minimize MMD in the latent space of

the autoencoder, achieving less noisy images.

We choose Gaussian kernels with bandwidth ranging

from 10−4 to 109 and choose the maximum of the values

generated from these bandwidths as the reported value since

from eq. (4), we want the maximum distance out of all pos-

sible functions.

Like Inception score, we use semantic features instead of

raw pixels or flow for comparison. However, we use the fc7
feature space rather than the labels. We concatenate the fc7
features from the rgb stream and the flow stream of our ac-

tion classifier. This choice choice of semantic fc7 features

is supported by the results in [25] which show that training

MMD on a lower-dimensional latent space rather than the

original image space generates better looking images.

5. Results

5.1. Qualitative Results

In Figure 7 we show the qualitative results of our model.

The results are best viewed as videos. In order to gener-

ate these results, for each scene we took 1000 samples from

Pose-VAE and clustered the samples above a threshold into

five clusters. The pose movement shown is the largest dis-

covered cluster. We then feed the last input frame and the

future pose movement into Pose-GAN to generate the final

video. On the far right we show the last predicted frame by

Pose-GAN. We find that our Pose-GAN is able to forecast a

plausible motion given the scene. The skateboarder moves

forward, and the man in the second row, who is jumprop-

ing, moves his arms to the right side. The man doing a

pullup in the third row moves his body down. The drummer

plays the drums, the man in the living room moves his arm

down, and the bowler recovers to standing position from his

throw. We find that our Pose-GAN is able to extrapolate the

pixels based on previous information. As the body deforms,

the general shading and color of the person is preserved in

the forecasts. We also find that Pose-GAN, to a limited

extent, is able to inpaint occluded background as humans

move from their starting position. In Figure 7 we show

a side-by-side qualitative comparison of our video gener-

ation to conditional Video-GAN. While Video-GAN shows

compelling results when specifically trained and tested on a

specific scene category [47], we discover that this approach

struggles to generate interpretable results when trained on

inter-class, unconstrained videos from the UCF101. We

specifically find that [47] fails to capture even the general

structure of the original input clip in many cases.

5.2. Quantitative Results

We show the results of our quantitative evaluation on

pose prediction in Figure 6. We find our method is able to

outperform the baselines on Euclidean distance even with

a small number of samples for both datasets. The dashed

lines for ERD and SRNN use the only the direct output

as a mean—identical to sampling with variance 0. As ex-

pected, the Pose-VAE has a higher error with only a few

samples, but as samples grow the error quickly decreases

due to the stochastic nature of future pose motion. The solid

lines for ERD and SRNN treat the output as a mean of a

multivariate normal with variance derived from the testing

data. Using the variance seems to worsen performance for

these two baselines. This suggests that these deterministic

baselines output one particularly incorrect motion for each

of the examples, and the distribution of pose motion is not

well modeled by Gaussian noise. We also find our recur-

rent Pose-VAE outperforms Feedforward-VAE [48]. Inter-

estingly, FF-VAE underperforms the mean of the two de-

terministic baselines on UCF101. This is likely due to the

3338

(a) Input Clip (b) Input Pose (c) Future Pose (d) Our Forecast (e) [47] Forecast

Figure 7: Here are some selected qualitative results from our model. Given an input clip (a) and a set of poses (b), we forecast

a future pose motion (c) and then use this structure to predict video (d). These pose motions represent the largest cluster of

samples from Pose-VAE for each input. Best seen in video.

fact that FF-VAE is forced to predict all timesteps simul-

taneously, while recurrent models are able to predict more

refined motions in a sequential manner.

In Table 1 we show our quantitative results of pixel-level

video prediction against [47]. As the Inception score in-

creases, the KL-Divergence between the prior distribution

of labels and the conditional class label distribution given

generated videos increases. Here we are effectively measur-

ing how often the two stream action classifier detects partic-

ular classes with high confidence in the generated videos.

We compute variances using bootstrapping. We find, not

surprisingly, that real videos show the highest Inception

score. In addition, we find that videos generated by our

model have a higher Inception score than [47]. This sug-

gests that our model is able to generate videos which are

more likely to have particular meaningful features detected

by the classifier. In addition to Inception scores, we show

the results of our MMD metric in Table 1. While Inception

is measuring diversity, MMD is instead testing something

slightly different. Given the distribution of two sets, we

perform a statistical test measuring the difference of the dis-

tributions. We find that, compared to the distribution of real

videos, the distribution videos generated by [47] are much

further than the videos generated by ours.

References

[1] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. In CVPR,

2017. 2, 6

[2] X. Chu, W. Yang, W. Ouyang, C. Ma, A. L. Yuille, and

X. Wang. Multi-context attention for human pose estima-

tion. In CVPR, 2017. 2

3339

