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Abstract

3D model-based gaze estimation methods are widely ex-

plored because of their good accuracy and ability to handle

free head movement. Traditional methods with complex

hardware systems (Eg. infrared lights, 3D sensors, etc.)

are restricted to controlled environments, which significant-

ly limit their practical utilities. In this paper, we propose

a 3D model-based gaze estimation method with a single

web-camera, which enables instant and portable eye gaze

tracking. The key idea is to leverage on the proposed 3D

eye-face model, from which we can estimate 3D eye gaze

from observed 2D facial landmarks. The proposed system

includes a 3D deformable eye-face model that is learned

offline from multiple training subjects. Given the deformable

model, individual 3D eye-face models and personal eye pa-

rameters can be recovered through the unified calibration

algorithm. Experimental results show that the proposed

method outperforms state-of-the-art methods while allowing

convenient system setup and free head movement. A real

time eye tracking system running at 30 FPS also validates

the effectiveness and efficiency of the proposed method.

1. Introduction

Eye gaze tracking is to predict the gaze directions or

where human looks in real time. Since eye gaze reflects hu-

man’s cognitive process [16] (attention or interest), various

gaze estimation techniques have been proposed and applied

in different fields. In Human Computer Interaction field,

eye gaze can replace traditional inputs or serve as additional

input to help better interactions with the computer. Besides,

more and more games start supporting gaze input from eye

tracker to enhance the gaming experience [22]. Furthermore,

eye tracking data can also help research and analysis in mar-

keting, advertisement, psychology, etc.

There are two main types of gaze estimation techniques:

2D appearance-based and 3D model-based. The key idea

of appearance/feature based methods [5, 6, 17, 13, 4] build-

s on the assumption that similar eye appearances/features

correspond to similar gaze positions/directions, from which

different mapping functions can be learned to perform gaze

estimation. However, these traditional methods cannot han-

dle free head movement, as eye appearance/features might

be similar under different gaze directions and head poses.

Several methods [15, 23, 33, 24, 32] have been proposed to

compensate head movement. But they typically require a

large amount of training data involving different poses or

rely on additional data to learn a correction model. Different-

ly, 3D model-based methods perform gaze estimation based

on a 3D geometric eye model, which mimics the structure

and function of human vision system. They can be further

divided into two categories based on their hardware systems.

Methods from first category [1, 3, 26, 9, 14, 20, 29, 27] de-

pend on their complex hardware system, including IR lights,

stereo vision system or 3D sensors to perform 3D gaze es-

timation. However, the practical utility of these methods

is significantly limited due to complex system setup and

sensitivity to environmental settings. Methods from second

category [2, 25, 29, 31, 11, 12] perform 3D gaze estimation

with a simple web-camera. However, these methods either

have strong assumptions, cannot apply in practice or cannot

give good gaze estimation accuracy. For more information

regarding different gaze estimation techniques, we suggest

readers refer to [10].

To build a simple, robust, accurate and real time eye track-

ing system, we focus on 3D model-based gaze estimation

with a single web-camera. To achieve our goals, a new gaze

estimation framework based on 3D eye-face model is pro-

posed to effectively perform 3D gaze estimation from 2D

facial landmarks. The gaze estimation framework also in-

cludes the offline learned DEFM and an efficient calibration

algorithm. Given DEFM, individual 3D eye-face model-

s from any new subjects can be effectively reconstructed,

without the need to provide subject-dependent 3D data or

additional hardware. Through the unified calibration proce-

dure, reconstruction of individual 3D eye-face model as well

as estimation of personal eye parameters can be achieved

simultaneously.
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Figure 1. Overview of the proposed gaze estimation framework. (a1) different subjects participate in the offline DEFM construction stage;

(a2) 3D facial landmarks are recovered from Kinect sensor, 3D eyeball center is recovered through gaze estimation techniques; (a3) geometric

relationship among 3D eyeball center (circle) and 3D rigid facial landmarks (rectangle) are established to construct the 3D eye-face model

for each subject; (a4) 3D eye-face models are fused to learn the generic 3D deformable eye-face model (DEFM). In (b1), a unified calibration

is performed to simultaneously estimate personal eye parameters θ and individualize the deformable eye-face model τ ; (b2) recovered

parameters are used for online eye gaze tracking.

Fig. 1 1 illustrates the overview of the proposed gaze

estimation framework. It consists of an offline DEFM con-

struction stage and a calibration and online gaze estimation

stage. During the offline stage, we construct 3D eye-face

models for each subject and learn a generic DEFM to repre-

sent the entire population. During the online stage, personal

eye parameters and individual 3D eye-face model {τ ,θ} are

first estimated given DEFM through the calibration algorith-

m. Real time eye gaze tracking can then be performed given

the personal eye parameters and individual 3D eye-face mod-

el. In summary, the proposed method makes following novel

contributions:

• Propose a 3D eye-face model to enable 3D eye gaze

estimation with a single web-camera.

• Eliminate the need to estimate the head-eye offset vec-

tor online as used by existing 3D deformable face mod-

el based approaches ([29, 25]), therefore yielding im-

proved estimation accuracy and robustness.

• Propose a unified calibration algorithm to simultane-

ously reconstruct individual 3D eye-face model and

estimate personal eye parameters.

• Experimental results and a real time system running

at 30 fps validate its effectiveness and efficiency for

online eye gaze tracking.

2. Related work

We focus on reviewing 3D model-based eye gaze estima-

tion methods that do not use any infrared lights.

Heinzmann et al [11] approximated the 3D gaze direction

by the facial normal direction and eye direction relative to

1All the portraits are taken from [18].

facial normal. However, eye direction is sensitive to head

pose and eye corner detections, which results in poor accura-

cy. Ishikawa et al [12] proposed to first estimate head pose

with AAM model, and then approximated eye gaze with the

relative eye directions. However, its use of face scale to esti-

mate 3D information is not robust, and the use of appearance

might be affected by illumination and pose variations. Yama-

zoe et al [31] first employed the factorization method [19] to

recover the 3D face/eye shape model from image sequences.

Then 3D eyeball center and pupil center can be recovered

by fitting the model to the 2D image data. However, the

structure from motion like algorithm is sensitive to noise

and subject’s head motion, which accounts for their poor

gaze estimation accuracy. Chen et al [2] estimated eye gaze

using an extended eye model with eye corners. The depth

information is estimated from inverse face scale. However,

generic face scale factor is sensitive to noise and feature

detections, which results in poor accuracy.

In [25, 29], the authors first recover the head rotation and

translation from detected 2D facial landmarks. Then they

approximated the 3D eyeball center by adding a fixed offset

to the head translation and approximated 3D pupil center

with geometry constraints. Final eye gaze can be estimated

from 3D eyeball center, 3D pupil center, and some person-

al parameters. However, [25] totally ignored personal eye

parameters and only approximated the true gaze directions

with the optical axis. And [29] required subject-specific 3D

data to estimate the head translation, which is unrealistic in

practice.

Recently, Wood et al [28] proposed to estimate eye gaze

based on a 3D morphable eye region model, which consists

of a set of 3D eye shape bases and eye texture bases. Given

a testing image, they reconstruct a new image by linear

combination of the bases that matches the testing image in
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(b) 3D eye gaze estimation with 3D geometric eye model.

Figure 2. 3D model-based gaze estimation with facial landmarks. CCS (black), HCS (red) and ECS (blue) represent Camera, Head and

Eyeball Coordinate Systems respectively.

both texture and shape, final gaze can be inferred from the

learned parameters. Despite their usage of 3D eye model to

construct the 3D eye region, their method still relies heavily

on eye appearance and is therefore affected by appearance

variations like glasses.

In this paper, we propose a 3D eye-face model to direct-

ly relate 3D eyeball center with 2D facial landmarks, from

which we can effectively recover 3D eyeball center without

the need to introduce the head-eye offset. As a result, the

proposed 3D eye-face model based gaze estimation enables

robust and accurate eye gaze tracking in practical applica-

tions.

3. 3D Model-based eye gaze estimation

The proposed method consists of two major steps as il-

lustrated in Fig. 2. We first leverage on the proposed DEFM

to estimate 3D eyeball center oe from observed 2D facial

landmarks (Fig. 2 (a)), then 3D eye gaze can be computed

by leveraging on the 3D geometric eye model (Fig. 2 (b)).

3D deformable eye-face model encodes the geometric rela-

tionship among facial landmarks and eyeball center across

the entire population. For online eye gaze tracking with a

particular user, a personal calibration is required to individ-

ualize the DEFM to a specific 3D eye-face model for that

user. We leave the construction of DEFM in Sec. 4 and the

personal calibration in Sec. 5, and focus on estimating 3D

eye gaze given the individualized 3D eye-face model.

3.1. 3D Eyeball center estimation

3D eye-face model is defined as the facial landmark coor-

dinates {xe
i}Ni=1 in ECS (Fig. 2). It reflects the relative posi-

tion information of landmarks w.r.t eyeball center. The 3D

eye-face model is related with 2D facial landmarks through:

λiWx2D
i = (Rex

e
i +oe), where x2D

i represents the ith 2D

landmark in homogeneous form, W is the inverse camera

intrinsic parameters, λ is the scale factor and {Re,oe} is

the rotation and translation. For notation convenience, we

denote x
p
i = Wx2D

i .

Since we are only interested in recovering eyeball center

oe, we do not need estimate rotation matrix Re. Leveraging

on Re is orthonormal, we can manipulate the equation to

have Re eliminated, yielding:

(Rex
e
i )

T (Rex
e
i ) = (λix

p
i − oe)

T (λix
p
i − oe) = xeT

i xe
i

In practice, the distance of facial landmarks to the camera is

close to each other, therefore the scale factor λi are assumed

to be the same. Eyeball center oe and λ can be solved by:

{λ∗,o∗
e} = argmin

λ,oe

f(λ,oe) (1)

f(λ,oe) =
N
∑

i=1

||(λxp
i − oe)

T (λxp
i − oe)− xeT

i xe
i ||2.

To understand the benefits of the proposed 3D eye-face

model, we briefly review 3D face model based methods

[25, 29] on 3D eyeball center estimation. 3D face model is

defined as facial landmarks {xh
i }Ni=1 in HCS. The origin of

HCS is typically on the face (Eg. nose tip). They first solve

the head pose:

R∗
h,o

∗
h = arg min

Rh,oh

N
∑

i=1

||λi(Rhx
h
i + oh)−Wx2D

i ||2

s.t RhR
T
h = I (2)

3D eyeball center oe can then be computed as o∗
e =

o∗
h +R∗

hohe (See Fig. 2 for a geometric illustration), where

ohe represents the head-eye offset in HCS. Notice ohe is a

personal parameter and needs be estimated.

Compared to 3D face model, the proposed 3D eye-face

model brings several benefits. Firstly, eyeball center can
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Table 1. Comparison of DFM and DEFM based eye gaze estimation.
Category 3D Deformable Face Model 3D Deformable Eye-Face Model

Offline construction requirements 3D facial landmarks 3D facial landmarks and 3D eyeball center

Offline personal calibration {θ, τ ,ohe} {θ, τ}
Individualized model {xh

i }Ni=1 in HCS {xe
i}Ni=1 in ECS

Online eyeball center estimation o∗
e = o∗

h +R∗
hohe, {R∗

h,o
∗
h} are from solving Eq. (2). o∗

e from solving unconstrained problem in Eq. (1)

Pros • Easy offline construction, no need of 3D eyeball center. • More robust against head pose variations and image noise.

• Gaze estimation is more accurate.

• Online processing is simple and efficient.

Cons • Needs calibrating ohe for each user. • Offline Construction requires 3D eyeball center

• Calibration is sensitive to initialization and noise.

• Not robust against head pose and image noise.

be solved more easily with an unconstrained optimization

problem (Eq. (1)) instead of a constrained one (Eq. (2)).

More importantly, 3D eye-face model explicitly eliminates

the head-eye offset ohe, which yields much more accurate

and robust eye gaze tracking. Tab. 1 shows a side-by-side

comparison of DEFM-based and DFM-based eye gaze track-

ing systems. The pros and cons of the two methods will

be further demonstrated in later analysis and experiments

(Sec. 6).

3.2. Gaze estimation with 3D geometric eye model

After solving 3D eyeball center oe, we can compute the

3D pupil center p given detected 2D pupil center p2D. Ac-

cording to camera projection model, p lies on a line l passing

through camera center oc. Besides, as in Fig. 2 (b), p also

lies on eyeball sphere with calibrated radius re. By solving

a line-sphere intersection problem, we can estimate the 3D

pupil center p as:

p∗ =

{

zx if ||zx− oe|| > re
x
T
oe−

√
||xT oe||2−xTx(oT

e oe−r2e)

xTx
x otherwise

(3)

where x = Wp2D, and z = x
T
oe

||x|| is the shortest distance

from oe to line l. If line l does not intersect with eyeball

sphere, we choose the closest point zx as an approximation

of pupil center (very rare case in practice).

Given oe and p, optical axis can be computed as: no =
(p− oe)/||p− oe||. As an unit length vector in N 3×1, no

can also be represented as pitch angle φ and yaw angle γ:

no(φ, γ) =





cos(φ) sin(γ)
sin(φ)

− cos(φ) cos(γ)





From eyeball anatomy, true gaze direction is determined

by visual axis nv, therefore we need to add calibrated k =
[α, β] to optical axis: nv = no(φ+ α, γ + β).

2D point of regard (PoR) can be computed by intersecting

visual axis with the display plane: PoR = oe + λnv. Here

we use oe as origin of visual axis instead of c. The error

caused by this approximation is negligible as ||oe − c|| is

only a few millimeters and is much smaller than eye-plane

distance. The scalar λ can be computed given the rotation

and translation of the display plane relative to CCS. Based

on above equations, we denote 2D PoR estimation as:

PoR = f(oe,p;θ) (4)

where θ = [α, β, re] represents all the person-dependent eye

parameters.

4. 3D Deformable eye-face model

The construction of DEFM or 3D eye-face model requires

additional 3D eyeball center position oe, which is inside

head and invisible from the sensors. Therefore we propose

to leverage on gaze estimation techniques to estimate 3D

eyeball center during offline construction.

4.1. Construction of individual 3D eyeface model

In this paper, we propose to use a Kinect sensor to retrieve

3D facial landmark positions. The 3D eyeball center can

be estimated with gaze estimation techniques. As shown in

Fig. 1 (a2), subject is asked to perform a 9-points calibration

with a chin rest. The chin rest is to ensure eyeball center oe

remain unchanged over the time. 2D facial landmarks can

be detected and their 3D positions can be recovered. Given

M pairs of 3D pupil center and 2D PoR {pm,gm}Mm=1, we

can solve 3D eyeball center and personal eye parameters as

follows:

o∗
e,θ

∗ = argmin
oe,θ

M
∑

m=1

||f(oe,pm;θ)− gm||2+

λ ||d(oe,pm)− re||2 (5)

s.t θl ≤ θ ≤ θh

The first term represents the prediction error and f(·) is

defined in Eq. (4). The second regularization term forces the

estimation to give a consistent and reasonable eyeball radius

with d(·) the function to compute the Euclidean distance

between two vectors, and λ the weight to balance these two

terms. θl and θh represents the lower and higher bounds of

the eye parameters whose value can be approximated from

eyeball anatomy [9]. The optimization problem is solved
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Figure 3. Overview of calibration flow. In the first sub-problem,

we solve {λ,oe} and τ alternately leveraging on Eq. (1). Linear

approximated solutions {λl,ol

e, τ
l} are used as initializations. The

estimated τ
∗ are used to construct the 3D eye-face model and solve

the personal eye parameters θ.

by alternating between oe and θ with an iterative algorithm.

Given estimated o∗
e and {xc

i}Ni=1 in CCS, 3D eye-face model

can be computed as xe
i = xc

i − o∗
e ∀i for each training

subject.

4.2. Construction of generic 3D deformable eyeface
model

To generalize to a new subject during eye gaze tracking,

we propose to construct a generic 3D deformable eye-face

model. We first stack one 3D eye-face model as a column

vector xe ∈ N 3N×1, then we stack all individual subject-

specific 3D eye-face models from different subjects to form

a large matrix A ∈ R3N×L, where each column of A rep-

resents one 3D eye-face model. Since different subjects

have roughly similar skull anatomy and face shape, hence

we believe the column space of A is able to cover a large

range of subjects. The 3D eye-face model for a new subject

can be reconstructed by the linear combination of columns

of A. However, without reduction, the linear combination

coefficients contain L variables, which is difficult to esti-

mate. Therefore for compact representation, we perform a

Principal Component Analysis on A to produce q ≪ L basis

vectors bk ∈ R3N×1. 3D eye-face model for a new subject

can, therefore, be reconstructed as:

xe =

q
∑

k=1

bkτk + x̄ = Bτ + x̄ (6)

with B = [b1, ...,bq] the matrix of concatenated bases,

τ = [τ1, ..., τq]
T the coefficients, and x̄ the average model

(column average of A). Since any 3D eye-face models can

be reconstructed from the bases and average model, we

denote {B, x̄} as generic 3D deformable eye-face model

(DEFM).

We want to note that construction of DEFM is a one-time

offline process that only applies to training subjects. It is not

necessary for any new testing subjects.

5. A Unified Calibration Algorithm

To start eye gaze tracking for a new subject, a one-time

personal calibration procedure is required. Once all parame-

Algorithm 1: Calibration Algorithm

1. input :











2D landmarks and pupil: x2D
mi ,p

2D
m

Groundtruth PoRs: gm

Deformable eye-face model: B, x̄

2. output : [τ ∗,θ∗]
3. Initialization: τ 0 = 0;θ0 = human average[9]
4. Sub-problem 1, Solve τ :

L(λ,oe, τ ) =
∑N

i=1 ||(λx
p
i − oe)

T (λxp
i − oe)−

(Biτ + x̄i)
T (Biτ + x̄i)||2, where Bi and x̄i represent

the corresponding rows of the ith facial landmark.

while not converge do

{λ,oe}k = argmin
λ,oe

L(λ,oe, τ
k−1)

τ
k = argmin

τ
L(λk,ok

e , τ ) + γ||τ ||2 (7)

end

5. Sub-problem 2, Solve θ:

θ
∗ =argmin

θ

M
∑

m=1

||f(o∗
e,p

∗
m;θ)− gm||2

s.t θl < θ < θh (8)

where f(·) is defined in Eq. (4), o∗
e can be computed

using Eq. (1), p∗
m can be computed using Eq. (3).

ters are calibrated, we can follow Eqs. (6), (1), (3) and (4) to

compute 2D PoR on the screen or 3D visual axis.

Calibrating [τ ,θ] simultaneously is challenging as it re-

quires solving a complex non-convex optimization problem.

We, therefore, decouple the original problem to two sub-

problems with respect to τ and θ, where each subproblem

can be effectively solved with proper regularizations. Fig.

3 illustrates the overall calibration flow, and the detailed

calibration algorithm is summarized in Alg. 1.

In sub-problem 1, we define a loss function L(λ,oe, τ ).
It is an extension of f(λ,oe) in Eq. (1) where the 3D eye-

face model xe is now a function of the deformable co-

efficients τ . To accelerate convergence, linear solutions

{λl,ol
e, τ

l} are used for initializations. Linear solutions

are obtained by ignoring orthogonal constraints and assume

weak perspective projection. Notice in Eq. (7), a regular-

ization term ||τ ||2 is imposed to penalize coefficients that

yield large distance to average model, which help preven-

t over-fitting and unrealistic face shapes. In practice, the

weight γ ∈ [0.3, 0.5] can give good results. The estimated

τ
∗ is used to construct the 3D eye-face model (Eq. (6)), from

which we can solve θ by minimizing PoR prediction error

as in Eq. (8).

Comparison with DFM. Calibration of head-eye offset
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Figure 4. Geometric illustration of calibration in DFM and DEFM.

ohe causes issues for DFM-based methods. As shown in

Fig. 4(a), the basic idea is to estimate head center oh from

2D landmarks and eyeball center oe from known calibration

marker/target. Offset vector is simply the subtraction of oh

from oe. However, the estimation of both oh and oe is affect-

ed by noise and optimization algorithms. The offset vector

introduces more freedom and are prone to over-fitting. As

a consequence, the estimated parameters cannot generalize

to different poses and are sensitive to image noise. On the

contrary as in Fig. 4(b), we explicitly eliminate the offset

vector. Both facial landmarks and screen target are directly

connected to the intermediate eyeball center oe. This helps

regularize the problem and yields better parameters for eye

gaze estimation.

6. Experiments and Analysis

6.1. Experimental Settings

We use a Kinect sensor for offline DEFM construction and

a Logitech webcam C310 for online gaze estimation. Both

cameras are placed under the 21.5 inch LCD monitor (1920

× 1080) around the central region. The frame resolution is

set to 640× 480 for both cameras. 2D facial landmarks and

pupil center can be effectively detected with the algorithms in

[30] and [8]. We evaluate the proposed method on following

three types of data.

Simulated data: from the learned 3D deformable eye-

face model, we can simulate different subjects by adjusting

the coefficients τ in Eq. (6). Then we can generate 3D facial

landmarks by providing head rotation and translation. Final-

ly, 2D landmarks (observation) can be obtained by project-

ing the 3D facial landmarks onto 2D image plane. Different

noise can be added to simulate detection error.

Real data from 10 subjects: seven male and three fe-

male subjects participate in the experiments. The distance

between subjects and camera ranges from 450 mm to 650
mm, and subjects typically move within 200 mm in vertical

direction and 400 mm in horizontal direction. Calibration

data is collected with a 5-points pattern, while evaluation

data is collected densely with a 45-points (9×5) pattern. We

collect the evaluation data at 5 different positions for better

head pose coverage.

Benchmark datasets: We select two datasets which pro-

vide full-face images. Columbia Gaze dataset [21] contains

56 subjects, each with 21 gaze angles and 5 head pose angles.

We perform cross-validation on each subject with 15 images

for calibration and 90 images for testing. EyeDiap dataset

[7] contains 16 subjects with different sessions. We select

20 images for calibration and test on 500 images from each

subject.

6.2. Experiments on simulated data

For all experiments on simulated data, we use 9 rigid

landmarks (Configuration 2 in Fig. 9). And except the study

on sensitivity against image noise, we add ∼ 1 pixel noise

on 2D landmarks and pupil centers.
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Figure 5. Objective contour around groundtruth offset ohe.

Calibration ohe is sensitive to initializations. Gaze es-

timation with DFM requires calibration of additional offset

ohe for each user. However, the objective function is highly

nonlinear w.r.t ohe as can be seen in Fig. 5. We cannot obtain

a good solution with one single initialization. To achieve

a similar calibration/training error of DFM compared to

DEFM, we need to randomly initialize multiple times, which

may cost 40× more time.

Table 2. Head pose study with 2D landmark and pupil noise at 1

pixel. e1, e2 and e3 represent calibration error, testing error under

calibration pose and testing error under a different pose.

True θ Method Est θ e1 e2 e3

5.0 1.2 13.0 DEFM 5.4 1.7 12.4 2.7 3.7 3.6
DFM 4.0 −0.6 13.5 2.8 3.3 17.7

1.5 −3.7 15.0 DEFM 1.7 −3.5 14.7 2.3 2.9 2.9
DFM 4.8 −2.4 15.7 2.3 2.9 14.6

−1.0 3.4 11.0 DEFM 0.6 3.3 10.5 3.6 4.6 4.5
DFM 2.9 1.8 11.3 3.1 3.8 21.3
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Figure 6. Gaze estimation with different head poses relative to

calibration head pose.

Robustness against head pose variations. Tab. 2 shows

the estimated θ and the gaze estimation performance on

different poses. For DFM, the estimated θ is far away from

groundtruth, though the inaccurate parameters can still give
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small testing error on the same head pose. But due to the

inaccurate θ, it cannot give good results on a different head

pose. On the contrary, DEFM gives consistent errors across

head poses, as the estimated θ is close to groundtruth. We

also systematically study how head rotation (pitch, yaw, roll)

affect the performance as shown in Fig. 6. DFM degrades

significantly with pitch and yaw changes. The influence of

roll angle is less significant as it is in-plane rotation. The

proposed DEFM performs consistently well across different

head poses and thus is more suited for robust and accurate

eye gaze tracking in practice.
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Figure 7. Gaze estimation error with different level of 2D landmark

noise, 2D pupil noise is set to 1 pixel.

Accuracy w.r.t 2D landmark noise. As pupil noise caus-

es similar effects on both DEFM and DFM, we set it to ∼ 1
pixel. As shown in Fig. 7, with increased 2D landmark noise,

both methods perform worse, but DEFM is consistently bet-

ter than DFM with a margin of 5 degree. The figure comes

from average results from different testing poses around cal-

ibration pose. Therefore we believe DEFM can give much

accurate results in challenging settings.

6.3. Experiments on real data from 10 subjects

Table 3. Statistics of head translation (mm) and rotation (degree)

Type mean ± std

x-translation −30.0 ± 32.0
y-translation −11.0 ± 27.0
z-translation 525.0 ± 39.0
yaw (left or right) 3.0 ± 19.5
pitch (up or down) 2.8 ± 12.7
roll (in plane rotation) −82.0 ± 7.1

Head pose analysis. The head pose statistics for all sub-

jects are listed in Tab. 3. The head pose coverage is sufficient

to naturally cover the screen region. 3D model-based meth-

ods theoretically can handle large head motion, as head rota-

tion and translation are explicitly encoded in the 3D model.

The results in Fig. 6 with synthetic data validates the point.

But in practice, large head motion causes poor landmark

detections, which is the main reason for performance drop.

Besides using improved landmark detectors, several practi-

cal tricks, such as using right eye when left eye is occluded,

can be applied to improve the accuracy.

Overall performance for 10 subjects. Fig. 8 shows the

average error for each subject as well as the overall error
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Figure 8. Overall error heatmap and average error for each subject.

The results are based on configuration 2 of rigid facial landmarks

as shown in Fig. 9.

heatmap normalized in degree from all subjects. The 9× 5
heatmap is resized to screen size (1920 × 1080) for better

illustration. The average error for all subjects is 3.5 degree.

The poor performance (5.5 degree) on the corner/boundary

regions is mainly caused by poor feature detections when

subjects look at extreme directions or with large head mo-

tions. However, for most of the central regions, the error is

relatively small around 3.0 degree.

Table 4. Gaze estimation performance with different pupil detection

algorithms.

Manual Method in [29] Ours

Error / degree 2.5 3.1 3.5
Time / ms 4000.0 30.0 2.3

Comparison of pupil detection algorithms. As listed

in Tab. 4, the first algorithm manually annotated the 2D

pupil positions, the second one is the starburst algorithm

used in [29], and the last one is ours from [30]. Manually

annotated pupil centers yield the best accuracy, but it takes

huge amount of time. Nevertheless, it demonstrates that

with better feature detections, the proposed DEFM can give

much better accuracy. The one used in [29] gives better

performance but it takes 30 ms for a single image, which

might not suffice the need for real time eye gaze tracking. We

find a compromise between accuracy and efficiency, allowing

real time eye gaze tracking while reserving good accuracy.

Table 5. Running time of eye tracking system in milliseconds.

landmark detec-

tion/tracking

pupil de-

tection

gaze es-

timation
misc total

25.7 2.3 0.3 5.0 33.3

Real time performance The eye tracking system runs on

a windows system with Inter Core i7-4770 CPU (3.40 GHz)

and 16 GB memory. The code is written in Matlab. We

perform online eye gaze tracking for 5 minutes and collected

around 9000 frames. The average time for major components

during eye gaze tracking are listed in Tab. 5, which allows

real time eye gaze tracking at 30 fps.

Evaluation on landmark configurations. The robust-

ness of the system relies heavily on facial landmarks. By

analyzing how facial landmarks vary with pose/expression

variations, we identify 11 candidate rigid facial landmarks as

shown in Fig. 9, including 2 eyebrow corners, 4 eye corners,
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Figure 9. Candidate landmarks configurations and their results.

2 points on nose bridge and 3 points under nose. We plan to

use symmetric points and eliminate points that are too close

to each other (Eg. {7− 11}). We end up with 5 configura-

tions and gaze estimation error with each configuration is

listed in the right part of Fig. 9.

We have two major observations: 1) Eye corners tend to

move toward the direction the eyeball rotates. For example,

when we fix our head position and look up, the eye corners

also move up. This is not caused by the detection but the

real eye appearance changes because of eyeball rotation. 2)

Eye brows tend to be occluded under large head motions.

We find that configurations without eye corners (Config. 1)

and configurations without eyebrows (Config. 5) cannot give

accurate results. But their combinations (Config. 2, 3, and

4) can alleviate the issues of eye corner motion and eyebrow

occlusion and give much better results.

Table 6. Gaze estimation error with different 3D shape model.

Original Calibrated Average

DEFM 3.2 3.5 4.5

DFM 5.1 5.7 6.5

Evaluation of different 3D (eye) face model. In prac-

tice, we use the individualized 3D eye-face model for a new

subject. We are also interested in the performance of orig-

inal model learned from 3D data and the average model.

We also compare with DFM-based method (an extension

of [29]). For the 10 training subjects, we use their offline

learned 3D shape model to perform gaze estimation, and

obtain an error of 3.2 and 5.1 for DEFM and DFM respec-

tively. The individualized model obtain similar results with

3.5 and 5.7 respectively, which demonstrates the calibration

algorithm can individualize to a new subject. The average

model (τ = 0) gives larger error but is most suitable for

applications without personal calibration.

Table 7. Comparison with state-of-the-art method

Method [2] [29] [25] Ours

Error/degree 7.3 5.7 7.2 3.5

Comparison with state-of-the-art landmark-based

methods. We compare with other landmark-based meth-

ods in [2, 29, 25]. As they did not release their data or code,

we try our best to implement their methods. Because of us-

age of a generic face scale factor, which is sensitive to noise

and poor detections, [2] gives an error of 7.3 degree. [29]

relies on original 3D face model for each subject. It cannot

adapt for a new subject, and it suffers the issues of DFM-

based approaches and cannot give good accuracy. As for the

method presented in [25], they estimate 3D pupil based on a

generic 2D-3D mesh correspondence, and approximate 3D

gaze by the optical axis. Their method, therefore, cannot

generalize to different subjects and give good accuracy.

6.4. Experiments on benchmark datasets

Table 8. Comparison with state-of-the-art on benchmark datasets.

Dataset [28] [2] [29] [25] Ours

ColumbiaGaze 8.9 12.3 9.7 10.2 7.1

EyeDiap (V, S) 21.5 32.3 21.3 22.2 17.3

EyeDiap (H, M) 22.2 35.7 25.2 28.3 16.5

On ColumbiaGaze [21], we outperform the three

landmark-based methods [3, 29, 25] with a big margin. Com-

pared to [28] which only evaluated on selected 680 images

without glasses, we achieve 7.1 degree error for all 3570
images without glasses, and 8.2 degree for all 5880 images.

[28] cannot handle glasses as they significantly change the

eye appearance, while our model-based method is more ro-

bust to appearance variations and can still give good results.

On EyeDiap[7] with VGA camera (640× 480) and static

head motion (V, S), the proposed method also outperforms

all the 4 competing methods. The large error is due to the

extremely small eye images (∼ 13 × 6 pixel). With head

movement and HD camera (1920×1080) (H, M), ours shows

more robust and accurate results while [25, 29] cannot handle

head movement well.

To summarize, the proposed method is more robust a-

gainst head movement compared to model-based methods,

and is less sensitive to appearance variations compared to

appearance-based methods.

7. Conclusion

In this paper, we propose a new 3D model-based gaze es-

timation framework, which enables simple, accurate and real

time eye gaze tracking with a single web-camera. With the

proposed 3D eye-face model, 3D eye gaze can be effective-

ly estimated from 2D facial landmarks during online gaze

tracking. A 3D deformable eye-face model learned offline

also facilitates efficient online calibration for a new subject,

without the need to provide extra hardware or person specific

3D data. Compared to state-of-the-art methods, the proposed

method not only gives better gaze estimation accuracy but

also allows natural head movement and real time eye gaze

tracking.
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