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Abstract

Recent advances in convolutional neural networks have

shown promising results in 3D shape completion. But due to

GPU memory limitations, these methods can only produce

low-resolution outputs. To inpaint 3D models with seman-

tic plausibility and contextual details, we introduce a hy-

brid framework that combines a 3D Encoder-Decoder Gen-

erative Adversarial Network (3D-ED-GAN) and a Long-

term Recurrent Convolutional Network (LRCN). The 3D-

ED-GAN is a 3D convolutional neural network trained with

a generative adversarial paradigm to fill missing 3D data

in low-resolution. LRCN adopts a recurrent neural net-

work architecture to minimize GPU memory usage and in-

corporates an Encoder-Decoder pair into a Long Short-

term Memory Network. By handling the 3D model as a se-

quence of 2D slices, LRCN transforms a coarse 3D shape

into a more complete and higher resolution volume. While

3D-ED-GAN captures global contextual structure of the 3D

shape, LRCN localizes the fine-grained details. Experimen-

tal results on both real-world and synthetic data show re-

constructions from corrupted models result in complete and

high-resolution 3D objects.

1. Introduction

Data collected by 3D sensors (e.g. LiDAR, Kinect) are

often impacted by occlusion, sensor noise, and illumination,

leading to incomplete and noisy 3D models. For example, a

building scan occluded by a tree leads to a hole or gap in the

3D building model. However, a human can comprehend and

describe the geometry of the complete building based on the

corrupted 3D model. Our 3D inpainting method attempts to

mimic this ability to reconstruct complete 3D models from

incomplete data.

Convolutional Neural Network (CNN) based meth-

ods [12, 20, 18, 29] yield impressive results for 2D image
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generation and image inpainting. Generating and inpaint-

ing 3D models is a new and more challenging problem due

to its higher dimensionality. The availability of large 3D

CAD datasets [5, 27] and CNNs for voxel (spatial occu-

pancy) models [26, 21, 8] enabled progress in learning 3D

representation, shape generation and completion. Despite

their encouraging results, artifacts still persists in their gen-

erated shapes. Moreover, their methods are all based on 3D

CNN, which impedes their ability to handle higher resolu-

tion data due to limited GPU memory.

In this paper, a new system for 3D object inpainting

is introduced to overcome the aforementioned limitations.

Given a 3D object with holes, we aim to (1) fill the missing

or damaged portions and reconstruct a complete 3D struc-

ture, and (2) further predict high-resolution shapes with

fine-grained details. We propose a hybrid network structure

based on 3D CNN that leverages the generalization power

of a Generative Adversarial model and the memory effi-

ciency of Recurrent Neural Network (RNN) to handle 3D

data sequentially. The framework is illustrated in Figure 1.

More specifically, a 3D Encoder-Decoder Generative

Adversarial Network (3D-ED-GAN) is firstly proposed to

generalize geometric structures and map corrupted scans

to complete shapes in low resolution. Like a variational

autoencoder (VAE) [17, 21], 3D-ED-GAN utilizes an en-

coder to map voxelized 3D objects into a probabilistic la-

tent space, and a Generative Adversarial Network (GAN)

to help the decoder predict the complete volumetric objects

from the latent feature representation. We train this network

by minimizing both contextual loss and an adversarial loss.

Using GAN, we can not only preserve contextual consis-

tency of the input data, but also inherit information from

data distribution.

Secondly, a Long-term Recurrent Convolutional Net-

work (LRCN) is further introduced to obtain local geo-

metric details and produce much higher resolution vol-

umes. 3D CNN requires much more GPU memory than

2D CNN, which impedes volumetric network analysis of

high-resolution 3D data. To overcome this limitation, we
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Figure 1: Our method completes a corrupted 3D scan using a convolutional Encoder-Decoder generative adversarial network

in low resolution. The outputs are then sliced into a sequence of 2D images and a recurrent convolutional network is further

introduced to produce high-resolution completion prediction.

model the 3D objects as sequences of 2D slices. By utiliz-

ing the long-range learning capability from a series of con-

ditional distributions of RNN, our LRCN is a Long Short-

term Memory Network (LSTM) where each cell has a CNN

encoder and a fully-convolutional decoder. The outputs of

3D-ED-GAN are sliced into 2D images, which are then

fed into the LRCN, which gives us a sequence of high-

resolution images.

Our hybrid network is an end-to-end trainable network

which takes corrupted low resolution 3D structures and

outputs complete and high-resolution volumes. We evalu-

ate the proposed method qualitatively and quantitatively on

both synthesized and real 3D scans in challenging scenarios.

To further evaluate the ability of our model to capture shape

features during 3D inpainting, we test our network for 3D

object classification tasks and further explore the encoded

latent vector to demonstrate that this embedded representa-

tion contains abundant semantic shape information.

The main contributions of this paper are:

1. a 3D Encoder-Decoder Generative Adversarial Convo-

lutional Neural Network that inpaints holes in 3D mod-

els, which can further help 3D shape feature learning

and help object recognition.

2. a Long-term Recurrent Convolutional Network that

produces high resolution 3D volumes with fine-

grained details by modeling volumetric data as se-

quences of 2D images to overcome GPU memory lim-

itation.

3. an end-to-end network that combines the above two

ideas and completes corrupted 3D models, while also

producing high resolution volumes.

2. Related Work

2.1. Generative models

Generative Adversarial Network (GAN) [12] generates

images by jointly training a generator and a discrimina-

tor. Following this pioneering work, a series of GAN

models [20, 9] were developed for image generation tasks.

Pathak et al. [18] developed a context encoder in an unsu-

pervised learning algorithm for image inpainting. Genera-

tive adversarial loss in their autoencoder-like network archi-

tecture achieves impressive performance for image inpaint-

ing.

With the introduction of 3D CAD model datasets [27, 5],

recent developments in 3D generative models use data-

driven methods to synthesize new objects. CNN is used

to learn embedded object representations. Bansal et al. [2]

introduced a skip-network model to retrieve 3D models

for objects depicted in 2D images of CAD data. Choy et

al. [6] used a recurrent network with multi-view images

for 3D model reconstruction. Girdhar [11] proposed a TL-

embedding network to learn an embedding space that can

be generative in 3D and predicative from 2D rendered im-

ages. Wu et al. [26] showed that the learned latent vector by

3D GAN can generate high-quality 3D objects and improve

object recognition accuracy as a shape descriptor. They also

added an image encoder to 3D GAN to generate 3D model

from 2D images. Yan et al. [28] formulated an encoder-

decoder network with a loss by perspective transformation

for predicting 3D models from a single-view 2D image.

2.2. 3D Completion

Recent advances in deep learning have shown promis-

ing results in 3D completion. Wu et al. [27] built a gen-

erative model with Convolutional Deep Belief Network by

learning a probabilistic distribution from 3D volumes for

shape completion from 2.5D depth maps. Sharma [21] in-

troduced a fully convolutional autoencoder that learns vol-

umetric representation from noisy data by estimating voxel

occupancy grids. This is the state of the art for 3D volu-

metric occupancy grid inpainting to the best of our knowl-

edge. An important benefit of our 3D-ED-GAN over theirs

is that we introduce GAN to inherit information from the

data distribution. Dai et al. [8] introduced a 3D-Encoder-

Predictor Network to predict and fill missing data for 3D

distance field and proposed a 3D synthesis procedure to

obtain high-resolution objects. This is the state-of-the-art

method for high-resolution object completion. However, in-

stead of an end-to-end network, their shape synthesis proce-

dure requires iterating every sample from the dataset. Since

we are using occupancy grids to represent 3D shapes, we

do not compare with them in our experiment. Song et

al. [22] synthesized a 3D scenes dataset and proposed a se-
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mantic scene completion network to produce complete 3D

volumes and semantic labels for a scene from single-view

depth map. Despite the encouraging results of the works

mentioned above, these methods are mostly based on 3D

CNN, which requires much more GPU memory than 2D

convolution and impedes handling high-resolution data.

2.3. Recurrent Neural Networks

RNNs have been shown to excel at hard sequence prob-

lems ranging from natural language translation [15], to

video analysis [10]. By implicitly conditioning on all previ-

ous variables and preserving long-range contextual depen-

dencies, RNNs are also suitable for dense prediction tasks

such as semantic segmentation [25, 4], and image comple-

tion [24]. Donahue et al. [10] applied 2D CNN and LSTM

on 3D data (video) and developed a recurrent convolutional

architecture for video recognition. Oord et al. [24] pre-

sented a deep network that sequentially predicts the pixels

in an image along two spatial dimensions. Choy et al. [6]

used a recurrent network and a CNN to reconstruct 3D mod-

els from a sequence of multi-view images. Followed by

these pioneer works, we apply RNN on 3D object data and

predict dense volume as sequences of 2D pixels.

3. Methods

The goal of this paper is to take a corrupted 3D object

in low resolution as input and produce a complete high-

resolution model as output. The 3D model is represented

as volumetric occupancy grids. To fill the missing data re-

quires an approach that can make conceivable predictions

from data distributions as well as preserve structural con-

text of the imperfect input.

We introduce an 3D Encoder-Decoder CNN by extend-

ing a 3D Generative Adversarial Network [26], namely

3D Encoder-Decoder Generative Adversarial Network (3D-

ED-GAN), to accomplish the 3D inpainting task. Since 3D

CNN is memory consuming and applying 3D-ED-GAN on

a high-resolution volume is improbable, we only use 3D-

ED-GAN to operate low-resolution voxels (say 323). Then

we treat 3D volume output of 3D-ED-GAN as a sequence of

2D images and reconstruct the object slice by slice. A Long-

term Recurrent Convolutional Network (LRCN) based on

LSTM is proposed to recover fine-grained details and pro-

duce high-resolution results. LRCN functions as an upsam-

pling network while completing details by learning from the

dataset.

We now describe our network structure of 3D-ED-GAN

and LRCN respectively and the details of the training pro-

cedure.
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Figure 2: Network architecture of our 3D-ED-GAN.

3.1. 3D Encoder­Decoder Generative Adversarial
Network (3D­ED­GAN)

The Generative Adversarial Network (GAN) consists of

a generator G that maps a noise distribution Z to the data

space X, and a discriminator D that classifies whether the

generated sample is real or fake. G and D are both deep net-

works that are learned jointly. D distinguishes real samples

from synthetic data. G tries to generate ”real” samples to

confuse D. Concretely, the objective of GAN is to achieve

the following optimization:

min
G

max
D

(E
x∼pdata(x)[logD(x)]+

E
z∼pz(z)[log(1−D(G(z)))]), (1)

where pdata is data distribution and pz is noise distribution.

Network structure 3D-ED-GAN extends the general

GAN framework by modeling the generator G as a fully-

convolutional Encoder-Decoder network, where the en-

coder maps input data into a latent vector z. Then the

decoder maps z to a cube. The 3D-ED-GAN consists of

three components: an encoder, a decoder and a discrimina-

tor. Figure 2 depicts the algorithmic architecture of 3D-ED-

GAN.

The encoder takes a corrupted 3D volume x
′ of size dl

3

(say dl = 32) as input. It consists of three 3D convolutional

layers with kernel size 5 and stride 2, connected via batch

normalization (BN) [14] and ReLU [13] layers. The last

convolutional layer is reshaped into a vector z, which is the

latent feature representation. There is no fully-connection

(fc) layers. The noise vector in GAN is replaced with z.

Therefore, the 3D-ED-GAN network conditions z using the

3D encoder. We show that this latent vector carries infor-

mative features for supervised tasks in Section 4.2.

The decoder has the same architecture as G in GAN,

which maps the latent vector z to a 3D voxel of size dl
3. It

has three volumetric full-convolution (also known as decon-

volution) layers of kernel size 5 and strides 2 respectively,

with BN and ReLU layers added in between. A tanh activa-

tion layer is added after the last layer. The Encoder-Decoder

network is a fully-convolutional neural network without lin-

ear or pooling layers.

The discriminator has the same architecture as the en-

coder with an fc layer and a sigmoid layer at the end.
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Loss function The generator G in 3D-ED-GAN is mod-

eled by the Encoder-Decoder network. This can be viewed

as a conditional GAN, in which the latent distribution is

conditioned on given context data. Therefore, the loss func-

tion can been derived by reformulating the objective func-

tion in Equation 1

LGAN =E
x∼pdata(x)[logD(x)+

log(1−D(Fed(x
′)))], (2)

where Fed(·) : X → X is the Encoder-Decoder network,

and x
′ is the corrupted model of complete volume x.

Similar to [18], we add an object reconstruction Cross-

Entropy loss, Lrecon, defined by

Lrecon =
1

N

N∑

i=1

[xi logFed(x
′)i+

(1− xi) log(1− Fed(x
′)i)], (3)

where N = dl
3, xi represents for the ith voxel of the com-

plete volume x and Fed(x
′)i is the ith voxel of the generated

volume. In this way, the output of the Encoder-Decoder net-

work Fed(x
′) is the probability of a voxel being filled.

The overall loss function for 3D-ED-GAN is

L3D−ED−GAN = α1LGAN + α2Lrecon, (4)

where α1 and α2 are weight parameters.

The loss function can effectively infer the structures

of missing regions to produce conceivable reconstructions

from the data distribution. Inpainting requires maintaining

coherence of given context and producing plausible infor-

mation according to the data distribution. 3D-ED-GAN has

the capability of capturing the correlation between a latent

space and the data distribution, thus producing appropriate

plausible hypothesis.

3.2. Long­term Recurrent Convolutional Network
(LRCN) Model

3D CNN consumes much more GPU memory than 2D

CNN. Extending 3D-ED-GAN by adding 3D convolution

layers to produce high resolution output is improbable due

to memory limitation. We take advantage of the capa-

bility of RNN to handle long-term sequential dependen-

cies and treat the 3D object volume as slices of 2D im-

ages. The network is required to map a volume with di-

mension dl
3 to a volume with dimension dh

3 (we have

dl = 32, dh = 128). For a sequence-to-sequence problem

with different input and output dimensions, we integrate

an encoder-decoder pair to the LSTM cell inspired by the

video processing work [10]. Our LRCN model combines

an LSTM, a 3D CNN, and 2D deep fully-convolutional net-

work. It works by passing each 2D slice with its neigh-

boring slices through a 3D CNN to produce a fixed-length

32x32x32

䠍䠎８x䠍䠎８x128
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Figure 3: Framework for LRCN. The 3D input volumes are

aligned by PCA and sliced along the first principle com-

ponent into 2D images. LRCN processes c (c = 5) con-

secutive images with a 3D CNN, whose outputs are fed into

LSTM. The outputs of LSTM further go through a 2D CNN

and produce a sequence of high-resolution 2D images. The

concatenations of these 2D images are the high-resolution

3D completion results.

vector representation as input to LSTM. The output vector

of LSTM is passed through a 2D fully-convolutional de-

coder network and mapped to a high-resolution image. A

sequence of high-resolution 2D images formulate the output

3D object volume. Figure 3 depicts our LRCN architecture.

Formulation of Sequential Input In order to obtain the

maximal amount of contextual data from each 3D ob-

ject volume, we would like to maximize the number of

nonempty slices for the volume. So given a 3D object vol-

ume of dimension dl
3, we firstly use principle component

analysis (PCA) to align the 3D object and denote the aligned

volume as I and its first principle component as direction
−→
l 2. Then I is treated as a sequence of dl × dl 2D im-

ages along
−→
l , denoted as {I1, I2, ..., Idl

}. Since the output

of LRCN is a sequence with length dh, the input sequence

length should also be dh. As illustrated in Figure 3, for each

step, a slice with its 4 neighboring slices (so 5 slices total)

is formed into a thin volume and fed into the network, say

for step t. And slices with negative indices, or indices be-

yond dl, are 0-padded. The input of the 3D CNN is then

v
′

t = {I t
dh/dl

−2, I t
dh/dl

−1, I t
dh/dl

, I t
dh/dl

+1, I t
dh/dl

+2}.

Network structure As illustrated in Figure 3, the 3D

CNN encoder takes a dl × dl × c volume as input, where c

represents number of slices (we have c = 5). At step t, the

3D CNN transforms c slices of 2D images v′

t into a 200D
vector vt. The 3D CNN encoder has the same structure with

the 3D encoder in 3D-ED-GAN with an fc layer at the end.

After the 3D CNN, the recurrent model LSTM takes over.

We use the LSTM cell as described in [30]: Given input vt,

2In our experiment implementation, we use PCA to align the corrupted

objects instead of the output of 3D-ED-GAN.
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the LSTM updates at timestep t are:

it = σ(Wvivt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wvfvt +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + it tanh(Wvcvt +Whcht−1 + bc) (5)

ot = σ(Wvovt +Whoht−1 +Wcoct + bo)

ht = ot tanh(ct)

where σ is the logistic sigmoid function, i, f, o, c are

respectively inputgate, forgetgate, outputgate, cellgate,

Wvi,vf,vc,vo,hi,hf,hc,ho,ci,co,cf and bi,f,c,o are parameters.

The output vector of LSTM ot is further going through a

2D fully-convolutional neural network to generate a dh×dh
image. It has two fully-convolutional layers of kernel size 5

and stride 2, with BN and ReLU in between followed by a

tanh layer at the end.

Loss function We experimented with both l1 and l2 losses

and found the l1 loss obtains higher-quality results. In this

way, the l1 loss is adopted to train our LRCN, denoted as

LLRCN .

The overall loss to jointly train the hybrid network (com-

bination of 3D-ED-GAN and LRCN) is

L = α3L3D−ED−GAN + α4LLRCN , (6)

where α3 and α4 are weight parameters.

Although the LRCN contains a 3D CNN encoder, the

thin input slices makes the network sufficiently small com-

pared to a regular volumetric CNN. By taking advantage of

RNN’s ability to manipulate sequential data and long-range

dependencies, our memory efficient network is able to pro-

duce high-resolution completion result.

3.3. Training the hybrid network

Training our 3D-ED-GAN and LRCN both jointly and

from scratch is a challenging task. Therefore, we propose a

three-phase training procedure.

In the first stage, 3D-ED-GAN is trained independently

with corrupted 3D input and complete output references in

low resolution. Since the discriminator learns much faster

than the generator, we first train the Encoder-Decoder net-

work independently without discriminator (with only recon-

struction loss). The learning rate is fixed to 10−5, and 20
epochs are trained. Then we jointly train the discriminator

and the Encoder-Decoder as in [20] for 100 epochs. We set

the learning rate of the Encoder-Decoder to 10−4, and D to

10−6. Then α1 and α2 are set to 0.001 and 0.999 respec-

tively. For each batch, we only update the discriminator if

its accuracy in the last batch is not higher than 80% as in

[26]. ADAM [16] optimization is employed with β = 0.5
and a batch size of 4.

In the second stage, LRCN is trained independently with

perfect 3D input in low resolution and high-resolution out-

put references for 100 epochs. We use a learning rate of

10−4 and a batch size of 4. In this stage, LRCN works as

an upsampling network capable of predicting fine-grained

details from trained data distributions.

In the final training phase, we jointly finetune the hy-

brid network on the pre-trained networks in the first and

second stages with loss defined as in Equation 6. The learn-

ing rate of the discriminator is 10−7 and the learning rate

of the remaining network is set to be 10−6 with batch size

1. Then α3 and α4 are both set to 0.5. We observe that

most of the parameter updates happen in LRCN. The input

of LRCN in this stage is imperfect and the output reference

is still complete high-resolution model, which indicates that

LRCN works as a denoising network while maintaining its

power of upsampling and preserving details.

For convenience, we use the aforementioned PCA

method to align all models before training instead of align-

ing the predictions of 3D-ED-GAN.

4. Experiments

Our network architecture is implemented using the deep

learning library Tensorflow [1]. We extensively test and

evaluate our method using various datasets canonical to 3D

inpainting and feature learning.

We split each category in the ShapeNet dataset [5] to

mutually-excluded 80 training points and 20 testing points.

Our network is trained on the training points as stated in

Section 3.3. We train separate networks for seven major

categories (chairs, sofas, tables, boats, airplanes, lamps,

dressers, and cars) without fine-tuning on any existing mod-

els. 3D meshes are voxelized into 323 grids for low-

resolution input and 1283 grids for high-resolution output

reference. The input 3D volumes are synthetically cor-

rupted to simulate the imperfections of a real-world 3D

scanner.

The following experiments are conducted with the

trained model: We firstly evaluate the inpainting perfor-

mance of 3D-ED-GAN on both real-world 3D range scans

data and the ShapeNet 20-point testing set with various in-

jected noise. Ablation experiments are conducted to assess

the capability of producing high-resolution completion re-

sults from the combination of 3D-ED-GAN and LRCN. We

also compare with the state-of-the-art method. Then, we

evaluate the capability of 3D-ED-GAN as a feature learn-

ing framework. Please refer to the supplementary material

for more results and comparisons.

4.1. 3D Objects Inpainting

Our hybrid network has 26.3M parameters and requires

7.43GB GPU memory. If we add two more full-convolution

layers in the decoder and two more convolution layers in the
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Hybrid Input 3D-ED-
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Hybrid

Figure 4: 3D completion results on real-world scans. Inputs

are the voxelized scans. 3D-ED-GAN represents the low-

resolution completion result without going through LRCN.

Hybrid represents the high-resolution completion result of

the combination of 3D-ED-GAN and LRCN.

discriminator of 3D-ED-GAN to produce high-resolution,

the network has 116.4M parameters and won’t fit into the

GPU memory. For comparison between low-resolution and

high-resolution results, we simply upsample the prediction

of 3D-ED-GAN and do numerical comparisons.

4.1.1 Real-World Scans

We test 3D-ED-GAN and LRCN on both real-world and

synthetic data. The real-world scans are from the work of

[19]. They reconstructed 3D mesh from RGB-D data and

we voxelized these 3D meshes into 323 grids for test. Our

network is trained on ShapeNet dataset as in Section 3.3.

Before testing, all shapes are aligned using PCA as stated

in Section 3.2. Figure 4 shows shape completion exam-

ples on real-world scans for both low-resolution and high-

resolution outputs. We use 3D-ED-GAN to represent the

low-resolution output of 3D-ED-GAN and Hybrid to de-

note the high-resolution output of the combination of 3D-

ED-GAN and LRCN. As we can see, our network is able to

produce plausible completion results even with large miss-

ing area. The 3D-ED-GAN itself can result conceivable out-

puts while LRCN further improves fine-grained details.

4.1.2 Random Noise

We then assess our model with the splitted testing data of

ShapeNet. This is applicable in cases where capturing the

geometry of objects with 3D scanners results in holes and

incomplete shapes. Since it is hard to obtain ground truth

for real-world objects, we rely on the ShapeNet dataset

where complete object geometry of diversified categories

is available, and we test on data with simulated noises.

Input Ground

Truth

VConv-

DAE

3D-ED-

GAN

LCRN Hybrid

Figure 5: 3D inpainting results with 50% injected noise on

ShapeNet test dataset. For this noise type, detailed informa-

tion is missing while the global structure is preserved.

Because it is hard to predict the exact noise from 3D

scanning, we test different noise characteristics and show

the robustness of our trained model. We do the following

ablation experiments:

1. 3D-ED-GAN: 3D-ED-GAN is trained the first training

stage of Section 3.3.

2. LRCN: After the LRCN is pre-trained as the second

training stage in Section 3.3, we directly feed the par-

tially scanned 3D volume into the LRCN as input and

train LRCN independently for 100 epochs with a learn-

ing rate of 10−5 and a batchsize 4. We test the shape

completion ability of this single network.

3. Hybrid: Our overall network, i.e. the combination of

3D-ED-GAN and LRCN, is trained with the aforemen-

tioned procedure.

To have a better understanding of the effectiveness of

our generative adversarial model, we also compare qual-

itatively and quantitatively with VConv-DAE [21]. They

adopted a full convolutional volumetric autoencoder net-

work architecture to estimate voxel occupancy grids from

noisy data. The major difference between 3D-ED-GAN and

VConv-DAE is introduction of GAN. In our implementa-

tion of VConv-DAE, we simply remove the discriminator

from 3D-ED-GAN and compare the two networks with the

same parameters.

We first evaluate our model on test data with random

noise. As stated above, we adopted simulated scanning

noise in our training procedure. With random noise, vol-

umes have to be recovered from limited given information,

where the testing set and the training set have different pat-

terns. Figure 5 shows the results of different methods for

shape completion with 50% noise injected.

We also vary the amount of noise injected to the data. For

numerical comparison, the number n of generated voxels

(at 1283 resolution) which differ from ground truth (object

volume before corruption) is counted for each sample. The

reconstruction error is n divided by total number of grids
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Figure 6: We vary the amount of random noise injected to

test data and quantitatively compare the reconstruction er-

ror.

1283. For 3D-ED-GAN and VConv-DAE, their predictions

are computed by upsampling the low resolution output. We

use mean error for different object categories as our eval-

uation metric. The results are reported in Figure 6. It can

be seen from Figure 5 that different methods produce sim-

ilar results. Even though 50% noise is injected, the cor-

rupted input still maintains the global semantic structure of

the original 3D shape. In this way, this experiment mea-

sures the denoising ability of these models. As illustrated

in Figure 6, these models introduce noise when 0% noise

injected. LRCN performs better than the other three when

the noise percentage is low. When the input gets more cor-

rupted, 3D-ED-GAN tends to perform better than others.

4.1.3 Simulated 3D scanner

We then evaluate our network on completing shapes for

simulated scanned objects. 3D scanners such as Kinect

can only capture object geometry from a single view at one

time. In this experiment, we simulate these 3D scanners by

scanning objects in the ShapeNet dataset from a single view

and evaluate the reconstruction performance of our method

from these scanned incomplete data. This is a challenging

task since the recovered region must contain semantically

correct content. Completion results can be found in Fig-

ure 7. Quantitative comparison results are shown in Table 1.

As illustrated in Figure 7 and Table 1, our model per-

forms better than 3D-ED-GAN, VConv-DAE and LRCN.

For VConv-DAE, small or thin components of objects, such

as the pole of a lamp tend to be filtered out even though

these parts exist in the input volume. With the help of

the generative adversarial model, our model is able to pro-

duce reasonable predictions for the large missing areas that

are consistent with the data distribution. The superior per-

formance of 3D-ED-GAN over VConv-DAE demonstrates

our model benefits from the generative adversarial structure.

Moreover, by comparing the results of 3D-ED-GAN and the

hybrid network, we can see the capability of LRCN to re-

cover local geometry. LRCN alone has difficulty capturing

global context structure of 3D shapes. By combining 3D-

ED-GAN and LRCN, our hybrid network is able to predict

global structure as well as local fine-grained details.

Overall, our hybrid network performs best by leveraging

Methods Reconstruction Error

VConv-DAE [21] 7.48%

3D-ED-GAN 6.55%

LRCN 7.08%

Hybrid 4.74%

Table 1: Quantitative shape completion results on ShapeNet

with simulated 3D scanner noise.

3D-ED-GAN’s ability to produce plausible predictions and

LRCN’s power to recover local geometry.

4.2. Feature Learning

4.2.1 3D object classification

We now evaluate the transferability of unsupervised learned

features obtained from inpainting to object classification.

We use the popular benchmark ModelNet10 and Model-

Net40, which are both subsets of the ModelNet dataset [27].

Both ModelNet10 and ModelNet40 are split into mutually

exclusive training and testing sets. We conduct three exper-

iments.

1. Our-FT: We train 3D-ED-GAN as the first training

stage stated in Section 3.3 on all samples of ShapeNet

dataset as pre-training and treat the encoder component

(with a softmax layer added on top of z as a loss layer)

as our classifier. We fine-tune this CNN classifier on

ModelNet10 and ModelNet40.

2. RandomInit: We directly train the classifier mentioned

in Our-FT with random initialization on ModelNet10

and ModelNet40.

3. Our-SVM: We generate z (of dimension 16384) with

the trained 3D-ED-GAN in Section 3.3 for samples on

ModelNet10 and ModelNet40 and train a linear SVM

classifier with z as the feature vector.

We also compare our algorithm with the state-of-the-art

methods [26, 21, 11, 3, 23, 19, 5]. VRN [3], MVCNN [23],

MVCNN-Multi [19] are designed for object classification.

3DGAN [26], TL-network [11], and VConv-DAE-US [21]

learned a feature representation for 3D objects, and trained

a linear SVM as classifier for this task. VConv-DAE [21]

and VRN [3] adopted a VAE architecture with pre-training.

We report the testing accuracy in Table 2.

Although our framework is not designed for object

recognition, our results with 3D-ED-GAN pre-training is

competitive with existing methods including models de-

signed for recognition [3, 23]. By comparing RandomInit

and Ours-FT, we can see unsupervised 3D-ED-GAN pre-

training is able to guide the CNN classifier to capture the

rough geometric structure of 3D objects. The superior per-

formance of Our-SVM training over other vector represen-
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Figure 7: Shape completion examples on ShapeNet testing points with simulated 3D scanner noise.

Methods ModelNet40 ModelNet10

RandomInit 86.1% 90.5%

Ours-FT 87.3% 92.6%

3DGAN [26] 83.3% 91.0%

TL-network [11] 74.4% -

VConv-DAE-US [21] 75.5% 80.5%

Ours-SVM 84.3% 89.2%

3DShapeNet [5] 77.0% 83.5%

VConv-DAE [21] 79.8% 84.1%

VRN [3] 91.3% 93.6%

MVCNN [23] 90.1% -

MVCNN-Multi[19] 91.4% -

Table 2: Classification Results on ModelNet Dataset.

tation methods [11, 26, 21] demonstrate the effectiveness of

our method as a feature learning architecture.

4.2.2 Shape Arithmetic

Previous works in embedding representation learning [26,

11] have shown the phenomena of the capability of shape

transformation by performing arithmetic on the latent vec-

tors. Our 3D-ED-GAN also learns a latent vector z. To this

end, we randomly chose two different instances and fed it

into the encoder to produce two encoded vectors z′ and z′′

and feed the interpolated vector z′′′ = γz′ + (1 − γ)z′′

(0 < γ < 1) to the decoder to produce volumes. The

results for the interpolation are shown in Figure 8. We

observe smooth transitions in the generated object domain

Figure 8: Shape interpolation results.

with gradually increasing γ.

5. Conclusion and Future Work

In this paper, we present a convolutional encoder-

decoder generative adversarial network to inpaint corrupted

3D objects. A long-term recurrent convolutional network is

further introduced, where the 3D volume is treated as a se-

quence of 2D images, to save GPU memory and complete

high-resolution 3D volumetric data. Experimental results

on both real-world and synthetic scans show the effective-

ness of our method.

Since our model is easy to fit into GPU memory com-

pared with other 3D CNN methods [21, 22]. A potential

direction is to complete more complex 3D structures, such

as indoor scenes [22, 7], with much higher resolutions. An-

other interesting future avenue is to utilize our model on

other 3D representations like 3D mesh, distance field etc.
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