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Abstract

Two types of information exist in a stereo pair: correla-

tion (matching) and decorrelation (half-occlusion). Vision

science has shown that both types of information are used

in the visual cortex, and that people can perceive depth even

when correlation cues are absent or very weak, a capabil-

ity that remains absent from most computational stereo sys-

tems. As a step toward stereo algorithms that are more con-

sistent with these perceptual phenomena, we re-examine the

topic of scanline stereo as energy minimization. We rep-

resent a disparity profile as a piecewise smooth function

with explicit breakpoints between its smooth pieces, and we

show this allows correlation and decorrelation to be inte-

grated into an objective that requires only two types of local

information: the correlation and its spatial gradient. Ex-

perimentally, we show the global optimum of this objective

matches human perception on a broad collection of well-

known perceptual stimuli, and that it also provides reason-

able piecewise-smooth interpretations of depth in natural

images, even without exploiting monocular boundary cues.

1. Introduction

There are two sources of shape information in a stereo

pair. One is the correlation (matching) signal from smooth

surface regions that are visible to both cameras, which pro-

vides direct information about depth and possibly higher-

order shape. The other is the decorrelation (anti-matching)

signal at regions that are visible to only one camera, which

provides information about the locations and amplitudes of

depth discontinuities by the half-occlusions they induce.

These two sources of information are complimentary, and

vision scientists have invented a variety of perceptual stim-

uli [23, 2, 5, 1, 34, 25, 6, 30, 31], some of which are included

in Figure 1, that convincingly demonstrate how biological

vision can exploit one or both of them.

In the computer vision community, there has been sub-

∗Most work was done when Daniel Glasner was at Harvard University

stantial recent progress in exploiting correlation informa-

tion, both in terms of designing or learning effective lo-

cal matching functions (e.g., census [36, 16] and MC-

CNN [39]), and in terms of developing message passing

methods and other techniques for aggregating matching in-

formation across piecewise-smooth scenes. However, there

has been less progress in using the decorrelation informa-

tion. There were early attempts to build it into scanline

algorithms [12, 5, 7, 41], but more recently, the trend has

been to treat it secondarily. A typical approach is to re-

cover an initial depth map using correlation and then “clean

it up” with left-right consistency checks [35] and other post-

processing schemes [9] that aim to identify and fix the re-

gions of half-occlusion. This strategy can be very effective

when tuned on particular stereo datasets [27, 28, 22], but as

shown in Figure 1, it is inconsistent with the human ability

to accurately perceive depth discontinuities when correla-

tion and color/texture cues are absent or very weak.

As a step towards stereo systems that are more consis-

tent with human perception, and hopefully more likely to

generalize beyond specific datasets, this paper re-examines

scanline stereo by energy minimization, and it introduces an

objective that more effectively combines the two sources of

stereo information. The key idea is to represent the disparity

map (and thus the depth map) as a piecewise smooth func-

tion over the visual field, with “smoothness” specified by

any basis of a low-dimensional function space. In a single

scanline, the stereo problem is formalized as identifying the

best piecewise smooth cut through disparity space, as spec-

ified by a finite number of boundary locations and the shape

coefficients for the smooth pieces between them. By explic-

itly representing the depth discontinuities at these boundary

points, our approach provides a natural way to merge half-

occlusion cues with correlation cues.

Although simple scanline formulations like ours do not

provide state-of-the-art results on standard benchmarks,

they have the important property of allowing exact global

optimization by dynamic programming. This allows us

to study the properties of a stereo objective without the

complications of approximate inference and local minima.

Following this approach, we find that an objective using
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Figure 1. Correlation and decorrelation cues in a stereo scanline. Most stereo benchmarks contain images with rich matching cues

(column (i)), but perceptual stimuli demonstrate that people can infer accurate depth even when matching information is absent. Columns

(ii)-(iv) are examples, with row B showing pseudo-colored disparity space images and the perceived “ground-truth” disparity profiles in

white. While most existing stereo methods do not match human perception on these stimuli, we introduce one that does.

only two types of local signals—correlation and the spa-

tial derivative of correlation—is sufficient to match human

perception on most perceptual stimuli, while also providing

reasonable piecewise-smooth disparity profiles for images

in the early Middlebury dataset [27]. These findings may

inspire new ways to integrate half-occlusion into modern

2D stereo algorithms. In support of this endeavor, all the

stimuli created for this paper have been made available at:

http://vision.seas.harvard.edu/stereo.

2. Related work

An early perceptual study of depth from stereoscopic

decorrelation is due to Gallium and Borsting [13], who

used evidence from randomdot stereograms to reject the

prevailing idea that unmatched regions are noise that disturb

fusion [13, 15]. Other landmark studies were performed by

Nakayama and colleagues [23, 2], who coined the phrase

“da Vinci stereopsis” for the recovery of depth from half-

occlusions (as opposed to depth from matching). They sug-

gest that half-occlusions are processed early and in conjunc-

tion with matching, providing local information about both

the location and amplitude of depth discontinuities. Ander-

son and Nakayama [2] also suggest a design for receptive

fields that could serve as stereo boundary detectors, and the

decorrelation gradient that we use in Section 3 is inspired

by this design. There is evidence that some sort of detec-

tor like these exists in V2 [32], and there is speculation that

such things could be built from local combinations of phase-

based and displacement-based disparity tuned cells [29, 3].

In computer vision it is more common to handle half-

occlusion in post-processing, after an initial depth map is

constructed. Egnal and Wildes [9] provide a summary of

these techniques. Most prevalent is the left-right consis-

tency check, which duplicates the stereo effort, and com-

pares two depth maps that are independently constructed

from left and right viewpoints. There are noteworthy excep-

tions that isolate or label half-occluded pixels during match-

ing [19, 24], but they do so without enforcing the geometry

of the depth discontinuities that these pixels would imply.

One place where decorrelation has been more naturally

incorporated into stereo processing is in scanline algo-

rithms. Like ours, these are formulated as energy minimiza-

tion and optimized by dynamic programming, with the out-

put being a cut through disparity space [27]. Belhumeur [5]

observed that rectified cameras allow half-occlusions to be

represented as 45◦ “shadows” cast from occluding bound-

ary points in disparity space, and he used this to build a

Bayesian approach with priors for piecewise smoothness.

The same half-occlusion geometry plays a useful role in our

paper. The method of Bobick and Intille [7] is another no-

table precursor to ours, and part of our motivation is to gen-

eralize beyond their piecewise constant disparity profiles by

allowing a more general notion of smoothness, and to re-

duce reliance on monocular cues and control points.

Like other scanline formulations, our approach uses a

pre-computed correlation cost in disparity space. Since we

focus on well-controlled input, we find it sufficient to use a

simple correlation measure based on absolute intensity dif-

ferences. In an applied stereo system, this pre-computed

cost would come from a different correlation measure, such

as one based on contrast polarities [16, 36] or learned from

data [38, 21, 20, 37, 14]. Another notable aspect of our

study is that it ignores monocular boundary cues from tex-

ture and color. An applied system would incorporate these
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as well, because they are complimentary to the decorrela-

tion cues that we study here, and are critical to obtain high

performance on standard stereo benchmarks (e.g., [22, 26]).

3. Correlation and decorrelation

Our input is a pair of stereo images that is rectified,

meaning that the two effective cameras have parallel optical

axes and equal focal lengths, and that all corresponding left

and right pixels are contained in corresponding scanlines.

As is common, we align the visual field with the left image,

so that the output on a scanline is a disparity profile that is a

scalar function defined on the left image plane. (This choice

of visual field sacrifices some of the half-occlusion infor-

mation that would be available in a cyclopean visual field,

but it has the advantage of enabling global optimization by

dynamic programming.) On a scanline, we assume a dis-

crete domain for the visual field, indexed by n ∈ {1 . . . N}.

For notational convenience, we choose a flipped coordinate

system, with n = 1 the right-most pixel in the scanline and

n = N the left-most one.

We represent disparity profiles as piecewise smooth

functions. The notion of smoothness is flexible, and is

specified a priori by choosing a small set of C1 functions

{Bb(n)}b=1...M that are each defined over the entire vi-

sual field. Once these global basis functions are specified,

any disparity profile that is smooth can be represented as

a linear combination d(n) =
∑M

b=1 θ(b)Bb(n) with shape

coefficients θ = {θ(b)}b=1...M . Similarly, any piecewise-

smooth disparity profile can be represented by a finite set of

breakpoints si ∈ {1 . . . N} along with sets of coefficients

θi ∈ R
M describing the shape within each smooth inter-

val: ∀n ∈ [si−1, si − 1], d(n) =
∑M

b=1 θi(b)Bb(n). As will

become clear, the complexity of our optimization scheme

grows quickly with the dimension M of the shape space, so

we mainly discuss the piecewise constant case (B1(n) = 1)

and the piecewise linear case (B1(n) = 1, B2(n) = n) in

the sequel. Figure 2 shows an example of the former. We

use notation dθ(n) for the disparity profile, defined over the

entire visual field, that is associated with a given set of shape

parameters, i.e. dθ(n) ,
∑M

b=1 θ(b)Bb(n).

Finding a good disparity profile in a scanline amounts to

simultaneously finding a good partition of the visual field

into intervals I = {[si−1, si − 1]}
|I|+1
i=1 , s0 = 1, s|I|+1 −

1 = N with accompanying shape coefficients Θ = {θi}
|I|
i=1.

We want to formalize this in terms of an objective L(I,Θ)
that incorporates both correlation and decorrelation cues.

Correlation cues are handled in the usual manner. We

assume there is a function that encodes the correlation be-

tween left-image receptive fields at pixel n and right-image

receptive fields at pixel n+ d. As is common, we represent

this as a cost function over disparity space, C(n, d) ∈ [0, 1]
with d ∈ [dmin, dmax] ⊂ R, such that a low cost C(n, d) rep-

0.3
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0
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Figure 2. Correlation and its gradient. Top: correlation cost (ab-

solute intensity difference) for the scanline of Fig. 1(ii). Bottom:

proposed boundary measure G based on the correlation gradient.

We see elevated gradient magnitudes (of particular polarities) at

occluding boundaries A and C and at half-occlusion boundary B,

which is obtained by casting a 45
◦ “shadow” from A.

resents high correlation. For our experiments it is sufficient

to use simple mean absolute differences in 3 × 3 windows,

C(n, d) = 1
9

1
∑

i=−1

1
∑

j=−1

|Il(n+ i, j)− Ir(n+ i+ d, j)|, but

in typical applications one would instead use a learned mea-

sure or one that is more robust. Regardless of how this func-

tion is defined, it immediately induces a related cost func-

tion over the M -dimensional model space via simple repli-

cation of values: C(n, θ) , C(n, dθ(n)). In the piecewise-

constant case (M = 1), the cost function can be visualized

as in the top of Figure 2, where a “good” disparity profile

consists of a piecewise horizontal cut with low integral cost.

For decorrelation cues, we find it useful to consider the

spatial derivative of the correlation cost, ∂C/∂n ≈ fn ∗ C.

It is convenient to have it normalized to [0, 1], say by:

G(n, θ) = (1 + exp (−β(fn ∗ C(n, θ))))
−1

, (1)

with normalization parameter β. A visualization of this

decorrelation signal G, using a horizontal nine-tap filter
1
8 [1, 1, 1, 1, 0,−1,−1,−1,−1] and β = 10 is shown in the

bottom of Figure 2.

When used with our piecewise smooth representation,

the correlation gradient provides a convenient encoding of

the local information about the location and amplitude of

a depth discontinuity. To see this, consider the occlusion

geometry at a discontinuity like the one at si in Figure 2,

which separates two piecewise smooth regions with shape

coefficients θi, θi+1. The breakpoint and shape coefficients

imply two critical points in disparity space. The first is the

boundary of the occluding surface, A = (dθi(si), si). The

second is the boundary of the half-occluded region on the

occluded surface, B =
(

dθi+1
(ki), ki

)

, whose spatial loca-

tion ki has a deterministic form ki = k(si, θi, θi+1) thanks

to the rectified camera geometry [5]: If one draws a 45◦ line

in disparity space through the occluding boundary A, then
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ki is the (right-most) intersection of this line with dθi+1
(n).

Now, we expect an extreme value in the correlation gra-

dient at point B because, whenever the texture of the oc-

cluded surface is distinct from the occluding one, there will

be a sharp correlation change as we move along dθi+1
(n)

from the half-occluded region to the binocular one. Sim-

ilarly, we expect an elevated gradient signal at C, and at

A with opposite sign. (One would expect a fourth point

D similar to B if using the cyclopean visual field). Gra-

dient signals at A and C are stronger if we use correlation

measurements that encode polarity such as Census, but to a

lesser degree if using simple absolute intensity differences.

Nevertheless, this means that the correlation gradient can

provide information about both the location and amplitude

of a depth discontinuity, via the critical points A,B,C. This

is quantified in the next section.

While our use of the correlation gradient at occluding

points A and C may be interpreted as an embodiment of the

correlation-decorrelation receptive fields proposed by An-

derson and Nakayama [2], our additional use of the gradient

at half-occlusion boundaries B seems new. One of its ad-

vantages is conceptual simplicity, because it implies a stereo

system with only two types of local computational units:

one set of disparity-tuned units to measure the binocular

correlations C(n, θ) and another set to measure the finite

spatial differences G(n, θ) between them. This is different

from most alternative formulations of half-occlusion sig-

nals [9], such as left-right consistency checks, which would

imply a greater variety of local units [31].

4. Objective and constraints

Our goal is to combine the correlation and decorrelation

cues into an objective,

L(I,Θ) =

|I|
∑

i=1

ρ (si−1, si, θi−1, θi) , (2)

that can be globally optimized by dynamic programming.

We begin by aligning the visual field with the left image

plane, which ensures that half-occlusions always occur in

the direction of increasing n (left in Figure 2). Breakpoints

may or may not induce occlusions, depending on the sign of

the discontinuity. A breakpoint si is an occlusion-inducing

one if it satisfies dθi+1
(si) < dθi(si), in which case the lo-

cation of the half-occlusion boundary is ki = k(si, θi, θi+1)
according to the 45◦ rule described previously. Otherwise

the breakpoint satisfies dθi+1
(si) ≥ dθi(si) and does not

induce occlusions, and we indicate this by the convention

ki = si. Then, the objective can be written in three terms,

ρ (si−1, si, θi−1, θi) =

ρc(si−1, si, θi−1, θi) + λ1ρg(si−1, θi−1, θi) + λ2,
(3)

Figure 3. Examples of disallowed events. In addition to the order-

ing constraint, we prohibit the existence of depth discontinuities

inside of half-occluded regions, shown here in red.

that respectively encode correlation cues ρc, decorrelation

cues ρg via the correlation gradient, and a constant λ2 that

behaves like a geometric prior [17] to discourage solutions

that have many small intervals.

The correlation term is simply the integral of the match-

ing cost along the binocular portion of each interval,

ρc(si−1, si, θi−1, θi) =

si−1
∑

n=k(si−1,θi−1,θi)

C (n, θi) .

The decorrelation term measures the appropriately-signed

magnitude of the correlation gradient at the occluding

boundary and the half-occlusion boundary when they exist:

ρg(si−1, θi−1, θi) =
{

1−G(si−1, θi), if dθi(si−1) ≥ dθi−1
(si−1)

G(si−1, θi−1)−G(k(si−1, θi−1, θi), θi), otherwise.

Like all dynamic programming scanline stereo algo-

rithms, this formulation does not permit violations of the

ordering constraint [4]. It furthermore assumes that each

interval [si, si+1 − 1] is occluded, at most, by the interval

[si−1, si − 1] that immediately precedes it. Thus it does

not allow situations like Figure 3 that have discontinuities

inside of the half-occluded region. In fact, in testing on

captured stereo images we have found it useful to go fur-

ther than this by imposing a hard lower bound K on the

size of the binocular portion of segments that has occlusion,

∀i, si − k(si−1, θi−1, θi) ≥ K if dθi(si−1) < dθi−1
(si−1).

Finally, we note that our formulation requires that the

slope of the disparity function dθi(n) within each interval

to be less than 45◦ so as not to cause a half-occluding limb.

This is trivial to enforce for the one-dimensional and two-

dimensional function spaces that we consider here, but for

other high-order formulations, it would require greater care.

5. Optimization by dynamic programming

Our objective can be optimized by dynamic program-

ming using an algorithm inspired by Jackson et al. [17]. Let
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N be the number of pixels in a scanline, and let us partition

the continuous space of shape coefficients, a subset of RM ,

into L bins indexed by ℓ ∈ {1, . . . , L}. This restricts the

shape of each segment θi to one of L possibilities. Associ-

ated with this partition, we precompute and store a discrete

L×N correlation cost table as

C̃(n, ℓ) = min
θ∈N (ℓ)

C(n, θ), (4)

with N (ℓ) the set of shape coefficients in bin ℓ. Using

the minimum operator here ensures that accuracy degrades

gracefully for coarser discretizations (see Figure 6).

Let opt(u, ℓu) denote the scalar cost associated with

the optimal disparity sub-profile over interval [1, u] with

the constraint that the final segment, the one containing

u, has shape ℓu. For the first pixel we have opt(1, ℓ) =
C̃(1, ℓ) + λ2 for all ℓ ∈ {1 . . . L}, and from there, we can

visit the remaining pixels u ∈ {2 . . . N} in sequence, re-

cursively computing the L values of opt(u, ·) at each pixel

u. For each pair u, ℓu, we search for the optimal location

of the previous breakpoint v. We set v = 1 if having only

one segment is optimal for interval [1, u]. If v 6= 1, v will

necessarily be a breakpoint between the shape of the final

segment ℓu and a different shape, say ℓv , of the segment

before it. Thus, we can write the recursion as

opt(u, ℓu) = min
Γ

(ρ(v, u, ℓv, ℓu) + opt(v, ℓv)) , (5)

where Γ is a subset of pairs (v, ℓv) within [1, u − 1] ×
[1 . . . L] that satisfy the constraints of the previous section.

To be able to build each valid subset Γ during recursion,

we also maintain a record of the optimal beginnings (the

minimizers of Equation 5):

arg(u, ℓu) = argmin
Γ

(ρ(v, u, ℓv, ℓu) + opt(v, ℓv)) . (6)

This data structure has size N × L × 2. In our nota-

tion, (v, ℓv) = arg(u, ℓu) means that among all possi-

ble sub-profiles defined on interval [1, u] with final seg-

ment shape ℓu, the one with lowest cost (and cost equal to

opt(u, ℓu)) is smooth over interval [v, u] and has a break-

point at v marking a transition to shape ℓv . Using this

data structure, the valid pairs (v, ℓv) comprising Γ can be

specified as those satisfying both the half-occlusion con-

straint, u − k(v, ℓv, ℓu) ≥ K if dℓv (v) > dℓu(v), and

the ordering constraint1: v − x > dℓv (x) − dℓu(v) with

(x, ℓx) = arg(v, ℓv), if dℓv (v) > dℓu(v).
Once the recursion terminates at pixel u = N , we trace

the optimal profile by using the arg data structure to accu-

mulate the profile’s breakpoints and shape-transitions, from

the last breakpoint at pixel N to the first breakpoint at pixel

1Strictly speaking, this is stronger than the ordering constraint (suffi-

cient but not necessary). See [33]

Algorithm 1 Find optimal disparity profile

1: for all ℓ ∈ L do

2: opt(1, ℓ)← C̃(1, ℓ) + λ2

3: arg(1, ℓ)← (1, ℓ)
4: end for

5: for u← 2 to N do

6: for ℓu ← 1 to L do

7: Γ← BUILDVALIDSUBSET(u, ℓu, arg(u, ℓu))
8: opt(u, ℓu)← min

Γ

(ρ(v, u, ℓv , ℓu) + opt(v, ℓv))

9: arg(u, ℓu)← argmin
Γ

(ρ(v, u, ℓv , ℓu) + opt(v, ℓv))

10: end for

11: end for

12: I, u← N ⊲ initialize trace back

13: Θ, ℓu ← argminℓ opt(N, ℓ)
14: while u > 1 do

15: (u, ℓu)← arg(u, ℓu)
16: APPEND(I, u)

17: APPEND(Θ, ℓu)

18: end while

1. Algorithm 1 provides pseudo code. Further details about

the dynamic programming algorithm and constraints can be

found in a supplemental document [33].

6. Experiments

We test the algorithm on perceptual stimuli and some im-

ages from the Middlebury 2001 benchmark [27]. For the

correlation gradient G we use the same nine-tap filter from

Equation 4. Our parameter values are λ1 = 1, λ2 = 1, β =
10,K = 10, and λ1 = 0.1, λ2 = 0.19, β = 40,K = 10 for

perceptual stimuli and natural images, respectively.

6.1. Perceptual Stimuli

We rendered twelve synthetic stereo pairs that have im-

poverished amounts of matching information and/or im-

poverished amounts of monocular boundary information.

Many of these stimuli are modeled after previously pub-

lished work [23, 5, 30, 2, 18] and others we created are vari-

ations of these. The collection can be used to benchmark a

stereo system’s ability to combine correlation and decorre-

lation cues in a perceptually-consistent manner. Each stim-

ulus was rendered in Matlab from a custom-designed three-

dimensional scene, so the “ground truth” disparity is pre-

cisely known. The ground truth also matches the perceptual

outcomes that were reported in the respective publications.

We tested two flavors of our algorithm, one with a

piecewise-constant model (M = 1) and another with a

piecewise-linear one (M = 2). Our results with the

piecewise-constant model are in Figures 1 and 5 and rows

1− 5 of Figure 4; and our results with the piecewise-linear

model are in rows 6 and 7 of Figure 4. In all cases, the dis-

parity space is defined as [dgtmin
− 5, · · · , dgtmax

+5] with

dgt the ground truth disparity. Note that the aspect ratios of

the visualized disparity spaces are not all equal, so that half-

occlusion lines are often visualized with angles that differ
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Planar (Julesz, 1960) [18]

Textured Plane

Textureless Background (Tsirlin et al, 2010) [30]

Textureless Foreground (Tsirlin et al, 2010) [30]
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B
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CA
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Figure 4. Results on perceptual stimuli: (a) Scene and rendered stereo pairs, with scanline of interest marked in red. (b) Ground truth

disparity. A,B,C-type points have elevated correlation gradient magnitudes. (c) Results of some previous stereo methods and of our

method with both piecewise constant (rows 1-5) and piecewise linear (rows 6 & 7) models. The latter avoids the “staircase” effect and

provides high-precision depth information.
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from 45◦. In some cases, we mark boundaries with type A,

B or C in accordance with the earlier discussion.

We find that our algorithm recovers the correct dispar-

ity for every stimulus in Figures 1 and 4. For a qualita-

tive comparison, we applied three modern stereo systems:

MeshStereo [40], CoR Stereo [8] and Libelas [11]. We also

applied a basic scanline method (Baseline DP) that uses dy-

namic programming along a scanline to minimize a block-

matching plus L2-smoothness energy from each of the left

and right viewpoints, and then merges the two disparity pro-

files using the standard left-right consistency check [10].

For visualization purposes, when overlaid on the ground

truth disparity profile, the recovered profiles are each given

a unique, small additive disparity offset to separate them

vertically in Figs. 1 and 4. We see that MeshStereo and Li-

belas seem to do well when there is sufficient correlation

information (rows 1, 2 and 5 of Fig. 4), but they break down

when correlation cues are absent or very weak (Fig. 1).

Figure 5 shows our results on the wallpaper stimuli of

Anderson and Nakayama [2], which we interpret as a failure

case. These are ambiguous stimuli, and human observers

variously perceive the striped wallpaper as being either in

front or behind the surrounding reference plane. Bias for

one percept over the other can be induced by changing the

luminance of the reference [2]: when it is very bright (row

1) the wallpaper is more often perceived as being in front;

and when it is very dark (row 2) the wallpaper tends to be

perceived as being behind. In contrast, we find that our al-

gorithm produces the opposite result, because while there

are strong A,B,C-type boundary signals in both configu-

rations, these signals are stronger for the opposite interpre-

tation. This effect could perhaps be corrected by incorpo-

rating monocular boundary information, which is certainly

used by the humans but has been left out of our model.

Figure 6 studies the piecewise-linear version of our algo-

rithm for different quantizations L of the 2D shape space.

Very fine discretization (L = 5000) allows the dynamic

programming algorithm to recover precise disparity given

sufficient computation time, and due to the use of the mini-

mum operator in Equation 4, we can trade between compu-

tation time and accuracy in a graceful manner. The reported

execution times are from un-optimized Matlab implementa-

tions, and to put them in context, comparable implementa-

tions of the piecewise constant version of our algorithm and

the Baseline DP method using the same number of pixels

and 41 disparity levels run in 3.25s and 0.08s, respectively.

6.2. Natural images

As a sanity check, we also test the piecewise constant

version of our algorithm on scanlines from the Middlebury

2001 benchmark. Some representative results are shown

Figures 7 and 8. Overall, the algorithm produces reason-

able approximations to the true disparity; and as expected,

C

C

A

A

B

B

A

A

B

B

C

C

Figure 5. Failure cases: wallpaper stimuli from Ander-

son/Nakayama [2]. Top row: Light background. Human ob-

servers perceive as a plane in front of randomdot background. Bot-

tom row: Dark background. Human observers perceive as a plane

behind. Red curves are human observations and green curves are

results from our algorithms. All A, B, C points in both explana-

tions have correlation gradients G consistent with our objective.

However, the incorrect explanation has stronger G.

100 Models

 16 seconds

800 Models

22 minutes
5000 Models

15 hours

Figure 6. Accuracy vs. runtime. For piecewise-linear and

higher-order smoothness models, the quantization L of the shape

space can grow large and cause dynamic programming to run

slowly. But when the quantized cost table C̃ is properly defined,

there is a graceful trade-off between execution time and accuracy.

applying the piecewise constant model to a slanted scene

produces a staircase effect (rows 3 and 6 of Figure 7). The

approach tends to perform well in regions where the oc-

cluding and occluded surfaces have distinct textures (rows

1 and 2 of Figure 7) and even better when the half-occluded

surface has some texture, since this produces a stronger cor-

relation gradient at A-type points. Long segments that are

textureless usually also perform well since there are high

correlation gradient costs at these regions (row 3).

When the algorithm breaks down, it is for the reasons

one expects. By design, it fails to recover small seg-

ments that have few mutually visible pixels, are fully half-

occluded, or violate the ordering constraint (row 4). These

are structures that would benefit most from 2D approaches

that can exploit monocular texture and color cues for spa-

tial grouping. Another cause of error is the simplicity of
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Figure 7. Scanline results of natural images. Left column shows

scanline examples and right column shows context for highlighted

region near white dotted box. 1-2: examples of successful cases

where the occluding and occluded region have distinct texture. 3:

segment changes at large textureless regions are avoided by the

decorrelation measurment G. 4: failure caused by limitations of

our scanline algorithm. 5: C̃ is higher at the correct model than

an incorrect one. 6: Repeated texture created by texture along a

particular scanline gives strong G causing additional boundaries,

which can be cleaned up using inter-scanline consistency check.

our correlation cost (absolute intensity differences), which

can cause extended regions to have lower cost for the incor-

rect shape than for the correct shape (row 5). Also, in the

presence of particular textures, the gradient of this simple

correlation measure can be strong at spurious points in dis-

parity space, which are then interpreted as additional depth

discontinuities (row 6).

To provide a sense of the overall performance, Figure 8

shows the depth maps for two scenes in the dataset, Tsukuba

and Venus (ignored boundary 18 pixels). These were cre-

ated by running our algorithm and Baseline DP in each

scanline individually, without any inter-scanline processing.

Overall, our method provides a reasonable interpretation of

the scene, with sharp localization of boundaries. This is in

spite of the fact that it entirely ignores monocular grouping

and boundary cues that are available from texture and color.

7. Conclusion

We propose a scanline stereo objective that combines

matching and half-occlusion cues, and that mimics human
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9.10/50.94

5.49/14.715.99/17.56

12.16/44.97

Figure 8. Results on Venus and Tsukuba. White error numbers

are: (i) percentage of bad pixels (disparity error > 1.5) over the

whole image; and (ii) percentage bad pixels over regions affected

by occlusion, defined as the union of half-occluded pixels and the

Middlebury-defined “boundary” pixels.

perception of stimuli that have weak or absent correlation

cues. The key to our objective is representing disparity (and

thus depth) as a piecewise smooth function with an explicit

set of breakpoints. This allows direct reasoning about half-

occlusions, and also provides reasonable piecewise smooth

interpretations of depth along scanlines in natural images,

with substantial room for improvement by adding monocu-

lar boundary information (which we ignore).

Along a single scanline, the correlation gradient is a

scalar quantity, but it becomes a vector quantity in two di-

mensions. Thus, extending its use to two dimensional stereo

algorithms will require local detectors that measure the cor-

relation gradient at multiple spatial orientations, analogous

to monocular boundary detectors. The extension to two-

dimensions will also require different optimization tech-

niques that can infer piecewise smooth two-dimensional

functions with explicit boundaries and per-segment shape

parameters. Progress is this direction can be found in the

work of Chakrabarti et al. [8], which shows how to in-

fer piecewise smooth two-dimensional functions by passing

sparse messages among image patches at multiple scales.
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