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Abstract

Learning visual representations with self-supervised

learning has become popular in computer vision. The idea

is to design auxiliary tasks where labels are free to obtain.

Most of these tasks end up providing data to learn specific

kinds of invariance useful for recognition. In this paper,

we propose to exploit different self-supervised approaches

to learn representations invariant to (i) inter-instance vari-

ations (two objects in the same class should have similar

features) and (ii) intra-instance variations (viewpoint, pose,

deformations, illumination, etc.). Instead of combining two

approaches with multi-task learning, we argue to organize

and reason the data with multiple variations. Specifically,

we propose to generate a graph with millions of objects

mined from hundreds of thousands of videos. The objects

are connected by two types of edges which correspond to

two types of invariance: “different instances but a simi-

lar viewpoint and category” and “different viewpoints of

the same instance”. By applying simple transitivity on the

graph with these edges, we can obtain pairs of images ex-

hibiting richer visual invariance. We use this data to train

a Triplet-Siamese network with VGG16 as the base archi-

tecture and apply the learned representations to different

recognition tasks. For object detection, we achieve 63.2%
mAP on PASCAL VOC 2007 using Fast R-CNN (compare

to 67.3% with ImageNet pre-training). For the challenging

COCO dataset, our method is surprisingly close (23.5%)

to the ImageNet-supervised counterpart (24.4%) using the

Faster R-CNN framework. We also show that our network

can perform significantly better than the ImageNet network

in the surface normal estimation task.

1. Introduction

Visual invariance is a core issue in learning visual rep-

resentations. Traditional features like SIFT [36] and HOG

[6] are histograms of edges that are to an extent invariant to

illumination, orientations, scales, and translations. Modern

deep representations are capable of learning high-level in-

variance from large-scale data [42] , e.g., viewpoint, pose,

deformation, and semantics. These can also be transferred
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Figure 1: We propose to obtain rich invariance by apply-

ing simple transitive relations. In this example, two differ-

ent cars A and B are linked by the features that are good

for inter-instance invariance (e.g., using [9]); and each car

is linked to another view (A0 and B0) by visual tracking

[56]. Then we can obtain new invariance from object pairs

hA,B0i, hA0, Bi, and hA0, B0i via transitivity. We show

more examples in the bottom.

to complicated visual recognition tasks [17, 35].

In the scheme of supervised learning, human annotations

that map a variety of examples into a single label provide

supervision for learning invariant representations. For ex-

ample, two horses with different illumination, poses, and

breeds are invariantly annotated as a category of “horse”.

Such human knowledge on invariance is expected to be

learned by capable deep neural networks [30, 27] through

11329



carefully annotated data. However, large-scale, high-quality

annotations come at a cost of expensive human effort.

Unsupervised or “self-supervised” learning (e.g., [56, 9,

40, 57, 58, 32, 39]) recently has attracted increasing inter-

ests because the “labels” are free to obtain. Unlike super-

vised learning that learns invariance from the semantic la-

bels, the self-supervised learning scheme mines it from the

nature of the data. We observe that most self-supervised

approaches learn representations that are invariant to: (i)

inter-instance variations, which reflects the commonality

among different instances. For example, relative positions

of patches [9] (see also Figure 3) or channels of colors

[57, 58] can be predicted through the commonality shared

by many object instances; (ii) intra-instance variations.

Intra-instance invariance is learned from the pose, view-

point, and illumination changes by tracking a single mov-

ing instance in videos [56, 39]. However, either source of

invariance can be as rich as that provided by human annota-

tions on large-scale datasets like ImageNet.

Even after significant advances in the field of self-

supervised learning, there is still a long way to go compared

to supervised learning. What should be the next steps? It

seems that an obvious way is to obtain multiple sources

of invariance by combining multiple self-supervised tasks,

e.g., via multiple losses. Unfortunately, this naı̈ve solution

turns out to give little improvement (as we will show by

experiments).

We argue that the trick lies not in the tasks but in the way

of exploiting data. To leverage both intra-instance and inter-

instance invariance, in this paper we construct a huge affin-

ity graph consisting of two types of edges (see Figure 1):

the first type of edges relates “different instances of similar

viewpoints/poses and potentially the same category”, and

the second type of edges relates “different viewpoints/poses

of an identical instance”. We instantiate the first type of

edges by learning commonalities across instances via the

approach of [9], and the second type by unsupervised track-

ing of objects in videos [56]. We set up simple transitive re-

lations on this graph to infer more complex invariance from

the data, which are then used to train a Triplet-Siamese net-

work for learning visual representations.

Experiments show that our representations learned with-

out any annotations can be well transferred to the object

detection task. Specifically, we achieve 63.2% mAP with

VGG16 [45] when fine-tuning Fast R-CNN on VOC2007,

against the ImageNet pre-training baseline of 67.3%. More

importantly, we also report the first-ever result of un-/self-

supervised pre-training models fine-tuned on the challeng-

ing COCO object detection dataset [34], achieving 23.5%
AP comparing against 24.4% AP that is fine-tuned from an

ImageNet pre-trained counterpart (both using VGG16). To

our knowledge, this is the closest accuracy to the ImageNet

pre-training counterpart obtained on object detection tasks.

2. Related Work

Unsupervised learning of visual representations is a re-

search area of particular interest. Approaches to unsuper-

vised learning can be roughly categorized into two main

streams: (i) generative models, and (ii) self-supervised

learning. Earlier methods for generative models include

Anto-Encoders [38, 51, 31, 29] and Restricted Boltzmann

Machines (RBMs) [23, 4, 49, 12]. For example, Le et

al. [29] trained a multi-layer auto-encoder on a large-scale

dataset of YouTube videos: although no label is provided,

some neurons in high-level layers can recognize cats and

human faces. Recent generative models such as Generative

Adversarial Networks [20] and Variational Auto-Encoders

[26] are capable of generating more realistic images. The

generated examples or the neural networks that learn to gen-

erate examples can be exploited to learn representations of

data [11, 10].

Self-supervised learning is another popular stream for

learning invariant features. Visual invariance can be cap-

tured by the same instance/scene taken in a sequence of

video frames [56, 48, 25, 1, 37, 52, 32, 39]. For example,

Wang and Gupta [56] leverage tracking of objects in videos

to learn visual invariance within individual objects; Jayara-

man and Grauman [25] train a Siamese network to model

the ego-motion between two frames in a scene; Mathieu et

al. [37] propose to learn representations by predicting fu-

ture frames; Pathak et al. [39] train a network to segment

the foreground objects where are acquired via motion cues.

On the other hand, common characteristics of different ob-

ject instances can also be mined from data [9, 57, 58]. For

example, relative positions of image patches [9] may reflect

feasible spatial layouts of objects; possible colors can be in-

ferred [57, 58] if the networks can relate colors to object ap-

pearances. Rather than rely on temporal changes in video,

these methods are able to exploit still images.

Our work is also closely related to mid-level patch clus-

tering [46, 7, 8] and unsupervised discovery of semantic

classes [43, 47] as we attempt to find reliable clusters in

our affinity graph. In addition, the ranking function used in

this paper is related to deep metric learning with Siamese

architectures [5, 21, 19, 54, 24].

Analysis of the two types of invariance. Our generic

framework can be instantiated by any two self-supervised

methods that can respectively learn inter-/intra-instance in-

variance. In this paper we adopt Doersch et al.’s [9] con-

text prediction method to build inter-instance invariance,

and Wang and Gupta’s [56] tracking method to build intra-

instance invariance. We analyze their behaviors as follows.

The context prediction task in [9] randomly samples a

patch (blue in Figure 3) and one of its eight neighbors (red),

and trains the network to predict their relative position, de-

fined as an 8-way classification problem. In the first two
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Figure 2: Illustrations for our graph construction. We

first cluster the object nodes into coarser clusters (namely

“parent” clusters) and then inside each cluster we perform

nearest-neighbor search to obtain “child” clusters consist-

ing of 4 samples. Samples in each child cluster are linked

to each other with the “inter-instance” edges. We add new

samples via visual tracking and link them to the original

objects by “intra-instance” edges.

examples in Figure 3, the context prediction model is able

to predict that the “leg” patch is below the “face” patch of

the cat, indicating that the model has learned some com-

monality of spatial layout from the training data. However,

the model would fail if the pose, viewpoint, or deforma-

tion of the object is changed drastically, e.g., in the third

example of Figure 3 — unless the dataset is diversified and

large enough to include gradually changing poses, it is hard

for the models to learn that the changed pose can be of the

same object type.

On the other hand, these changes can be more success-

fully captured by the visual tracking method presented in

[56], e.g., see hA,A0i and hB,B0i in Figure 1. But by

tracking an identical instance we cannot associate different

instances of the same semantics. Thus we expect the rep-

resentations learned in [56] are weak in handling the varia-

tions between different objects in the same category.

3. Overview

Our goal is to learn visual representations which cap-

ture: (i) inter-instance invariance (e.g., two instances of cats

should have similar features), and (ii) intra-instance invari-

ance (pose, viewpoint, deformation, illumination, and other

variance of the same object instance). We have tried to for-

mulate this as a multi-task (multi-loss) learning problem in

our initial experiments (detailed in Table 2 and 3) and ob-

served unsatisfactory performance. Instead of doing so, we

propose to obtain a richer set of invariance by performing

transitive reasoning on the data.

Our first step is to construct a graph that describes the

affinity among image patches. A node in the graph denotes

an image patch. We define two types of edges in the graph
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Figure 3: The context prediction task defined in [9]. Given

two patches in an image, it learns to predict the relative po-

sition between them.

that relate image patches to each other. The first type of

edges, called inter-instance edges, link two nodes which

correspond to different object instances of similar visual ap-

pearance; the second type of edges, called intra-instance

edges, link two nodes which correspond to an identical ob-

ject captured at different time steps of a track. The solid

arrows in Figure 1 illustrate these two types of edges.

Given the built graph, we want to transit the relations via

the known edges and associate unconnected nodes that may

provide under-explored invariance (Figure 1, dash arrows).

Specifically, as shown in Figure 1, if patches hA,Bi are

linked via an inter-instance edge and hA,A0i and hB,B0i
respectively are linked via “intra-instance” edges, we hope

to enrich the invariance by simple transitivity and relate

three new pairs of: hA0, B0i, hA,B0i, and hA0, Bi (Figure 1,

dash arrows).

We train a Triplet-Siamese network that encourages sim-

ilar visual representations between the invariant samples

(e.g., any pair consisting of A,A0, B,B0) and at the same

time discourages similar visual representations to a third

distractor sample (e.g., a random sample C unconnected

to A,A0, B,B0). In all of our experiments, we apply

VGG16 [45] as the backbone architecture for each branch

of this Triplet-Siamese network. The visual representations

learned by this backbone architecture are evaluated on other

recognition tasks.

4. Graph Construction

We construct a graph with inter-instance and intra-

instance edges. Firstly, we apply the method of [56] on

a large set of 100K unlabeled videos (introduced in [56])

and mine millions of moving objects using motion cues

(Sec. 4.1). We use the image patches of them to construct

the nodes of the graph.

We instantiate inter-instance edges by the self-

supervised method of [9] that learns context predictions on

a large set of still images, which provide features to cluster

the nodes and set up inter-instance edges (Sec. 4.2). On the

other hand, we connect the image patches in the same visual

track by intra-instance edges (Sec. 4.3).
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Figure 4: Some example clustering results. Each row shows

the 4 examples in a child cluster (Sec. 4.2).

4.1. Mining Moving Objects

We follow the approach in [56] to find the moving ob-

jects in videos. As a brief introduction, this method first ap-

plies Improved Dense Trajectories (IDT) [53] on videos to

extract SURF [2] feature points and their motion. The video

frames are then pruned if there is too much motion (indicat-

ing camera motion) or too little motion (e.g., noisy signals).

For the remaining frames, it crop a 227⇥227 bounding box

(from ⇠600⇥400 images) which includes the most number

of moving points as the foreground object. However, for

computational efficiency, in this paper we rescale the image

patches to 96⇥96 after cropping and we use them as inputs

for clustering and training.

4.2. Inter-instance Edges via Clustering

Given the extracted image patches which act as nodes,

we want to link them with extra inter-instance edges. We

rely on the visual representations learned from [9] to do this.

We connect the nodes representing image patches which are

close in the feature space. In addition, motivated by the

mid-level clustering approaches [46, 7], we want to obtain

millions of object clusters with a small number of objects in

each to maintain high “purity” of the clusters. We describe

the implementation details of this step as follows.

We extract the pool5 features of the VGG16 network

trained as in [9]. Following [9], we use ImageNet without

labels to train this network. Note that because we use a

patch size of 96⇥96, the dimension of our pool5 feature

is 3⇥3⇥512=4608. The distance between samples is cal-

culated by the cosine distance of these features. We want

the object patches in each cluster to be close to each other

in the feature space, and we care less about the differences

between clusters. However, directly clustering millions of

image patches into millions of small clusters (e.g., by K-

means) is time consuming. So we apply a hierarchical clus-

tering approach (2-stage in this paper) where we first group

the images into a relatively small number of clusters, and

then find groups of small number of examples inside each

cluster via nearest-neighbor search.

Specifically, in the first stage of clustering, we apply K-

means clustering with K = 5000 on the image patches. We

then remove the clusters with number of examples less than

100 (this reduces K to 546 in our experiments on the im-

age patches mined from the video dataset). We view these

clusters as the “parent” clusters (blue circles in Figure 2).

Then in the second stage of clustering, inside each parent

cluster, we perform nearest-neighbor search for each sam-

ple and obtain its top 10 nearest neighbors in the feature

space. We then find any group of samples with a group size

of 4, inside which all the samples are each other’s top-10

nearest neighbors. We call these small clusters with 4 sam-

ples “child” clusters (green circles in Figure 2). We then

link these image patches with each other inside a child clus-

ter via “inter-instance” edges. Note that different child clus-

ters may overlap, i.e., we allow the same sample to appear

in different groups. However, in our experiments we find

that most samples appear only in one group. We show some

results of clustering in Figure 4.

4.3. Intra-instance Edges via Tracking

To obtain rich variations of viewpoint and deformation

changes of the same object instance, we apply visual track-

ing on the mined moving objects in the videos as in [56].

More specifically, given a moving object in the video, it ap-

plies KCF [22] to track the object for N = 30 frames and

obtain another sample of the object in the end of the track.

Note that the KCF tracker does not require any human su-

pervision. We add these new objects as nodes to the graph

and link the two samples in the same track with an intra-

instance edge (purple in Figure 2).

5. Learning with Transitions in the Graph

With the graph constructed, we want to link more image

patches (see dotted links in Figure 1) which may be related

via the transitivity of invariance. Objects subject to differ-

ent levels of invariance can thus be related to each other.

Specifically, if we have a set of nodes {A,B,A0, B0} where

hA,Bi are connected by an inter-instance edge and hA,A0i
and hB,B0i are connected by an intra-instance edge, by as-

suming transitivity of invariance we expect the new pairs of

hA,B0i, hA0, Bi, and hA0, B0i to share similar high-level

visual representations. Some examples are illustrated in

Figure 1 and 5.

We train a deep neural network (VGG16) to gener-

ates similar visual representations if the image patches are

linked by inter-instance/intra-instance edges or their transi-

tivity (which we call a positive pair of samples). To avoid a
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Figure 5: Examples used for training the network. Each

column shows a set of image patches {A,B,A0, B0}. Here,

A and B is linked by an inter-instance edge, and A0/B0 is

linked to A/B via intra-instance edges.
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Figure 6: Our Triplet-Siamese network. We can feed in the

network with different combinations of examples.

trivial solution of identical representations, we also encour-

age the network to generate dissimilar representations if a

node is expected to be unrelated. Specifically, we constrain

the image patches from different “parent” clusters (which

are more likely to have different categories) to have differ-

ent representations (which we call a negative pair of sam-

ples). We design a Triplet-Siamese network with a ranking

loss function [54, 56] such that the distance between related

samples should be smaller than the distance of unrelated

samples.

Our Triplet-Siamese network includes three towers of

a ConvNet with shared weights (Figure 6). For each

tower, we adopt the standard VGG16 architecture [45] to

the convolutional layers, after which we add two fully-

connected layers with 4096-d and 1024-d outputs. The

Triplet-Siamese network accepts a triplet sample as its in-

put: the first two image patches in the triplet are a positive

pair, and the last two are a negative pair. We extract their

1024-d features and calculate the ranking loss as follows.

Given an arbitrary pair of image patches A and B, we de-

fine their distance as: D(A,B) = 1− F (A)·F (B)
kF (A)kkF (B)k where

F (·) is the representation mapping of the network. With a

triplet of (X,X+, X−) where (X,X+) is a positive pair

and (X,X−) is a negative pair as defined above, we mini-

mize the ranking loss:

L(X,X+, X−) = max{0,D(X,X+)−D(X,X−)+m},

where m is a margin set as 0.5 in our experiments. Al-

though we have only one objective function, we have dif-

ferent types of training examples. As illustrated in Figure

6, given the set of related samples {A,B,A0, B0} (see Fig-

ure 5) and a random distractor sample C from another par-

ent cluster, we can train the network to handle, e.g., view-

point invariance for the same instance via L(A,A0, C) and

invariance to different objects sharing the same semantics

via L(A,B0, C).
Besides exploring these relations, we have also tried to

enforce the distance between different objects to be larger

than the distance between two different viewpoints of the

same object, e.g., D(A,A0) < D(A,B0). But we have not

found this extra relation brings any improvement. Inter-

estingly, we found that the representations learned by our

method can in general satisfy D(A,A0) < D(A,B0) after

training.

6. Experiments

We perform extensive analysis on our self-supervised

representations. We first evaluate our ConvNet as a fea-

ture extractor on different tasks without fine-tuning . We

then show the results of transferring the representations to

vision tasks including object detection and surface normal

estimation with fine-tuning.

Implementation Details. To prepare the data for train-

ing, we download the 100K videos from YouTube using the

URLs provided by [33, 56]. By mining the moving objects

and tracking in the videos, we obtain ⇠10 million image

patches of objects. By applying the transitivity on the graph

constructed, we obtain 7 million positive pairs of objects

where each pair of objects are two different instances with

different viewpoints. We also randomly sample 2 million

object pairs connected by the intra-instance edges.

We train our network with these 9 million pairs of images

using a learning rate of 0.001 and a mini-batch size of 100.

For each pair we sample the third distractor patch from a

different “parent cluster” in the same mini-batch. We use

the network pre-trained in [9] to initialize our convolutional

layers and randomly initialized the fully connected layers.

We train the network for 200K iterations with our method.

6.1. Qualitative Results without Fine-tuning

We first perform nearest-neighbor search to show qual-

itative results. We adopt the pool5 feature of the VGG16
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Query (a) Context Prediction Network (b) Our Network (c) ImageNet Pre-trained Network

Figure 7: Nearest-neighbor search on the PASCAL VOC dataset. We extract three types of features: (a) context prediction

network from [9], (b) network trained with our self-supervised method, and (c) the network pre-trained in the annotated

ImageNet dataset. We show that our network can represent a greater variety (e.g., viewpoints) of objects of the same category.

Figure 8: Top 6 responses for neurons in 4 different convo-

lutional units of our network, visualized using [59].

network for all methods without any fine-tuning (Figure 7).

We do this experiment on the object instances cropped from

the PASCAL VOC 2007 dataset [13] (trainval). As Fig-

ure 7 shows, given an query image on the left, the network

pre-trained with the context prediction task [9] can retrieve

objects of very similar viewpoints. On the other hand, our

network shows more variations of objects and can often re-

trieve objects with the same class as the query. We also

show the nearest-neighbor results using fully-supervised

ImageNet pre-trained features as a comparison.

We also visualize the features using the visualization

technique of [59]. For each convolutional unit in conv5 3,

we retrieve the objects which give highest activation re-

sponses and highlight the receptive fields on the images. We

visualize the top 6 images for 4 different convolutional units

in Figure 8. We can see these convolutional units are cor-

responding to different semantic object parts (e.g., fronts of

cars or buses wheels, animal legs, eyes or faces).

6.2. Analysis on Object Detection

We evaluate how well our representations can be trans-

ferred to object detection by fine-tuning Fast R-CNN

[16] on PASCAL VOC 2007 [13]. We use the standard

trainval set for training and test set for testing with

VGG16 as the base architecture. For the detection network,

we initialize the weights of convolutional layers from our

self-supervised network and randomly initialize the fully-

connected layers using Gaussian noise with zero mean and

0.001 standard deviation.

During fine-tuning Fast R-CNN, we use 0.00025 as the

starting learning rate. We reduce the learning rate by 1/10

in every 50K iterations. We fine-tune the network for 150K

iterations. Unlike standard Fast R-CNN where the first few

convolutional layers of the ImageNet pre-trained network

are fixed, we fine-tuned all layers on the PASCAL data as

our model is pre-trained in a very different domain (e.g.,

video patches).

We report the results in Table 1. If we train Fast R-

CNN from scratch without any pre-training, we can only

obtain 39.7% mAP. With our self-supervised trained net-

work as initialization, the detection mAP is increased to

63.2% (with a 23.5 points improvement). Our result com-

pares competitively (4.1 points lower) to the counterpart us-

ing ImageNet pre-training (67.3% with VGG16).

As we incorporate the invariance captured from [56] and

[9], we also evaluate the results using these two approaches

individually (Table 1). By fine-tuning the context predic-

tion network of [9], we can obtain 61.5% mAP. To train

the network of [56], we use exactly the same loss function

and initialization as our approach except that there are only

training examples of the same instance in the same visual

track (i.e., only the samples linked by intra-instance edges

in our graph). Its results is 60.2% mAP. Our result (63.2%)
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method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

from scratch 39.7 51.7 55.8 21.7 24.0 10.5 58.7 59.2 41.1 18.2 32.9 35.6 33.4 60.4 57.3 45.5 19.7 29.2 30.8 61.0 47.3

Vid-Edge [32] 44.2 54.4 58.2 39.6 30.8 12.5 58.7 61.9 51.0 22.0 41.4 47.4 41.5 63.2 58.4 47.5 17.2 27.6 45.4 59.8 45.4

Context [9] 61.5 70.8 72.1 54.7 49.7 31.0 72.3 76.9 70.8 44.6 61.1 59.8 67.0 74.6 72.5 68.3 29.4 58.5 66.9 75.1 54.3

Tracking [56] 60.2 65.7 73.2 55.4 46.4 30.9 74.0 76.9 67.8 40.9 58.0 60.9 65.0 74.1 71.6 67.1 31.5 55.0 61.8 73.9 53.8

Ours 63.2 68.4 74.6 57.1 49.6 34.1 73.5 76.9 73.2 45.8 63.3 66.3 68.6 74.9 74.2 69.5 31.9 57.4 70.3 75.9 59.3

ImageNet 67.3 74.4 78.0 65.9 54.4 39.7 76.4 78.6 82.5 48.6 73.3 67.2 78.4 77.3 75.7 72.2 32.2 65.8 66.8 75.2 62.4

Table 1: Object detection Average Precision (%) on the VOC 2007 test set using Fast R-CNN [16] (with selective search proposals [50]):

comparisons among different self-supervised learning approaches.

method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

Ours 63.2 68.4 74.6 57.1 49.6 34.1 73.5 76.9 73.2 45.8 63.3 66.3 68.6 74.9 74.2 69.5 31.9 57.4 70.3 75.9 59.3

Multi-Task 62.1 70.0 74.2 57.2 48.4 33.0 73.6 77.6 70.7 45.0 61.5 64.8 67.2 74.0 72.9 68.3 32.4 56.6 64.1 74.1 57.5

Ours (15-frame) 61.5 70.3 74.1 53.3 47.1 33.5 74.6 77.1 67.7 43.3 58.1 65.5 65.8 75.2 72.2 67.6 31.6 55.5 65.6 74.6 57.2

Ours (HOG) 60.4 65.8 73.4 54.7 47.7 30.2 75.6 77.1 67.6 42.0 58.8 63.2 65.3 74.1 72.0 67.2 29.9 54.4 62.1 72.9 53.9

Table 2: More ablative studies on object detection on the VOC 2007 test set using Fast R-CNN [16] (with selective search proposals [50]).

is better than both methods. This comparison indicates the

effectiveness of exploiting a greater variety of invariance in

representation learning.

Is multi-task learning sufficient? An alternative way of

obtaining both intra- and inter-instance invariance is to ap-

ply multi-task learning with the two losses of [9] and [56].

Next we compare with this method.

For the task in [56], we use the same network architec-

ture as our approach; for the task in [9], we follow their

design of a Siamese network. We apply different fully con-

nected layers for different tasks, but share the convolutional

layers between these two tasks. Given a mini-batch of train-

ing samples, we perform ranking among these images as

well as context prediction in each image simultaneously via

two losses. The representations learned in this way, when

fine-tuned with Fast R-CNN, obtain 62.1% mAP (“Multi-

task” in Table 2). Comparing to only using context pre-

diction [9] (61.5%), the multi-task learning only gives a

marginal improvement (0.6%). This result suggests that

multi-task learning in this way is not sufficient; organiz-

ing and exploiting the relationships of data, as done by our

method, is more effective for representation learning.

How important is tracking? To further understand how

much visual tracking helps, we perform ablative analysis

by making the visual tracks shorter: we track the mov-

ing objects for 15 frames instead of by default 30 frames.

This is expected to reduce the viewpoint/pose/deformation

variance contributed by tracking. Our model pre-trained

in this way shows 61.5% mAP (“15-frame” in Table 2)

when fine-tuned for detection. This number is similar to

that of using context prediction only (Table 1). This re-

sult is not surprising, because it does not add much new

information for training. It suggests adding stronger view-

point/pose/deformation invariance is important for learning

All >c1 >c2 >c3 >c4 >c5

Context [9] 62.6 61.1 60.9 57.0 49.7 38.1

Tracking [56] 62.2 61.5 62.2 61.4 58.9 39.5

Multi-Task [9, 56] 62.4 63.2 63.5 62.9 58.7 27.6

Ours 65.0 64.5 63.6 60.4 55.7 43.1

ImageNet 70.9 71.1 71.1 70.2 70.3 64.3

Table 3: Object detection Average Precision (%) on the VOC

2007 test set using joint training Faster R-CNN [41].

better features for object detection.

How important is clustering? Furthermore, we want to

understand how important it is to cluster images with fea-

tures learned from still images [9]. We perform another ab-

lative analysis by replacing the features of [9] with HOG

[6] during clustering. The rest of the pipeline remains ex-

actly the same. The final result is 60.4% mAP (“HOG” in

Table 2). This shows that if the features for clustering are

not invariant enough to handle different object instances, the

transitivity in the graph becomes less reliable.

6.3. Object Detection with Faster R-CNN

Although Fast R-CNN [16] has been a popular testbed

of un-/self-supervised features, it relies on Selective Search

proposals [50] and thus is not fully end-to-end. We fur-

ther evaluate the representations on object detection with

the end-to-end Faster R-CNN [41] where the Region Pro-

posal Network (RPN) may suffer from the features if they

are low-quality.

PASCAL VOC 2007 Results. We fine-tune Faster R-

CNN in 8 GPUs for 35K iterations with an initial learn-

ing rate of 0.00025 which is reduced by 1/10 after every

15K iterations. Table 3 shows the results of fine-tuning all
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AP AP50 AP75 APS APM APL

from scratch 20.5 40.1 19.0 5.6 22.5 32.7

Context [9] 22.7 43.5 21.2 6.6 24.9 36.5

Tracking [56] 22.6 42.8 21.6 6.3 25.0 36.2

Multi-Task [9, 56] 22.0 42.3 21.1 6.6 24.5 35.0

Ours 23.5 44.4 22.6 7.1 25.9 37.3

ImageNet (shorter) 23.7 44.5 23.5 7.2 26.9 37.4

ImageNet 24.4 46.4 23.1 7.9 27.4 38.1

Table 4: Object detection Average Precision (%, COCO def-

initions) on COCO minival using joint training Faster R-CNN

[41]. “(shorter)” indicates a shorter training time (fewer iterations,

61.25K) used by the codebase of [41].

layers (“All”) and also ablative results on freezing different

levels of convolutional layers (e.g., the column >c3 repre-

sents freezing all the layers below and including conv3 x in

VGG16 during fine-tuning). Our method gets even better

results of 65.0% by using Faster R-CNN, showing a larger

gap compared to the counterparts of [9] (62.6%) and [56]

(62.2%). Noteworthily, when freezing all the convolutional

layers and only fine-tuning the fully-connected layers, our

method (43.1%) is much better than other competitors. And

we again find that the multi-task alternative does not work

well for Faster R-CNN.

COCO Results. We further report results on the chal-

lenging COCO detection dataset [34]. To the best of our

knowledge this is the first work of this kind presented on

COCO detection. We fine-tune Faster R-CNN in 8 GPUs

for 120K iterations with an initial learning rate of 0.001
which is reduced by 1/10 after 80k iterations. This is trained

on the COCO trainval35k split and evaluated on the

minival5k split, introduced by [3].

We report the COCO results on Table 4. Faster R-CNN

fine-tuned with our self-supervised network obtains 23.5%
AP using the COCO metric, which is very close (<1%) to

fine-tuning Faster R-CNN with the ImageNet pre-trained

counterpart (24.4%). Actually, if the fine-tuning of the Ima-

geNet counterpart follows the “shorter” schedule in the pub-

lic code (61.25K iterations in 8 GPUs, converted from 490K

in 1 GPU)1, the ImageNet supervised pre-training version

has 23.7% AP and is comparable with ours. This compari-

son also strengthens the significance of our result.

To the best of our knowledge, our model achieves the

best performance reported to date on VOC 2007 and COCO

using un-/self-supervised pre-training.

6.4. Adapting to Surface Normal Estimation

To show the generalization ability of our self-supervised

representations, we adopt the learned network to the sur-

face normal estimation task. In this task, given a single

1https://github.com/rbgirshick/py-faster-rcnn

Mean Median 11.25
◦

22.5
◦

30
◦

(lower is better) (higher is better)

from scratch 31.3 25.3 24.2 45.6 56.8

Context [9] 29.0 21.6 28.8 51.5 61.9

Tracking [56] 27.8 21.8 27.4 51.1 62.5

Ours 26.0 18.0 33.9 57.6 67.5

ImageNet 27.8 21.2 29.0 52.3 63.4

Table 5: Results on NYU v2 for per-pixel surface normal

estimation, evaluated over valid pixels.

RGB image as input, we train the network to predict the

normal/orientation of the pixels. We evaluate our method

on the NYUv2 RGBD dataset [44] dataset. We use the of-

ficial split of 795 images for training and 654 images for

testing. We follow the same protocols for generating sur-

face normal ground truth and evaluations as [14, 28, 15].

To train the network for surface normal estimation, we

apply the Fully Convolutional Network (FCN 32-s) pro-

posed in [35] with the VGG16 network as base architecture.

For the loss function, we follow the design in [55]. Specif-

ically, instead of direct regression to obtain the normal, we

use a codebook of 40 codewords to encode the 3-dimension

normals. Each codeword represents one class thus we turn

the problem into a 40-class classification for each pixel. We

use the same hyperparameters as in [35] for training and the

network is fine-tuned for same number of iterations (100K)

for different initializations.

To initialize the FCN model with self-supervised nets,

we copy the weights of the convolutional layers to the cor-

responding layers in FCN. For ImageNet pre-trained net-

work, we follow [35] by converting the fully connected lay-

ers to convolutional layers and copy all the weights. For the

model trained from scratch, we randomly initialize all the

layers with “Xavier” initialization [18] .

Table 5 shows the results. We report mean and median

error for all visible pixels (in degrees) and also the percent-

age of pixels with error less than 11.25, 22.5 and 30 de-

grees. Surprisingly, we obtain much better results with our

self-supervised trained network than ImageNet pre-training

in this task (3 to 4% better in most metrics). As a com-

parison, the network trained in [9, 56] are slightly worse

than the ImageNet pre-trained network. These results sug-

gest that our learned representations are competitive to Ima-

geNet pre-training for high-level semantic tasks, but outper-

forms it on tasks such as surface normal estimation. This

experiment suggests that different visual tasks may prefer

different levels of visual invariance.
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