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Abstract

Videos taken in the wild sometimes contain unexpected

rain streaks, which brings difficulty in subsequent video pro-

cessing tasks. Rain streak removal in a video (RSRV) is

thus an important issue and has been attracting much at-

tention in computer vision. Different from previous RSRV

methods formulating rain streaks as a deterministic mes-

sage, this work first encodes the rains in a stochastic man-

ner, i.e., a patch-based mixture of Gaussians. Such modifi-

cation makes the proposed model capable of finely adapting

a wider range of rain variations instead of certain types of

rain configurations as traditional. By integrating with the

spatiotemporal smoothness configuration of moving objects

and low-rank structure of background scene, we propose a

concise model for RSRV, containing one likelihood term im-

posed on the rain streak layer and two prior terms on the

moving object and background scene layers of the video.

Experiments implemented on videos with synthetic and real

rains verify the superiority of the proposed method, as com-

pared with the state-of-the-art methods, both visually and

quantitatively in various performance metrics.

1. Introduction

Videos captured by outdoor surveillance equipments or

cameras sometimes contain rain streaks. Such unexpected

corruption may degrade performance of subsequent video

processing tasks, like feature detection, stereo correspon-

dence [14], object tracking, segmentation and recognition

[25]. Rain streak removal from a video (RSRV) has thus be-

come an important task in recent computer vision research.

Since firstly raised by Garg et al. [12], multiple methods

have been proposed for this task and attained good rain re-

moving performance in videos with different rain circum-

stances. Most of these methods need to specify certain

physical characteristics of rain streaks, e.g., photometric ap-

pearance [13], chromatic consistency [20], spatiotemporal

∗Deyu Meng is the corresponding author.

Figure 1. An input video (left) is separated into three layers of

background scene, rain streaks and moving object (middle) by the

P-MoG method. The rain streak layer contains three 4 × 4 patch-

based Gaussian components (right), whose covariance matrices

(16× 16) are shown correspondingly in the righthand. Alongside

each covariance matrix, we show 16 4× 4 patches wrapped by all

columns of it. Each patch visualizes the correlation map between

one patch position to all others. One can see evident correlations

among patch pixels in the lower component, complying with rain

drops with block shapes, less while evident oriented correlations

in the middle component, corresponding to rain streaks with thin-

ner line shapes, and very weak correlations among patch pixels in

the upper component, representing scattered light rain grains and

random camera noise.

configurations [29] and local structure correlations [8], and

design certain techniques for quantitatively encoding these

prior rain knowledge to facilitate a proper separation of rain

streaks from the video background. Some latest method

along this line achieved state-of-the-art performance, by

pre-training a classifier with some auxiliary annotated sam-

ples with/without rains and extracting discriminative struc-

tures for differentiating rain parts from no-rain ones [17].

However, there are still limitations existing in current

RSRV methods. Firstly, most current methods assume rain

streaks as deterministic information with specific structures

or discriminative features. In practice, however, the rain

streaks are always with a large variation across different

videos taken under diverse scenarios and circumstances,
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which makes it hardly be generally represented by specific

prior structures manually designed by intuition or fixed de-

tectors trained on subjectively corrected pre-annotated sam-

ples. Secondly, while a video with rain streaks can be

approximately decomposed into three layers: rain streaks,

moving objects and background scene, as depicted in Fig. 1,

current methods have not fully taken advantage of the use-

ful prior structures of the latter two layers (e.g., spatiotem-

poral smoothness for moving objects and low-rankness for

background scene) to facilitate a complementary function

on rain layer extraction. Thirdly, albeit achieving state-of-

the-art performance, the RSRV methods by using discrimi-

native features underlying rain streaks require to pre-collect

a set of annotated samples. This on one hand takes extra hu-

man labor cost, and on the other hand might possibly bring

bias to the obtained rain streak removal classifier, which

tends to overfit to certain rain types contained in the pre-

trained set while not performing well on more diverse rain

shapes in practical videos.

To alleviate these issues, we propose a new RSRV

method in this work. Different from current methods as-

suming rain streaks as deterministic knowledge, the pro-

posed method formulates rain as a stochastic one, i.e., a

patch-based mixture of Gaussians (P-MoG) distribution.

Albeit simple, this formulation can appropriately represent

a general peculiarity of rain streaks. As depicted in Fig.

1, the extracted three Gaussians from the video with rain

streaks on 4 × 4 patches finely comply with rain drops

with block shapes (with evident correlations among patch

pixels, see right lower panel of Fig. 1), rain streaks with

thinner line shapes, and scattered light rain grains (with

weak correlations among patch pixels, see right upper panel

of Fig. 1). This formulation forms the likelihood/loss

term in the presented model. Besides, to fully employ

the helpful structures of moving objects and background

scene in a video, we encode their priors as 3DTV and low-

rankness forms, respectively, which are formulated as the

prior/regularization terms in our model. In this manner, the

finally designed model is with a surprisingly concise form

(Eq. (8)), while can perform better beyond state-of-the-art.

Specifically, the main contributions of this work are:

• Instead of deterministic as traditional, this work firstly

assumes rain streaks in a video as stochastic, specif-

ically, distributed as a patch-based mixture of Gaus-

sians. Such easy expression can always finely repre-

sent diverse rain streak configurations in a video, and

thus is of a good generalization capability.

• This work firstly fully encodes different characteristics

of three layers, including rain streaks (one likelihood

term), moving objects and background scene (two reg-

ularization terms), in a video, and integrates them into

one concise model for the RSRV task. Through solv-

ing this model, different layers can be well comple-

mented between each other to simultaneously get a fine

output of rain streak extraction and rain-free video re-

covery, as clearly depicted in Fig. 6 and 7.

• We design an EM algorithm to solve the proposed

model. All involved parameters can be readily solved

in closed-form or by directly employing off-the-shelf

efficient toolkits. Experiments implemented on a se-

ries of synthetic and real videos with rain streaks verify

the superiority of the proposed method beyond state-

of-the-art, without need to use any extra information

other than the input video.

The remainder of the paper is organized as follows. Sec-

tion 2 discusses the related work. Section 3 presents the

P-MoG model and related EM algorithm. Section 4 shows

the experimental results and finally we make a conclusion

in Section 5.

2. Related work

2.1. Methods on rain removal in a video

Garg and Nayar first studied the photometric appearance

of rain drops [12] and developed a comprehensive rain de-

tection method for videos with respect to the dynamic mo-

tion of rain drops with irradiance constraint. The method as-

sumes linear space-time correlation implying that rain fol-

lows straight route in a steady rate. The method is theoret-

ically sound but might yield poor results when rain drops

are of different scales and layered due to their different

distances to the camera. Against camera-taken rainy im-

ages/videos, Garg and Nayar [13, 14] further presented a

method to reduce or enhance rain drop before camera shots

by altering camera settings such as field depth and exposure

time. However, this algorithm runs at the expense of image

quality deduction and has trouble handling heavy rain since

rain drop sizes may be with large diversity.

Afterwards, more physical intrinsic properties of rain

streaks have been explored and formulated in algorithm de-

signing. For example, Zhang et al. [36] constructed a rain

streak removal method by exploiting temporal and chro-

matic properties of rain and utilizing k-means clustering to

differentiate rain and background, and combined chromatic

constraint to exclude moving objects. Later, Liu et al. [20]

further developed a theory of chromatic property of rain.

Barnum et al. [1] made use of the fact that regular visual ef-

fects of rain streaks become united in the Fourier domain to

detect and remove rain. Recently, Santhaseelan et al. [26]

used phase congruency features to detect rain and applied

chromatic constrains to excluding false candidates.

Another difficulty in rain streak detection in a video is

observed: the rain and moving objects usually share resem-

blance in edge information and are hard to be separated.
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Against this issue, Brewer and Liu [5] estimated aspect ratio

range of rain streaks based on camera settings to distinguish

rain streaks. A similar idea was forwarded by Bossu et

al. [2], which applied size selection to segmenting rain and

moving objects. This method employed histogram feature

and raised that the orientation of rain streaks can be well

represented by Gaussian mixture model. Besides, Chen et

al. [8] discovered the spatio-temporal correlation among lo-

cal patches with rain streaks and used low-rank term to en-

code such structure knowledge to help extract rain streaks

from other parts of a video. Moreover, Chen et al. [7] raised

a method to remove rain in the video with highly dynamic

moving objects based on motion segmentation by GMM.

The current state-of-the-art for video rain streak removal

can be represented by the method raised by Kim et al. [17],

which needs to use some extra supervised knowledge (im-

ages/videos with/without rain streaks) to help train a rain

classifier (by SVM), and then gradually ameliorates this

classifier on a coarsely obtained rain map of the input video

to extract the final detected rain parts. A similar strategy

was utilized in a previous method presented by Tripathi et

al. [28, 29], which also needs to use some extra information

to pre-train a rain detector and then ameliorates it (by Naive

Bayes) using discriminative knowledge of rain streaks (spa-

tial and temporal features).

Differing from the current methods, which mainly as-

sume rain streaks as deterministic information with specific

photometric appearance, chromatic consistency, spatiotem-

poral configurations, or discriminative structures, the pro-

posed method formulates rain streaks as stochastic infor-

mation, distributed as a patch-based mixture of Gaussians.

As shown in Fig. 1, this assumption is intuitively rational

and can be easily understood. By further imposing com-

plementary spatiotemporal smoothness prior term on mov-

ing objects and low-rank prior term on background scenes,

our model is with a surprisingly simple and concise form

(Eq. (8)), while can evidently outperform the state-of-the-

art without needing any extra knowledge for pre-training.

2.2. Methods on rain removal in a single image

For comprehensiveness, we also briefly review the rain

streak removal methods in a single image.

Kang et al. [16] firstly proposed a method formulating

rain removal as an image decomposition problem based

on morphological component analysis. They achieved rain

component from the high frequency part of an image by us-

ing dictionary learning and sparse coding. Luo et al. [21]

also relied on discriminative sparse codes, but built upon a

nonlinear screen blend model to remove rain in a single im-

age. Just in 2016, Li et al. [19] utilized patch-based GMM

priors to distinguish and remove rains from background in a

single image, which needs to pre-train a GMM with a set of

pre-collected natural images without rain streaks. The state-

Figure 2. Graphical illustration of the map f as defined in Eq. (2).

(left) Input tensor. (right) Output patch matrix.

of-the-art rain removal strategy is presented very recently

by Fu et al. [10, 11], which developed a deep CNN (called

DerainNet) model to extract discriminative features of rains

in high frequency layer of an image. Similarly, this method

also needs to collect a set of labeled images (with/without

rain streaks) to train the CNN parameters.

This study puts emphasis on the rain streak removal issue

in video. Note that most of these image-based methods also

formulated rain streaks in a deterministic manner, e.g., with

sparse representation under a specific pre-specified or adap-

tively trained dictionary or of discriminative features from

those no-rain images, and always needed extra annotated

images for pre-training. In this sense, the methodology of

this method is also novel.IID, GO! GO! GO!

3. The P-MoG model

3.1. Problem formulation

An input video is represented by a tensor D ∈ R
h×w×m,

where h,w,m represent the height, width and frame num-

ber of the video, respectively. As aforementioned, the video

can be decomposed into three layers of rain streaks, fore-

ground moving objects and background scene, represented

by R, F and B (all belonging to R
h×w×m), respectively.

For convenience, we denote italic upper letter of a tensor

(denoted by calligraphic upper letter), as its mode-3 unfold-

ing matrix, e.g., B ∈ R
hw×m is denoted to be unfolded

from B ∈ R
h×w×m along its 3rd mode.

We then introduce how to model each layer in P-MoG.

Modeling rain streak layer. As analyzed in the intro-

duction, we model this layer with a P-MoG distribution.

Here we introduce a map f which is defined as:

f : Rh×w×m −→ R
p2×np , (1)

where p denotes the patch size and np is the total patch num-

ber of the entire video. The meaning of this map can be

easily understood by Fig. 2. Denote f(R)n (n = 1, ..., np)

as the nth column of f(R), and then P-MoG assumption

means that:

f(R)n ∼
K
∑

k=1

πkN (f(R)n|0,Σk), (2)

where N (·|µ,Σ) represents a Gaussian distribution with
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mean µ and covariance matrix Σ ∈ R
p2×p2

. πk ≥ 0 is the

mixing coefficient with
∑K

k=1 πk = 1.

Modeling background layer. For a video captured un-

der static camera, background scene generally keeps steady

over the frames except from the variation of illumination

and interference of moving objects. Therefore, similar as

many other background subtraction methods [6, 22, 34, 37,

38], this layer can be rationally encoded as a low-rank prior

structure. This can be easily formulated as the following

low-rank matrix factorization expression:

B = UV T , (3)

where U ∈ R
d×r, V ∈ R

n×r, and r < min(d, n) implying

the low-rankness of the reconstruction UV T .

Modeling moving object layer. Besides background

and rain, the foreground moving objects in the dynamic rain

video is a non-negligible segment. We extract the moving

objects by introducing a binary tensor H ∈ R
h×w×m de-

noting moving object support:

Hijk =

{

1, location ijk is moving object,

0, otherwise.
(4)

Here we assume rain is attached only in background scenes

(the rain stuck on the moving objects will be removed by a

post-processing step, described in Section 3.3). Hence for

background part, we have:

H⊥ ◦ D = H⊥ ◦ B +H⊥ ◦ R. (5)

For foreground moving objects part, we have:

H ◦ D = H ◦ F . (6)

Summing up Eq. (5) and (6), we then obtain our decompo-

sition model involving the moving object support as:

D = H⊥ ◦ B +H ◦ F +H⊥ ◦ R. (7)

Considering the sparse feature of moving object, we add

an l1-penalty to regularize moving object support H [39].

Figure 3. (a) Input frame; (b) Moving object support obtained by

2DTV penalty; (c) Moving object support obtained by weighted

3DTV penalty. Here the weights are chosen to be 5: 5: 1 along

video width, height and time. It is easily seen that the support of

rain streaks can be finely removed from the support detected from

the 3DTV.

Additionally, we have the prior knowledge that foreground

moving objects are with continuous shapes along both space

and time, and thus we can regularize with weighted 3-

dimensional total variation (3DTV) penalty on its support

H. Such regularizer can bring another byproduct to help

separating rain streak and moving objects, since the for-

mer is always of a small configurations and moves very fast

along time, making it with much less temporal continuity.

Utilizing weighted 3DTV can thus naturally distinguish the

these two layers, as shown in Fig. 3.

P-MoG model: By integrating the three models im-

posed on rain streak, moving object and background scene

layers as aforementioned, we can get the final P-MoG

model with parameters Θ = {U, V,Π,Σ,H}(Π,Σ denote

mixture proportions and Gaussian covariance matrices):

min
Θ

−

np
∑

n=1

log

K
∑

k=1

πkN (f(H⊥ ◦ R)n|0,Σk)

+ α||H||3DTV + β||H||1

s.t. H⊥ ◦ R = H⊥ ◦ (D − B), B = UV T .

(8)

3.2. EM algorithm

The EM algorithm [9] can be readily employed to solve

the P-MoG model. The algorithm iterates between calculat-

ing the responsibility of all patch Gaussian components (E

step) and optimizing the parameters in Θ (M step).

E step. Introduce a latent variable znk, where znk ∈
{0, 1} and

∑K

k=1 znk = 1, representing the assignment of

the noise f(H⊥ ◦ R)n to a specific component of the mix-

ture. The posterior probability of component k given the

noise f(H⊥ ◦ R)n takes the form:

γnk = E(znk)

=
πkN (f(H⊥ ◦ (D − fold(UV T )))n|0,Σk)∑
k
πkN (f(H⊥ ◦ (D − fold(UV T )))n|0,Σk)

.
(9)

M step. This step needs to minimize the following object

function with respect to parameters in Θ:

min
Θ

np∑

n=1

K∑

k=1

γnk(
1

2
f(H⊥◦R)TnΣ

−1
k f(H⊥◦R)n

+
1

2
log |Σk| −log πk) + α||H||3DTV + β||H||1

s.t. H⊥ ◦ R = H⊥ ◦ (D − fold(UV
T )).

(10)

We can use alternative optimization strategy to iteratively

optimize each variable in the model.
Update Π,Σ. The closed-form updating equation for

both parameters can be easily deduced as:

Nk =
∑np

n=1
γnk, πk =

Nk

N
, (11)

Σk =
1

Nk

∑np

n=1
γnkf(H

⊥ ◦ R)nf(H
⊥ ◦ R)Tn . (12)

Update U, V . We apply alternating direction method of

multipliers (ADMM) [3] algorithm to solve the subproblem.
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First, we introduce L ∈ R
p2×np , and Eq. (10) turns into:

min
U,V,L

np∑

n=1

K∑

k=1

γnk

(f(D)− L)TnΣ
−1
k (f(D)− L)n

2

+ α||H||3DTV + β||H||1

s.t. L = f(H ◦ D +H⊥ ◦ fold(UV
T )),

(13)

and its Lagrangian form is:

min
U,V,L

np∑

n=1

K∑

k=1

γnk

(f(D)− L)TnΣ
−1
k (f(D)− L)n

2

+ α||H||3DTV + β||H||1 +
µ

2
||L+ µ

−1Λ

− f(H ◦ D +H⊥ ◦ fold(UV
T ))||2F .

(14)

We then need to iteratively updating L and U, V as follows:

by fixing the other variables except L, the optimization of

L becomes divisible by each column. We then have for n =
1, 2, ..., np, that

Ln=

(

K
∑

k=1

γnkΣ
−1
k
+µI

)−1( K
∑

k=1

γnkΣ
−1
k
f(D)+µf(D−H

⊥
◦R)−Λ

)

n

.

(15)

With L attained, the optimization of U, V becomes:

min
U,V

||L+µ
−1Λ− f(H ◦ D +H⊥ ◦ fold(UV

T ))||2F , (16)

which is equivalent to:

min
U,V

∑

ij

∑

(m,n)∈Ωij

(Lmn+µ
−1Λmn−Hij◦Dij−H

⊥

ij◦(UiV
T
j ))2. (17)

Here, Ωij represents the set of indices in patch matrix f(X )
corresponding to the unfolded matrix element Xij . Since

there are repeated elements conducted by the overlapped

patches, we define matrix W ∈ R
hw×m, where Wij rep-

resents the number of repeated times for the single pixel.

Hence Eq. (17) can be written as:

min
U,V

∑

ij

Wij

(
L̃ij −Hij ◦ (Dij − UiV

T
j )− UiV

T
j

)2

, (18)

where

L̃ij =

∑
(m,n)∈Ωij

(Lmn + µ−1Λmn)

Wij

. (19)

Updating U, V then yields:

V
(t+1)

=argmin
V

||
√
W ◦

(
L̃−H◦(D−U

(t)
V

(t)T
)−U

(t)
V

T
)
||2F ,

U
(t+1)

=argmin
U

||
√
W ◦

(
L̃−H◦(D−U

(t)
V

(t+1)T
)−UV

(t+1)T
)
||2F ,

(20)

which can be solved by off-the-shelf weighted l2-norm

LRMF method [24].

Update H. The subproblem of (10) with respect to H is:

min
H

µ

2
||L− f(H ◦ D +H⊥ ◦ fold(UV )T ) + µ

−1Λ||2F

+ α||H||3DTV + β||H||1.
(21)

Algorithm 1 P-Mog Model for RSRV

Input: video D ∈ R
h×w×m; subspace rank: r; the number of

Gaussians: K; patch size: p.

Initialization: Randomly initialize U, V , patch MoG parameters

Π, Σ. H = 0.

1: while not converge do

2: (E step) Evaluate γnk by Eq. (9).

3: (M step) Evaluate patch based MoG parameters Π, Σ by

Eq. (11) and (12).

4: Update variable L by Eq. (15).

5: Update U, V by by Eq. (20).

6: Update H by graph cut algorithm.

7: end while

8: Obtain B by Eq. (3).

9: Post-possess F by Eq. (22).

Output: Derain = H⊥ ◦ B + F .

Considering the entries of H are binary, i.e., either 1 or

0, it is intrinsically an energy minimization problem of a

Markov Random Field (MRF) and can be readily solved by

graph cut optimization algorithm [4, 18].

3.3. Post­processing

The proposed P-MoG method helps separate the back-

ground, rain streaks and moving objects from the input

video with rains. Hence we could combine background and

moving object together to obtain a derained video. Before

that, we can use an easy post-processing step to further ame-

liorate the rain streak removal effect by enforcing continuity

on the moving object layer. A simple model can be used for

this task:

F = argmin
F

np∑

n=1

log

K∑

k=1

πkN ((H◦D−F)n|0,Σk)+λ||F||TV ,

(22)

which can be readily solved by TV regularization algorithm

[30, 33]. We summarize our algorithm as Algorithm 1.

4. Experimental Results

We evaluate the performance of the proposed algorithm

on synthetic and natural videos with rain streaks. Through-

out our experiments, we set the patch size of the video as

2 for efficiency of our algorithm. The Gaussian component

number in our method is set as 3.

4.1. On videos with synthetic rain streaks

In this section we show experiments on videos added

with various types of rain streaks. Since the ground truth

videos without rain are known, we can compare all compet-

ing methods both in quantity and in visualization. We utilize

four videos from CDNET datebase [15]1 which vary largely

1http://www.changedetection.net
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(a) Input (b) Ground truth

(c) Fu et al. [10] (d) Garg et al. [14]

(e) Kim et al. [17] (f) Ours

Figure 4. Visual comparison of rain removal effects obtained by

different methods on synthetic experiment. Two demarcated areas

in each image are amplified at a 3 time larger scale and with the

same degree of contrast for easy observation of details.

in moving object numbers and background scenes. We add

different kinds of rain streaks taken by photographers un-

der black background2, varied from tiny drizzling to heavy

rain storm, as can be clearly observed in Figs. 4-7. The

compared methods include Fu et al. [10], the state-of-the-art

method for rain removal in a single image, Garg et al. [14],

and Kim et al. [17], the state-of-the-art method for RSRV.

For fair comparison with image based method [10], we em-

ploy the same network structure, while add a new temporal

dimension (with size 3) for each input, as well as the filters.

Each input is then a 3D patch and encodes the temporal in-

formation among 3 adjacent frames. Besides, we generate

training samples from 15k adjacent frame sequences w/wo

rains (rain styles are similar as aforementioned) from videos

whose background is fixed, w/wo moving objects, like the

settings in our experiments.

Fig. 4 shows a light rain scene with a girl passing by the

static camera. It is easy to observe that clear rain streaks

have been left in the rain removal maps obtained by Fu et

al.’s algorithm. Garg et al.’s and Kim et al.’s methods have

a better rain removal effects, while at the expense of degrad-

ing the visual performance of the moving object. In com-

parison, the proposed P-MoG method can not only more

comprehensively remove rain streaks in the video, but also

2http://www.2gei.com/video/effect/1 rain/

(a) Input (b) Ground truth

(c) Fu et al. [10] (d) Garg et al. [14]

(e) Kim et al. [17] (f) Ours

Figure 5. Visual comparison of rain removal effects obtained by

different methods on synthetic experiment.

best keep the shape and texture details3.

Fig. 5 shows the scenario of light rain but with complex

moving objects. This video contains only 24 frames in total,

thus offering less temporal information. In this video, Fu et

al.’s method can work well on some frames of the video,

but rain streaks can still be clearly seen in multiple frames.

Garg et al.’s and Kim et al.’s methods also perform not very

well since evident moving objects in videos bring blurring

effect and less frames limit its capability to train a discrim-

inative rain map. Comparatively, the proposed method still

attains promising visual effect in both rain removal and de-

tail preservation from the ground truth video.

Figs. 6 and 7 illustrate the performance of all compet-

ing methods on videos with relatively heavy rains. Rain

streaks in Fig. 6 are thick whereas that in Fig. 7 are more

like rain storm with tons of rain streaks blown by wind.

All compared methods fail to remove all rain streaks, while

our P-MoG method performs consistently well in these hard

scenarios, successfully detecting most rain streaks of video

in the rain steak layer, while not involving much texture

or edge information belonging to moving object or back-

ground layers, which can be also observed in Fig. 1.

Quantitative comparisons are listed in Tables 1 and 2.

Here we use five performance metrics, PSNR, VIF [27],

SSIM [32], FSIM [35] and UQI [31]. From the tables, it is

seen that our method attains evidently better results in terms

3The results of all comparison methods on entire videos can be seen in

supplementary material
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(a) Input (b) Fu et al. [10] (c) Garg et al. [14] (d) Kim et al. [17] (e) Ours

(f) Ground truth (g) Fu et al. [10] (h) Garg et al. [14] (i) Kim et al. [17] (j) Ours

Figure 6. Rain removal results and corresponding rain streaks extracted by different methods on a video with heavy rains.

(a) Input (b) Fu et al. [10] (c) Garg et al. [14] (d) Kim et al. [17] (e) Ours

(f) Ground truth (g) Fu et al. [10] (h) Garg et al. [14] (i) Kim et al. [17] (j) Ours

Figure 7. Rain removal results and corresponding rain streaks extracted by different methods on a video with heavy rains.

Table 1. Performance comparison of different methods on synthetic rain videos in items of VIF, SSIM, FSIM and UQI.

Data set Fig. 4 Fig. 5 Fig. 6 Fig.7

Metrics VIF SSIM FSIM UQI VIF SSIM FSIM UQI VIF SSIM FSIM UQI VIF SSIM FSIM UQI

Input 0.846 0.981 0.991 0.934 0.731 0.950 0.975 0.927 0.591 0.877 0.935 0.816 0.717 0.917 0.970 0.763

Fu [10] 0.696 0.956 0.968 0.847 0.673 0.948 0.971 0.923 0.530 0.887 0.933 0.812 0.670 0.935 0.967 0.808

Garg [14] 0.862 0.984 0.990 0.949 0.745 0.961 0.979 0.944 0.712 0.935 0.969 0.887 0.707 0.920 0.972 0.772

Kim [17] 0.810 0.981 0.987 0.941 0.642 0.949 0.968 0.933 0.666 0.943 0.967 0.907 0.589 0.912 0.960 0.758

Ours 0.904 0.993 0.993 0.969 0.786 0.977 0.985 0.968 0.757 0.960 0.980 0.952 0.768 0.949 0.981 0.891

Table 2. Performance comparison of different methods on syn-

thetic rain videos in items of PSNR.

Fig. 4 Fig. 5 Fig. 6 Fig. 7

Input 39.366 33.704 28.151 23.819

Fu [10] 27.628 32.008 27.927 23.624

Garg [14] 37.853 33.464 32.397 24.641

Kim [17] 36.474 31.347 32.532 25.101

Ours 41.201 34.822 30.471 24.503

of VIF, SSIM, FSIM and UQI in all cases. Since these mea-

sures mainly focus on image structure and are more consis-

tent with human’s visual perception, the superiority of the

proposed method can be substantiated. As for PSNR, our

method performs not the best in two heavy rain cases. This

can be explained by the fact that our method removes not

only rain streaks in the video, but also the possible camera

noise as well. Therefore if the ground truth is with evident

camera noise, the PSNR value of our method inclines to not

very faithfully represent the practical quality of video re-

covery. Actually, from the visual effects, the superiority of

our method can still be clearly observed.

4.2. On real videos with rain streaks

Fig. 8 shows the results of different methods on the

‘wall’ sequence4. The rain streaks in the original video are

dense. The comparison methods include: Garg et al. [14]4,

Tripathy et al. [28]5, Zhang et al. [36] (code is written by

4http://www.cs.columbia.edu/CAVE/projects/camera rain/
5http://www.ecdept.iitkgp.ernet.in/web/faculty/smukho/docs/rain remo

val/rain removal.html
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(a) Input (b) Garg et al. [14]

(c) Zhang et al. [36] (d) Tripathy et al. [28]

(e) Kim et al. [17] (f) Ours

Figure 8. Rain streak removal performance of different methods

on a real heavy rain video without moving object.

ourselves), and Kim et al. [17]6. The results of the former

two are directly downloaded from the corresponding web-

sites, while those of the latter two are obtained by imple-

menting codes on the video. The superiority of the proposed

method is easy to be observed in both more complete rain

removal effect and better texture/edge recovery.

In Fig. 9, we present the results of the same frame se-

lected from the sequence ‘traffic’4. The original video con-

sists of walking pedestrian and moving vehicles. The RSRV

results obtained by Garg et al. [14], Zhang et al. [36], Liu

et al. [20] and Tripathy [28, 29] are directly downloaded7,

while Kim et al. [17]’s code is available6 and we run it in

this video. Similar to the last experiment, the proposed P-

MoG method also attains superior performance in both rain

streak removal and detail recovery from video. In this ex-

periments, it is further advantageous in moving object re-

covery. As a comparison, some of the other competing

methods evidently fail in this task.

5. Conclusion

In this paper, we have introduced a simple and concise

model for rain streak removal from a video. Differing from

6http://mcl.korea.ac.kr/deraining/
7http://www.ecdept.iitkgp.ernet.in/web/faculty/smukho/docs/spatiotem

poral/rain spatiotemporal.html

(a) Input (b) Garg et al. [14]

(c) Zhang et al. [36] (d) Liu et al. [20]

(e) Tripathy et al. [28] (f) Tripathy et al. [29]

(g) Kim et al. [17] (h) Ours

Figure 9. Rain streak removal performance of different methods

on a real dynamic rain video with moving objects.

the existing methods which mainly consider rain streaks as

deterministic knowledge, the proposed method encodes this

information as stochastic knowledge and use patch-based

mixture of Gaussians to formulate it. Together with the pri-

ors imposed on moving objects and background scene, this

concise model shows surprisingly good performance in the

RSRV task on various videos with large variations of rain

types. The rationality of taking rain streaks as stochastic is

thus substantiated. For future work, we consider to solve

the rain removal problem with a moving camera. Also, we

intend to combine online strategies to further improve its

efficiency and realize the requirement of real-time rain re-

moval task.
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