
Coordinating Filters for Faster Deep Neural Networks

Wei Wen

University of Pittsburgh

wew57@pitt.edu

Cong Xu

Hewlett Packard Labs

cong.xu@hpe.com

Chunpeng Wu

University of Pittsburgh

chw127@pitt.edu

Yandan Wang

University of Pittsburgh

yaw46@pitt.edu

Yiran Chen

Duke University

yiran.chen@duke.edu

Hai Li

Duke University

hai.li@duke.edu

Abstract

Very large-scale Deep Neural Networks (DNNs) have

achieved remarkable successes in a large variety of com-

puter vision tasks. However, the high computation intensity

of DNNs makes it challenging to deploy these models on

resource-limited systems. Some studies used low-rank ap-

proaches that approximate the filters by low-rank basis to

accelerate the testing. Those works directly decomposed

the pre-trained DNNs by Low-Rank Approximations (LRA).

How to train DNNs toward lower-rank space for more ef-

ficient DNNs, however, remains as an open area. To solve

the issue, in this work, we propose Force Regularization,

which uses attractive forces to enforce filters so as to coor-

dinate more weight information into lower-rank space1. We

mathematically and empirically verify that after applying

our technique, standard LRA methods can reconstruct filters

using much lower basis and thus result in faster DNNs. The

effectiveness of our approach is comprehensively evaluated

in ResNets, AlexNet, and GoogLeNet. In AlexNet, for ex-

ample, Force Regularization gains 2× speedup on modern

GPU without accuracy loss and 4.05× speedup on CPU by

paying small accuracy degradation. Moreover, Force Reg-

ularization better initializes the low-rank DNNs such that

the fine-tuning can converge faster toward higher accuracy.

The obtained lower-rank DNNs can be further sparsified,

proving that Force Regularization can be integrated with

state-of-the-art sparsity-based acceleration methods.

1. Introduction

Deep Neural Networks (DNNs) have achieved record-

breaking accuracy in many image classification tasks [16]

[24][25][10]. With the advances of algorithms, availabil-

ity of database, and improvement in hardware performance,

1The source code is available in https://github.com/

wenwei202/caffe

Figure 1. The low-rank basis of filters in the first layer of the con-

volutional neural network [16] on CIFAR-10. The low-rank basis

is formed by the most significant principal filters that are obtained

by PCA. Top: the low-rank basis of the original network. Bottom:

the low-rank basis of the same network after applying Force Reg-

ularization. The number of red boxes indicates the required rank

to reconstruct the original filters with ≤ 20% error.

the depth of DNNs grows dramatically from a few to hun-

dreds or even thousands of layers, enabling human-level

performance [9]. However, deploying these large models on

resource-limited platforms, e.g., mobiles and autonomous

cars, is very challenging due to the high demand in the com-

putation resource and hence energy consumption.

Recently, many techniques to accelerate the testing pro-

cess of deployed DNNs have been studied, such as weight

sparsifying or connection pruning [8][7][28][23][22][6]

[19]. These approaches require delicate hardware cus-

tomization and/or software design to transfer sparsity into

practical speedup. Unlike sparsity-based methods, Low-

Rank Approximation (LRA) methods [22][4][5][12][11]

[26][27][18][30][14] directly decompose an original large

model to a compact model with more lightweight layers.

Thanks to the redundancy (correlation) among filters in

DNNs, original weight tensors can be approximated by very

low-rank basis. From the viewpoint of matrix computation,

LRA approximates a large weight matrix by the product of

two or more small ones to reduce computation complexity.

Previous LRA methods mostly focus on how to decom-

pose the pre-trained weight tensors for maximizing the re-

duction of computation complexity, meanwhile retaining

the classification accuracy. Instead, we propose to nudge

the weights by additional gradients (attractive forces) to co-

ordinate the filters to a more correlated state. Our approach

658

https://github.com/wenwei202/caffe
https://github.com/wenwei202/caffe

aims to improve the correlation among filters and therefore

obtain more lightweight DNNs through LRA. To the best of

our knowledge, this is the first work to train DNNs toward

lower-rank space such that LRA can achieve faster DNNs.

The motivation of this work is fundamental. It has been

proven that trained filters are highly clustered and corre-

lated [5][4][12]. Suppose each filter is reshaped as a vector.

A cluster of highly-correlated vectors then will have small

included angles. If we are able to coordinate these vectors

toward a state with smaller included angles, the correlation

of the filters within that cluster improves. Consequently,

LRA can produce a DNN with lower ranks and higher com-

putation efficiency.

We propose a Force Regularization to coordinate fil-

ters in DNNs. As demonstrated in Fig. 1, when using

the same LRA method, say, cross-filter Principal Compo-

nent Analysis (PCA) [30], applying Force Regularization

can greatly reduce the required ranks from the original de-

sign (i.e., 5 vs. 11), while keeping the same approximation

errors (≤ 20%). As we shall show in Section 5, apply-

ing Force Regularization in the training of state-of-the-art

DNNs will successfully obtain lower-rank DNNs and thus

improve computation efficiency, e.g., 4.05× speedup for

AlexNet with small accuracy loss.

The contributions of our work include: (1) We pro-

pose an effective and easy-to-implement Force Regulariza-

tion to train DNNs for lower-rank approximation. To the

best of our knowledge, this is the first work to manipulate

the correlation among filters during training such that LRA

can achieve faster DNNs; (2) DNNs manipulated by Force

Regularization can have better initialization for the retrain-

ing of LRA-decomposed DNNs, resulting in faster conver-

gence to better accuracy; (3) Those lightweight DNNs that

have been aggressively compressed by our method can be

further sparsified. That is, our method can be integrated

with state-of-the-art sparsity-based methods to potentially

achieve faster computation; (4) Force Regularization can

be easily generalized to Discrimination Regularization that

can learn more discriminative filters to improve classifica-

tion accuracy; (5) Our implementation is open-source on

both CPUs and GPUs.

2. Related work

Low-rank approximation. LRA method decomposes a

large model to a compact one with more lightweight lay-

ers by weight/tensor factorization. Denil et al. [4] studied

different dictionaries to remove the redundancy between fil-

ters and channels in DNNs. Jaderberg et al. [12] explored

filter and data reconstruction optimizations to attain opti-

mal separable basis. Denton et al. [5] clustered filters, ex-

tended LRA (e.g., Singular Value Decomposition, SVD) to

larger-scale DNNs, and achieved 2× speedup for the first

two layers with 1% accuracy loss. Many new decomposi-

tion methods were proposed [11][26][18][30] and the ef-

fectiveness of LRA in state-of-the-art DNNs were evalu-

ated [24][25]. Similar evaluations on mobile devices were

also reported [14][27]. Unlike them, we propose Force Reg-

ularization to coordinate DNN filters to more correlated

states, in which lower-rank or more compact DNNs are

achievable for faster computation.

Sparse deep neural networks. The studies on

sparse DNNs can be categorized into two types: non-

structured [20][23][22][8][6] and structured [28][21][19][1]

sparsity methods. The first category prunes each connec-

tion independently. Consequently, sparse weights are ran-

domly distributed. The level of non-structured sparsity is

usually insufficient to achieve good practical speedup in

modern hardware [28][19]. Software optimization [23][22]

and hardware customization [7] are proposed to overcome

this issue. Conversely, the structured approaches prune con-

nections group by group, such that the sparsified DNNs

have regular distribution of sparse weights. The regular-

ity is friendly to modern hardware for acceleration. Our

work is orthogonal to sparsity-based methods. More impor-

tantly, we find that DNNs accelerated by our method can

be further sparsified by both non-structured and structured

sparsity methods, potentially achieving faster computation.

3. Correlated Filters and Their Approximation

The prior knowledge is that correlation exists among

trained filters in DNNs and those filters lie in a low-rank

space. For example, the color-agnostic filters [16] learned

in the first layer of AlexNet lie in a hyper-plane, where RGB

channels at each pixel have the same value. Fig. 2 presents

the results of Linear Discriminant Analysis (LDA) of the

first convolutional filters in AlexNet and GoogLeNet. The

filters are normalized to unit vectors and colored to four

clusters by k-means clustering, and then projected to 2D

space by LDA to maximize cluster separation. The figure

indicates high correlation among filters within a cluster. A

naı̈ve approach of filter approximation is to use the centroid

of a cluster to approximate filters within that cluster, thus,

the number of clusters is the rank of the space. Essentially,

k-means clustering is a LRA [2] method, although we will

10 5 0 5 10
8

6

4

2

0

2

4

6

8

10 8 6 4 2 0 2 4 6 8
6

4

2

0

2

4

6

8

Figure 2. Linear Discriminant Analysis (LDA) of filters in the first

convolutional layer of AlexNet (left) and GoogLeNet (right).

659

…

H×W H×W

1×1

M<<N

N M N

C C

Figure 3. Cross-filter LRA of a convolutional layer.

later show that other LRA methods can give better approxi-

mation. The motivation of this work is that if we are able to

nudge filters during the training such that the filters within

a cluster are coordinated closer and some adjacent clusters

are even merged into one cluster, then more accurate filter

approximation using lower rank can be achieved. We pro-

pose Force Regularization to realize it.

Before introducing Force Regularization, we first mathe-

matically formulate LRA of DNN filters. Theoretically, al-

most all LRA methods can gain lower-rank approximation

upon our method because filters are coordinated to more

correlated state. Instead of onerously replicating all of these

LRA methods, we choose cross-filter approximation [4][30]

and a state-of-the-art work in [26] as our baselines.

Fig. 3 illustrates the cross-filter approximation of a con-

volutional layer. We assume all weights in a convolutional

layer is a tensor W ∈ R
N×C×H×W , where N and C are

the numbers of filters and input channels, and H and W
are the spatial height and width of the filters, respectively.

With input feature map I, the n-th output feature map

On =Wn ∗ I, whereWn ∈ R
1×C×H×W is the n-th filter.

Because of the redundancy (or correlation) across the fil-

ters [4], tensorWn(∀n ∈ [1...N]) can be approximated by

a linear combination of the basis Bm ∈ R
1×C×H×W (m ∈

[1...M],M ≪ N) of a low-rank space B ∈ R
M×C×H×W ,

such as

On ≈

(

M
∑

m=1

b(n)m Bm

)

∗ I =

M
∑

m=1

(

b(n)m Fm

)

. (1)

Where b
(n)
m is a scalar, and Fm = Bm ∗ I is the feature

map generated by basis filter Bm. Therefore, the output fea-

ture map On is a linear combination of Fm(m ∈ [1...M])
which can be interpreted as the feature map basis. Since the

linear combination essentially is a 1 × 1 convolution, the

convolutional layer can be decomposed to two sequential

lightweight convolutional layers as shown in Fig. 3. The

original computation complexity is O(NCHWH
′

W
′

),
where H

′

and W
′

is the height and width of output fea-

ture maps, respectively. After applying cross-filter LRA, the

computation complexity is reduced toO(MCHWH
′

W
′

+
NMH

′

W
′

). The computation complexity decreases when

O

wi

wj

Wi

Wj

fji
fji-fjiwi

Twir=1

ΔWij

Figure 4. Force Regularization to coordinate filters.

the rank M < NCHW
CHW+N

.

4. Force Regularization

4.1. Regularization by Attractive Forces

This section proposes Force Regularization from the per-

spective of physics. It is a gradient-based approach that

adds extra gradients to data loss gradients. The data loss

gradients aim to minimize classification error as traditional

DNNs do. The extra gradients introduced by Force Regular-

ization gently adjust the lengths and directions of data loss

gradients so as to nudge filters to a more correlated state.

With a good setup of hyper-parameter, our method can co-

ordinate more useful information of filters to a lower-rank

space meanwhile maintain accuracy. Inspired by Newton’s

Laws, we propose an intuitive, computation-efficient and

effective Force Regularization that uses attractive forces to

coordinate filters.

Force Regularization: As illustrated in Fig. 4, suppose

the filterWn ∈ W is reshaped as a vector Wn ∈ R
1×CHW

and normalized as wn ∈ R
1×CHW (∀n ∈ [1...N]), with

their origin at O. We introduce the pair-wise attractive force

fji = f(wj−wi) (∀i, j ∈ [1...N]) on wi generated by wj .

The gradient of Force Regularization to update filter Wi is

defined as

∆Wi =

N
∑

j=1

∆Wij = ||Wi||

N
∑

j=1

(

fji − fjiw
T
i wi

)

, (2)

where || · || is the Euclidean norm. The regularization

gradient in Eq. (2) is perpendicular to filter vector and can

be efficiently computed by addition and multiplication. The

final updating of weights by gradient descent is

Wi ←Wi − η ·

(

∂E(W)

∂Wi

− λs ·∆Wi

)

, (3)

where E(W) is data loss, η is learning rate and λs > 0 is

the coefficient of Force Regularization to trade off the rank

and accuracy. We select λs by cross-validation in this work.

The gradient of common weight-wise regularization (e.g.,

ℓ2-norm) is omitted in Eq. (3) for simplicity.

660

Fig. 4 intuitively explains our method. Suppose each

vector wi is a rigid stick and there is a particle fixed at

the endpoint. The particle has unit mass, and the stick is

massless and can freely spin around the origin. Given the

pair-wise attractive forces (e.g., universal gravitation) fji,

Eq. (2) is the acceleration of particle i. As the forces are at-

tractive, neighbor particles tend to spin around the origin to

assemble together. Although our regularizer seems to col-

lapse all particles to one point which is the rank-one space

for most lightweight DNNs, there exist gradients of data

loss to avoid this. More specific, pre-trained filters orient

to discriminative directions wn (n ∈ [1...N]). In each di-

rection wn, there are some correlated filters as observed in

Fig. 2. During the subsequent retraining with our regular-

izer, regularization gradients coordinate a cluster of filters

closer to a typical direction dm (m ∈ [1...M],M ≪ N),
but data loss gradients avoid collapsing dm together so as to

maintain the filters’ capability of extracting discriminative

features. If all filters could be extremely collapsed toward

one point meanwhile maintain classification accuracy, it im-

plies the filters are over-redundant and we can attain a very

efficient DNN by decomposing it to a rank-one space.

We derive the Force Regularization gradient from the

normalized filters based on the following facts: (1) A nor-

malized filter is on the unit hypersphere, and its orientation

is the only free parameter we need to optimize; (2) The gra-

dient of Wi can be easily scaled by the vector length ||Wi||
without changing the angular velocity.

In Eq. (2), fji = f(wj−wi) is the force function related

to distance. We study ℓ2-norm Force

fℓ2(wj −wi) = wj −wi (4)

and ℓ1-norm Force

fℓ1(wj −wi) =
wj −wi

||wj −wi||
(5)

in this work. We define the force of Eq. (4) as ℓ2-norm

Force because the strength linearly decreases with the dis-

tance ||wj −wi||, just as the gradient of regularization ℓ2-

norm does. We name the force of Eq. (5) as ℓ1-norm Force

because the gradient is a constant unit vector regardless of

the distance, just as the gradient of sparsity regularization

ℓ1-norm is.

4.2. Mathematical Implications

This section explains the mathematical implications be-

hind: Force Regularization is related to but different from

minimizing the sum of pair-wise distances between normal-

ized filters.

Theorem 1 Suppose filterWn ∈ W is reshaped as a vector

Wn ∈ R
1×CHW and normalized as wn ∈ R

1×CHW (∀n ∈

Table 1. Ranks vs. scalers of step sizes of regularization gradients.

Scaler Error conv1* conv2 conv3

0 (baseline) 18.0% 17/32 27/32 55/64

||Wi|| 17.9% 15/32 22/32 30/64

1/||Wi|| 18.0% 16/32 27/32 32/64
* The first convolutional layer.

[1...N]). For each filter, Force Regularization under ℓ2-

norm force has the same gradient direction of regulariza-

tion R(W), but differs by adapting the step size to the filer’s

length, where

R(W) =
1

2

N
∑

j=1

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

Wj

||Wj ||
−

Wi

||Wi||

∣

∣

∣

∣

∣

∣

∣

∣

2

. (6)

Proof : Because wj =
Wj

||Wj ||
,

∂R(W)

∂Wi

=
1

2

N
∑

j=1

∂ (wj −wi) (wj −wi)
T

∂Wi

=
1

2

N
∑

j=1

∂
(

1− 2wjw
T
i + 1

)

∂Wi

= −

N
∑

j=1

∂
(

wjw
T
i

)

∂Wi

= −

N
∑

j=1

wj

∂wT
i

∂Wi

,

(7)

where
∂wT

i

∂Wi
:= Gi is a derivative matrix with element

G
(pq)
i =

∂w
(p)
i

∂W
(q)
i

=
∂

W
(p)
i

||Wi||

∂W
(q)
i

=
1

||Wi||

(

δ(p, q)−
W

(p)
i W

(q)
i

||Wi||2

)

.

(8)

Superscripts p, q ∈ [1 . . . CHW] index the elements in

vectors wi and Wi. δ(p, q) is the unit impulse function:

δ(p, q) =

{

1 p = q

0 p 6= q
. (9)

Therefore,

Gi =
1

||Wi||

(

I−w
T
i wi

)

. (10)

Replacing Eq. (10) to Eq. (7), we have

−
∂R(W)

∂Wi

=
1

||Wi||

N
∑

j=1

(

(wj −wi)− (wj −wi)w
T
i wi

)

=
1

||Wi||

N
∑

j=1

fji

−

N
∑

j=1

fji

w
T
i wi

 ,

(11)

661

where fji = fℓ2(wj −wi) = wj −wi. Therefore, Eq. (11)

and Eq. (2) have the same direction.

Theorem 1 states that our proposed Force Regularization

in Eq. (2) is related to Eq. (11). However, the step size of

the gradient in Eq. (2) is scaled by the length ||Wi|| of the

filter instead of its reciprocal in Eq. (11). This ensures that

the filter spins the same angle regardless of its length and

avoids the issue of being divided by zero. Table 1 summa-

rizes the ranks vs. step sizes for the ConvNet [16], which is

trained by CIFAR-10 database without data augmentation.

The original ConvNet has 32, 32, and 64 filters in each con-

volutional layer, respectively. The rank is the smallest num-

ber of basis filters (in Fig. 3) obtained by PCA with ≤ 5%
reconstruction error. Therefore, ||Wi|| works better than its

reciprocal when coordinating filters to a lower-rank space.

Following the same proof procedure, we can easily find

that Force Regularization under ℓ1-norm Force has the same

conclusion when

R(W) =
N
∑

j=1

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

Wj

||Wj ||
−

Wi

||Wi||

∣

∣

∣

∣

∣

∣

∣

∣

. (12)

5. Experiments

5.1. Implementation

Our experiments are performed in Caffe [13] using

CIFAR-10 [15] and ILSVRC-2012 ImageNet [3]. Pub-

lished models are adopted as the baselines: In CIFAR-10,

we choose ConvNet without data augmentation [16] and

ResNets-20 with data augmentation [10]. We adopt the

same shortcut connections in [28] for ResNets-20. For Im-

ageNet, we use AlexNet and GoogLeNet models trained by

Caffe, and report accuracy using only center crop of images.

Our experiments of Force Regularization show that, with

the same maximum iterations, the training from the baseline

can achieve a better tradeoff between accuracy and speedup

comparing with the training from scratch, because the base-

line offers a good initial point for both accuracy and filter

correlation. During the training with Force Regularization

on CIFAR-10, we use the same base learning rate as the

baseline; while in ImageNet, 0.1× base learning rate of the

baseline is adopted.

0

20

40

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Baseline L2-norm force

0

100

200

300

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Convolutional layer #

ResNets-20

GoogLeNet

Figure 5. The rank M in each convolutional layer of ResNets-20

and GoogLeNet. Red bar overlaps blue bar. The accuracy loss is

0.75% for ResNets-20 and 2.46% (top-5) for GoogLeNet.

5.2. Rank Analysis of Coordinated DNNs

In light of various low-rank approximation methods,

without losing the generalization, we first adopt Principal

Component Analysis (PCA) [30][22] to evaluate the effec-

tiveness of Force Regularization. Specifically, the filter

tensor W can be reshaped to a matrix W ∈ R
N×CHW ,

the rows of which are the reshaped filters Wn (∀n ∈
[1...N]). PCA minimizes the least square reconstruction

error when projecting a column (RN) of W to a low-

rank space R
M (M ≪ N). The reconstruction error is

eM =
∑N

i=M+1 λi, where λi is the i-th largest eigenvalue

of covariance matrix WW
T

CHW−1 . Under the constraint of error

percentage eM
e0

(e.g., eM
e0
≤ 5%), lower-rank approximation

can be obtained if the minimal rank M can be smaller. In

this section, without explicit explanation, we define rank M
of a convolutional layer as the minimal M which has ≤ 5%
reconstruction error by PCA.

Table 2 summarizes the rank M in each layer of Con-

vNet and AlexNet without accuracy loss after Force Regu-

larization. In the baselines, the learned filters in the front

layers are intrinsically in a very low-rank space but the rank

M in deeper layers is high. This could explain why only

speedups of the first two convolutional layers were reported

in [5]. Fortunately, by using either ℓ2-norm or ℓ1-norm

force, our method can efficiently maintain the low rank M
in the first two layers (e.g., conv1-conv2 in AlexNet), mean-

while significantly reduce the rank M of deeper layers (e.g.,

conv3-conv5 in AlexNet). On average, our method can re-

duce the layer-wise rank ratio by ∼ 50%. The effective-

ness of our method on deep layers is very important as the

Table 2. The rank M in each convolutional layer after Force Regularization.

Net Force Top-1 error conv1 conv2 conv3 conv4 conv5 Average rank ratio ‡

ConvNet None (baseline)† 18.0% 17/32‡ 27/32 55/64 – – 74.48%

ConvNet ℓ2-norm 17.9% 15/32 22/32 30/64 – – 54.17%

ConvNet ℓ1-norm 18.0% 17/32 25/32 20/64 – – 54.17%

AlexNet None (baseline) 42.63% 47/96 164/256 306/384 318/384 220/256 72.29%

AlexNet ℓ2-norm 42.70% 49/96 143/256 128/384 122/384 161/256 46.98%

AlexNet ℓ1-norm 42.45% 49/96 155/256 157/384 108/384 178/256 50.03%
†The baseline without Force Regularization. ‡M /N : Low rank M over full rank N , which is defined as rank ratio.

662

Figure 6. Th rank ratio (having ≤ 5% PCA reconstruction error)

in each layer vs. top-1 error for AlexNet. Horizontal dotted lines

represent the rank ratios of the baseline, and vertical dotted line

is the error of baseline. Solid (dashed) curves depict rank ratios

of the AlexNet after Force Regularization by ℓ2-norm (ℓ1-norm)

force. Each layer is denoted by a typical color. The sensitivity of

hyper-parameter λs: along the direction from left to right, λs of

ℓ2-norm force changes from 1.2e-5, to 1.8e-5, 2.0e-5, 3.0e-5, and

3.5e-5; and for ℓ1-norm force, it changes from 1.5e-5, to 1.8e-5,

2.0e-5, and 2.5e-5.

depth of modern DNNs grows dramatically [25][10]. Fig. 5

shows the rank M of ResNets-20 [10] and GoogLeNet [25]

after Force Regularization, representing the scalability of

our method on deeper DNNs. With an acceptable accuracy

loss, 5 layers in ResNets-20 and 6 layers in GoogLeNet are

even coordinated to rank M = 1, which indicates those In-

ception blocks in GoogLeNet or Residual blocks in ResNets

have been over-parameterized and can be greatly simplified.

To study the trade-off between rank, accuracy, and the

pros and cons of ℓ2-norm and ℓ1-norm force, we conducted

comprehensive experiments on AlexNet. As shown in Fig. 6,

with mere 1.71% (1.80%) accuracy loss, the average rank

ratio can be reduced to 28.59% (28.72%) using ℓ2-norm (ℓ1-

norm) force. Very impressively, the rank M of each group

in conv4 can be reduced to one by ℓ1-norm force. The re-

sults also show that ℓ2-norm force is more effective than

ℓ1-norm force when the rank ratio is high (e.g., conv2 and

conv5), while ℓ1-norm force works better for layers whose

potential rank ratios are low (e.g., conv3 and conv4). In

general, ℓ2-norm force can better balance the ranks across

all the layers.

Because Force Regularization coordinates more useful

weight information in a low-rank space, it essentially can

provide a better training initialization for the DNNs that are

decomposed by LRA. Fig. 7 plots the training data loss and

top-1 validation error of AlexNet, which is decomposed to

the same ranks by PCA. The baseline is the original AlexNet

and the other AlexNet is coordinated by Force Regulariza-

0.5

1

1.5

2

2.5

0 50000 100000 150000

(a) Training data loss

baseline

force regularization

43%

44%

45%

46%

47%

48%

49%

50%

0 50000 100000 150000

(b) Top-1 validation error

baseline
force regularization

Figure 7. Training data loss and top-1 validation error vs. iteration

when fine-tuning AlexNet which is decomposed to the same ranks.

tion. The figure shows that the error sharply converges to

a low level after a few iterations, indicating LRA provides

a very good initialization for the low-rank DNNs. Train-

ing it from scratch has significant accuracy loss. More im-

portantly, DNNs coordinated by Force Regularization can

converge faster to a lower error.

Besides PCA [22][30], we also evaluated the effec-

tiveness of Force Regularization when integrating it with

SVD [5][26] or k-means clustering [5][2]. Table 3 com-

pares the accuracies of AlexNet decomposed by different

LRA methods. All LRAs preserve the same ranks in all lay-

ers, which means the decomposed AlexNet have the same

network structure. In summary, PCA and SVD obtain sim-

ilar accuracy and surpass k-means clustering. Due to the

limited pages, we adopt PCA as the representative in our

study.

5.3. Acceleration of DNN Testing

In our experiments, we first train DNNs with Force Regu-

larization, then decompose DNNs using LRA methods and

fine-tune them to recover accuracy. In evaluation of speed,

we omit small CIFAR-10 database and focus on large-scale

DNNs on ImageNet, whose speed is a real concern. To

prove the effective acceleration of Force Regularization, we

adopt the speedup of state-of-the-art LRAs [30][4][26] as

our baseline. Our speedup is achieved in the case that the

DNN filters are first coordinated by Force Regularization

and then decomposed using the same LRAs. The practical

GPU speed is profiled by the advanced hardware (NVIDIA

Table 3. The accuracy of different LRA under the same ranks.

Force LRA Top-1 error

None

PCA 43.21%

SVD† 43.27%

k-means† 44.34%

ℓ2-norm

PCA 43.25%

SVD† 43.20%

k-means† 44.80%
† SVD and k-means preserve the same ranks with PCA

663

Table 4. The higher speedups of AlexNet by Force Regularization.

Force Top-1 error conv3 conv4 conv5

None 43.21% rank 184 201 146

ℓ2-norm 43.25% rank 124 106 129

None 43.21% GPU 1.58× 1.21× 1.15×
ℓ2-norm 43.25% GPU 2.16× 2.03× 1.33×

None 43.21% CPU 1.78× 1.60× 1.47×
ℓ2-norm 43.25% CPU 2.45× 2.76× 1.64×

None 43.21% theoretical 1.79× 1.72× 1.63×
ℓ2-norm 43.25% theoretical 2.65× 3.26× 1.85×

GTX 1080) and software (cuDNN 5.0). The CPU speed is

measured in Intel Xeon E5-2630 and ATLAS library. The

batch size is 256.

Cross-filter LRA: We first evaluate the speedup of

cross-filter LRA shown in Fig. 3. In previous works [5][26],

the optimal rank in each layer can be selected layer-by-

layer using cross validation. However, the number of hyper-

parameters increases linearly with the depth of DNNs. To

save development time, we utilize an identical error per-

centage eM
e0

across all layers as the single hyper-parameter

although layer-wise rank selection may give better tradeoff.

The rank in a layer is the minimal M which has error≤ eM
e0

.

As aforementioned in Section 5.2 and Table 2, the

learned conv1 and conv2 of AlexNet are already in a very

low-rank space and achieve good speedups using LRAs [5].

Thus we mainly focus on conv3-conv5 here. Table 4 sum-

marizes the speedups of PCA approximation of AlexNet

with and without ℓ2-norm Force Regularization. With igno-

ble accuracy difference, Force Regularization successfully

coordinates filters to a lower-rank space and accelerates the

testing by a higher factor, comparing with the state-of-the-

art LRA. Similar results are observed when applying ℓ1-

norm force.

Results in Table 4 also show that practical speedup is dif-

ferent from theoretical speedup. Generally, the difference is

smaller in lower-performance processors. In CPU mode of

Table 4, Force Regularization achieves 2× speedup of total

convolutional time.

Speeding up state-of-the-art LRA: We also duplicate

the state-of-the-art work [26] as the baseline2 (lra1). After

LRA, AlexNet is fine-tuned with learning rate starting from

0.001 and divided by 10 at iteration 70,000 and 140,000.

Fine-tuning terminates after 150,000 iterations.

The first row in Table 5 contains the results of the base-

line [26], which don’t scale well to the advanced “TITAN

1080 + cuDNN 5.0” in conv3–5. This is because 3 × 3
convolution is highly optimized in cuDNN 5.0, e.g., us-

ing Winograd’s minimal filtering algorithms [17]. However,

the baseline decomposes the 3 × 3 convolution to a pair of

2Code is provided by the authors in https://github.com/

chengtaipu/lowrankcnn/

Table 5. The higher speedup factors by force regularization.

LRA Force Top-5 err. conv3 conv4 conv5

lra1 [26] None 20.65% GPU 0.86× 0.57× 0.40×

lra2 None 19.93% GPU 1.89× 1.57× 1.57×

lra2 ℓ2-norm 20.14% GPU 2.25× 2.03× 1.60×

lra2 ℓ2-norm 21.68%
GPU 3.56× 3.01× 2.40×
CPU 4.81× 4.00× 2.92×

3 × 1 and 1 × 3 convolution so that the optimized cuDNN

is not fully exploited. This will be a common issue in the

baseline, considering Winograd’s algorithm is universally

used and 3 × 3 convolution is one of the most common

structures. We find that LRA in Fig. 3 can be utilized for

conv 3–5 to solve this issue, because it can maintain the

3×3 shape. We name this LRA as lra2, which decomposes

conv1–conv2 using LRA in [26] and conv 3–5 using LRA of

Fig. 3. The second row in Table 5 shows that our lra2 can

scale well to the hardware and software advances of “TI-

TAN 1080 + cuDNN 5.0”. More importantly, Force Regu-

larization on conv3–5 can enforce them to more lightweight

layers and attain higher speedup factors than lra2 without

using it. The result is shown in the third row, which in total

achieves 2.03× speedup for the whole convolution in GPU.

With small accuracy loss in row 4 of Table 5, Force Regu-

larization achieves 2.50× speedup of total convolution on

GPU and 4.05× on CPU.

Table 6 compares our method with state-of-the-art DNN

acceleration methods, in CPU mode. When the speedup of

total time was not reported by the authors, we estimate it

by the weighted average speedups over all layers, where

the weighting coefficients are derived from the percent-

age of running time of each layer. In our hardware plat-

form, conv1–conv5 respectively consume 15.89%, 28.25%,

24.32%, 18.70% and 12.84% testing time. The estimation

is accurate, for example, we estimate 2.58× of total time

in one-shot [14], which is very close to 2.52× reported by

the authors. Comparing with both cp-decomposition and

one-shot methods, our method can achieve higher accuracy

and higher speedup. Comparing with SSL, with almost the

same top-5 error (21.68% vs. 21.63%), we can attain higher

speedup of 4.05× vs. 3.13×.

deep-compression [7] reported 3× to 4× speedups in

fully-connected layers when batch size was 1. However,

convolution is the bottleneck of DNNs, e.g., the convolution

time in AlexNet is 5× of the time in fully-connected layers

when profiled in our CPU platform. Moreover, no speedup

was observed in the batching scenario as reported by the au-

thors [7]. More importantly, as we will show in Section 5.4,

our work can work together with sparsity-based methods

(e.g., SSL or deep-compression) to obtain lower-rank and

sparse DNNs and potentially further accelerate the testing

of DNNs.

664

https://github.com/chengtaipu/lowrankcnn/
https://github.com/chengtaipu/lowrankcnn/

Table 6. Comparison of speedup factor on AlexNet by state-of-the-art DNN acceleration methods.

Method Top-5 err. conv1 conv2 conv3 conv4 conv5 total

AlexNet in Caffe 19.97% 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×

cp-decomposition [18] 20.97% (+1.00%) – 4.00× – – – 1.27×

one-shot [14] 21.67% (+1.70%) 1.48× 2.30× 3.84× 3.53× 3.13× 2.52×

SSL [28]
19.58% (-0.39%) 1.00× 1.27× 1.64× 1.68× 1.32× 1.35×
21.63% (+1.66%) 1.05× 3.37× 6.27× 9.73× 4.93× 3.13×

our lra2
20.14% (+0.17%) 2.61× 6.06× 2.48× 2.20× 1.58× 2.69×
21.68% (+1.71%) 2.65× 6.22× 4.81× 4.00× 2.92× 4.05×

5.4. Lowerrank and Sparse DNNs

We sparsify the lightweight deep neural network (i.e.,

the first one of lra2 in Table 6), using Structured Spar-

sity Learning SSL [28] or non-structured connection-

pruning [23]. Note that Guided Sparsity Learning (GSL) is

not adopted in our connection-pruning though better spar-

sity is achievable when applying it. Figure 8 summarizes

the results.

Experiments prove that our method can work together

with both structured and non-structured sparsity methods to

further compress and accelerate models. Comparing with

deep-compression in Figure 8(a), our model has compara-

ble compression rates but 2.69× faster testing time. Typ-

ically, our model has higher compression rates in convo-

lutional layers, which provides more space for computation

reduction and generalizes better to modern DNNs (ResNets-

152 [10], for example, whose parameters in fc layers are

only 4%). In Figure 8(b), our accelerated model can be

further accelerated using SSL. The shape-wise sparsity in

0

2

4

6

8

10

12

C
o
m

p
re

ss
io

n
 r

a
te

deep-compression lra2+connection-pruning

0

10

20

30

40

50

60

70

80

90

%
 s

tr
u

ct
u

re
d

 s
p

a
rs

it
y
 SSL lra2+SSL

(a)
(b)

Figure 8. The results of sparsifying lightweight DNNs whose fil-

ters are coordinated to a lower-rank space by Force Regularization.

In terms of deep-compression in (a), we only count the compres-

sion rate obtained from connection pruning for a fair comparison,

but quantization and Huffman coding can also be utilized to im-

prove the compression rate for our model. Based on SSL in (b), we

enforce shape-wise sparsity on conv3 s, conv4 s and conv5 s to

learn the shapes of basis filters meanwhile enforce filter-wise spar-

sity on conv3 f and conv4 f to learn the number of filters [28]. As

each convolutional layer in the lra2 is decomposed to two small

layers, we respectively denote the first and second small layer by

suffixing “ s” and “ f”. The baseline and our model have the same

accuracy.

conv3–5 of our model is slightly lower because our model is

already aggressively compressed by LRA. The higher filter-

wise sparsity, however, implies the orthogonality of our ap-

proach to SSL.

5.5. Generalization of Force Regularization

In convolutional layers, each filter basically extracts a

discriminative feature, e.g., an orientation-selective pattern

or a color blob in the first layer [16] or a high-level fea-

ture (e.g., textures, faces, etc.) in deeper layers [29]. The

discrimination among filters is important for classification

performance. Our method can coordinate filters for more

lightweight DNNs meanwhile maintain the discrimination.

It can also be generalized to learn more discriminative fil-

ters to improve the accuracy. The extension to Discrimi-

nation Regularization is straightforward but effective: the

opposite gradient of Force Regularization (i.e., λs < 0) is

utilized to update the filter. In this scenario, it works as the

repulsive force to repel surrounding filters and enhance the

discrimination. Table 7 summarizes the improved accuracy

of state-of-the-art DNNs.

Acknowledgments

This work was supported in part by NSF CCF-1744082.

Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the authors and

do not necessarily reflect the views of NSF or their contrac-

tors.

Table 7. Improved accuracy with Discrimination Regularization.

Net Regularization Top-1 error

AlexNet None (baseline) 42.63%

AlexNet ℓ2-norm force 41.71%

AlexNet ℓ1-norm force 41.53%

ResNets-20 None (baseline) 8.82%

ResNets-20 ℓ2-norm force 7.97%

ResNets-20 ℓ1-norm force 8.02%

665

References

[1] J. M. Alvarez and M. Salzmann. Learning the number of

neurons in deep networks. In Advances in Neural Informa-

tion Processing Systems (NIPS), pages 2262–2270, 2016. 2

[2] C. Bauckhage. k-means clustering is matrix factorization.

arXiv:1512.07548, 2015. 2, 6

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2009. 5

[4] M. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. de Fre-

itas. Predicting parameters in deep learning. In Advances in

Neural Information Processing Systems (NIPS). 2013. 1, 2,

3, 6

[5] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In Advances in Neural In-

formation Processing Systems (NIPS). 2014. 1, 2, 5, 6, 7

[6] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for

efficient dnns. In Advances in Neural Information Process-

ing Systems (NIPS). 2016. 1, 2

[7] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural network with pruning, trained quanti-

zation and huffman coding. arXiv:1510.00149, 2015. 1, 2,

7

[8] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances in

Neural Information Processing Systems (NIPS). 2015. 1, 2

[9] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In International Conference on Computer Vi-

sion (ICCV), 2015. 1

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016. 1, 5, 6, 8

[11] Y. Ioannou, D. P. Robertson, J. Shotton, R. Cipolla, and

A. Criminisi. Training cnns with low-rank filters for efficient

image classification. arXiv:1511.06744, 2015. 1, 2

[12] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions.

In Proceedings of the British Machine Vision Conference

(BMVC), 2014. 1, 2

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. arXiv:1408.5093,

2014. 5

[14] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin.

Compression of deep convolutional neural networks for fast

and low power mobile applications. arXiv:1511.06530,

2015. 1, 2, 7, 8

[15] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. 2009. 5

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems (NIPS).

2012. 1, 2, 5, 8

[17] A. Lavin. Fast algorithms for convolutional neural networks.

arXiv:1509.09308, 2015. 7

[18] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lem-

pitsky. Speeding-up convolutional neural networks using

fine-tuned cp-decomposition. arXiv:1412.6553, 2014. 1, 2,

8

[19] V. Lebedev and V. Lempitsky. Fast convnets using group-

wise brain damage. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016. 1, 2

[20] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.

Jackel. Optimal brain damage. In Advances in Neural In-

formation Processing Systems (NIPS), volume 2, pages 598–

605, 1989. 2

[21] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient convnets. In International Con-

ference on Learning Representations (ICLR), 2017. 2

[22] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.

Sparse convolutional neural networks. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2015.

1, 2, 5, 6

[23] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and

P. Dubey. Faster cnns with direct sparse convolutions and

guided pruning. In International Conference on Learning

Representations (ICLR), 2017. 1, 2, 8

[24] K. Simonyan and A. Zisserman. Very deep con-

volutional networks for large-scale image recognition.

arXiv:1409.1556, 2014. 1, 2

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015. 1,

2, 6

[26] C. Tai, T. Xiao, X. Wang, and W. E. Convolutional neu-

ral networks with low-rank regularization. In International

Conference on Learning Representations (ICLR), 2016. 1, 2,

3, 6, 7

[27] P. Wang and J. Cheng. Accelerating convolutional neural

networks for mobile applications. In Proceedings of the 2016

ACM on Multimedia Conference, 2016. 1, 2

[28] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In Advances in

Neural Information Processing Systems (NIPS). 2016. 1, 2,

5, 8

[29] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In European Conference on Com-

puter Vision (ECCV), 2014. 8

[30] X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very

deep convolutional networks for classification and detection.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 38(10):1943–1955, Oct 2016. 1, 2, 3, 5, 6

666

