
Joint Adaptive Sparsity and Low-Rankness on the Fly:

An Online Tensor Reconstruction Scheme for Video Denoising

Bihan Wen Yanjun Li Luke Pfister Yoram Bresler ∗

Electrical and Computer Engineering and Coordinated Science Laboratory

University of Illinois at Urbana-Champaign, IL, USA.

{bwen3, yli145, lpfiste2, ybresler}@illinois.edu

Abstract

Recent works on adaptive sparse and low-rank signal

modeling have demonstrated their usefulness, especially in

image/video processing applications. While a patch-based

sparse model imposes local structure, low-rankness of the

grouped patches exploits non-local correlation. Applying

either approach alone usually limits performance in var-

ious low-level vision tasks. In this work, we propose a

novel video denoising method, based on an online tensor

reconstruction scheme with a joint adaptive sparse and low-

rank model, dubbed SALT. An efficient and unsupervised

online unitary sparsifying transform learning method is in-

troduced to impose adaptive sparsity on the fly. We develop

an efficient 3D spatio-temporal data reconstruction frame-

work based on the proposed online learning method, which

exhibits low latency and can potentially handle streaming

videos. To the best of our knowledge, this is the first work

that combines adaptive sparsity and low-rankness for video

denoising, and the first work of solving the proposed prob-

lem in an online fashion. We demonstrate video denoising

results over commonly used videos from public datasets.

Numerical experiments show that the proposed video de-

noising method outperforms competing methods.

1. Introduction

Denoising is one of the most important problems in

video processing. Despite today’s vast improvement in

camera sensors, videos captured at high speed and in low

light conditions are still corrupted by severe noise due to

high sensitivity (i.e. ISO). The problem of noise in videos

is gaining prominence with the ubiquitous use of rela-

tively low-quality cameras in smart phones and other de-

vices. Therefore, recovering high-quality videos from noisy

footage is of great interest as a low-level vision problem,

and also improves robustness in high-level vision tasks [13].

Video denoising presents challenges that are distinct

∗This work was supported in part by the National Science Foundation

(NSF) under grants CCF-13-20953 and IIS 14-47879.

Figure 1. A simple illustration of the SALT model for video

from other multi-frame image data, such as volumetric data

(e.g. 3D medical image) or hyperspectral data. Hyperspec-

tral images, in particular, typically exhibit strong correla-

tion in a small spatial window along the spectral dimen-

sion [15,20]. In video, however, objects can move through-

out or exit the scene, and such long-term correlations may

not exist [14]. Furthermore, many video denoising applica-

tions are of a streaming nature and a low-latency denoising

method is required. In this environment a denoising algo-

rithm can depend only on a small number of frames [31].

Most video denoising methods take advantage of local

or non-local structures present in video data. Natural im-

ages and videos have local structures that are sparse or com-

pressible in some transform domain or over certain dictio-

naries [11,12,21], e.g., discrete cosine transform (DCT) and

wavelets. One can exploit this fact and reduce noise by co-

efficient shrinkage, e.g., sparse approximation or Wiener fil-

tering, of the compressible representation [21, 26]. Beyond

these local structures captured by sparsity, videos also con-

tain non-local structures, such as spatial similarity and tem-

poral redundancy. State-of-the-art video and image denois-

ing algorithms group similar structures across the spatial

and temporal dimensions (usually within a spatio-temporal

neighborhood) and apply a denoising operation jointly to a

group. A successful approach of this nature comprises the

1241

following steps: 1) group similar patches; 2) jointly denoise

a group of patches; 3) aggregate the denoised patches to

construct the final estimate [2–7, 14–16, 33, 34].

The well-known BM3D image denoising algorithm [4]

has been extended to both volumetric data [15] and video

data [14]. In both cases, a block matching (BM) algorithm

is used to group similar 3D cubes of data forming patch

groups and patches are denoised by coefficient shrinkage in

a 4D transform domain. The video version, VBM4D, aug-

ments the BM algorithm with motion estimation to track

objects as they move throughout the scene [14]. Buades et

al. proposed a similar video denoising algorithm that differs

in both the patch grouping and denoising strategy [2]. Patch

grouping incorporates the optical flow algorithm for motion

estimation, and the grouped patches are denoised by low-

rank (LR) matrix approximation. Dong et al. proposed a

multi-frame image denoising algorithm that uses BM to ex-

tract similar 3D patches of data [6]. Rather than transform

domain thresholding, they denoise the resulting tensor using

a low-rank approximation. A recent approach splits videos

into sparse and low-rank “layers” before denoising [9].

While some of the above algorithms leverage sparsity in

the denoising stage, they do so in a fixed transform domain.

However, it has been shown in many low-level vision tasks,

including image and video denoising, that data-adaptive

representations usually lead to superior performance over

fixed sparse representations [8,30,31]. Synthesis dictionary

learning is the most well-known adaptive representation

learning scheme [1, 8, 28]. Unfortunately, dictionary learn-

ing features typically NP-hard sparse coding steps [17], for

which commonly-used greedy approximate algorithms still

involve relatively expensive computations [18, 19]. As an

alternative, sparsifying transform learning [23] with cheap

sparse coding steps has been proposed and shown to be

efficient and effective in finding sparse approximations of

image data [22, 30, 32]. The recent online variants of the

transform learning [24] are especially applicable to stream-

ing large scale, or high-dimensional data, and have demon-

strated promising performance for video denoising [31].

In summary, transform domain sparsity and low-

rankness in groups of similar patches capture local and non-

local structures in video data, respectively. Similar observa-

tions are also true for images, and the combination of these

two priors has been exploited in single-frame and hyper-

spectral image denoising algorithms [20, 29]. However, to

the best of our knowledge, no video denoising algorithm

has to date utilized both data-adaptive sparse and low-rank

priors. In this paper, we introduce an online video denois-

ing scheme called Sparse And Low-rank Tensor (SALT)

reconstruction 1, which exploits both local and non-local

structures. Table 1 summarizes the proposed SALT method,

1A MATLAB implementation of SALT video denoising is available at

http://transformlearning.csl.illinois.edu/

Methods

Local Sparse Model Non

Fixed
Adapt Online BM -local

-ive Update Method

fBM3D [4] ✓ ✓ ✓

sKSVD [25] ✓

VIDOSAT

[31]
✓ ✓

VBM3D /
✓ ✓ ✓

VBM4D [3]

/ [14]

BM-DCT ✓ ✓

BM-TL ✓ ✓ ✓

BM-LR ✓ ✓

SALT ✓ ✓ ✓ ✓

Table 1. Comparison of the key attributes between the proposed

SALT denoising, its variations, and the competing methods.

its variations (BM-DCT, BM-TL, and BM-LR), as well

as some of the aforementioned competing video denoising

methods with their key attributes (see Section 5.2 for more

details about the variations and the competing methods).

Our contributions can be summarized as follows:

• We propose a video denoising algorithm that combines

benefits from sparse and low-rank approximations, and

produces reconstruction results that are better than ei-

ther alone. The proposed algorithm also outperforms

the competing video denoising methods.

• Our video denoising algorithm processes noisy videos

in an online fashion. Given incoming frames, it: 1)

groups similar patches using BM, 2) adapts a spar-

sifying transform, 3) finds sparse approximation of

patches, 4) finds low-rank approximation of a group

of similar patches, 5) reconstructs clean video frames.

The algorithm is efficient and scalable, and hence is

applicable to high-definition and high-speed videos.

• We propose an online unitary transform learning al-

gorithm, which is especially applicable to large scale

streaming data. This algorithm enables faster recon-

struction when applied to denoising and potentially

other signal restoration problems.

The proposed SALT model can be applied to restoration

of videos with “local” corruption (such as defective pixels,

blur, and color mosaic) with little change to the algorithm.

2. SALT Video Denoising Framework

We present a video denoising framework based on SALT

online reconstruction, in which streaming frames can be de-

242

http://transformlearning.csl.illinois.edu/

෨�1෨��෨��+1
෨��−�+1| … | ෨��Input FIFO

Buffer

Patch-wise KNN to form tensors෨�� = �=� �−1 +1�� Grouped Patch

Coordinates
+

A1: Mini-batch SALT Denoising

�� = �=� �−1 +1��
ത��−�+1| … | ത��Output

FIFO

Buffer ��−�+1| … |��
�1��−�+1

Video

Stream

Denoised

Stream

Normalize ෨��−�+1 by ��−�+1
Figure 2. A diagram for SALT based video denoising

noised online with a constant buffer and fixed latency.

Prior work [31] on video denoising based on trans-

form learning introduced a video stream processing method,

called VIDOSAT, which learns a sparsifying transform for

3D spatio-temporal patches of contiguous pixels. As video

typically involves various types of motion, patch grouping

methods are widely used to generate high-dimensional data

with better correlation and redundancy [6,14]. We therefore

extend the streaming scheme of VIDOSAT, so that group

matching is applied to generate 3D tensors, which are then

sequentially denoised using the mini-batch SALT denoising

method (see Section 4 for more details). The reconstructed

tensors are aggregated to output denoised frame estimates.

Figure 2 illustrates the streaming scheme in the proposed

SALT based video denoising framework. We assume that

the video stream is corrupted by additive i.i.d. Gaussian

noise. The noisy frames, denoted by Ỹτ = Yτ +ξτ ∈ R
a×b,

arrive sequentially at time τ = 1, 2, 3, etc. At time in-

stant τ = t, the newly arrived Ỹt is added to a fixed-

size first-in-first-out (FIFO) input buffer Ỹt ∈ R
a×b×m.

The buffer stores m (set to be odd) consecutive frames

Ỹt =
[

Ỹt−m+1 | Ỹt−m+2 | ... | Ỹt

]

, and drops the old-

est frame Ỹt−m once the new frame Ỹt arrives. We ex-

tract all 2D overlapping patches from the middle frame

Ỹt−(m−1)/2 of Ỹt. Suppose there exist N such patches in

total, and we denote the i-th patch by Z̃i ∈ R
n1×n2 , where

i belongs to an index set St = {N(t− 1)+1, ... , Nt}. For

each i ∈ St, we set an h1 × h2 × m search window cen-

tered at Z̃i and use the K-nearest neighbor (KNN) method to

find the K most similar patches within this window in terms

of their Euclidean distances to Z̃i. The grouped patches,

in ascending order of Euclidean distances, form a tensor

Ũi ∈ R
n1×n2×K which is assumed to satisfy the SALT

model. As Z̃i has zero distance to itself, it is always found

as the leading patch in Ũi. The coordinates of the grouped

patches are also recorded, and later used for video recon-

struction. The set of extracted tensors from the input buffer

Ỹt, denoted by Ṽt = {Ũi}i∈St
, forms the input to the mini-

batch SALT denoising scheme.

The output of the mini-batch denoising algorithm V̂t =
{Ûi} are accumulated to the fixed-size output buffer Ȳt =
[

Ȳt−m+1 | ... | Ȳt

]

∈ R
a×b×m, i.e., the 2D patches

grouped in V̂t are added to Ȳt at their respective loca-

tions, and the numbers of occurrences of these 2D patches

are accumulated accordingly in the output weighting buffer

Ft =
[

Ft−m+1 | ... | Ft

]

∈ R
a×b×m. Similar to the

FIFO Ỹt, once the newly denoised {Ûi} and the counts of

occurrences of its patches are accumulated in the output

buffers, the streaming scheme outputs the oldest (leftmost)

Ȳt−m+1 and Ft−m+1, which have finished aggregation and

will not be influenced by future output of the mini-batch

denoising algorithm. The denoised estimate Ŷt−m+1 of the

frame Yt−m+1 is computed by normalizing Ȳt−m+1 by the

weights Ft−m+1. The remaining frames in Ȳt will be up-

dated further based on future outputs of the mini-batch de-

noising algorithm {V̂τ}t+m−1
τ=t+1 . Thus, there is a fixed la-

tency of (m−1) frames between the arrival of noisy Ỹτ and

the production of its final denoised estimate Ŷτ .

3. SALT Formulation

In this section, we first introduce the formulations of on-

line unitary transform learning, and online SALT denoising.

Then we propose a mini-batch SALT denoising formula-

tion, which is extended from the online formulation, and is

used in the video denoising scheme illustrated in Figure 2.

3.1. Online Sparsifying Transform Learning with a
Unitary Constraint

We propose to learn a unitary sparsifying transform from

streaming data in an online fashion. We wish to adaptively

update a unitary transform to approximately sparsify se-

quentially arrived, or processed data. For time t = 1, 2, ...,
we compute the unitary transform Ŵt ∈ R

n×n and the

sparse code α̂t ∈ R
n for new data xt ∈ R

n by solving

the following optimization problem:

{

Ŵt, α̂t

}

= argmin
W,αt

1

t

t
∑

τ=1

{

‖W xτ − ατ‖22 + ρ2 ‖ατ‖0
}

s.t. WTW = In (P1)

where In ∈ R
n×n is the identity matrix, and a unitary con-

straint WTW = In is imposed. Here α̂t is the optimal

243

sparse code for xt, and Ŵt is optimized for all {xτ}tτ=1

and {ατ}tτ=1 until time t. The ℓ0 ”norm” ‖ατ‖0 counts the

number of nonzeros in ατ , thus imposing sparsity on xτ un-

der transform W . Since only the latest αt is updated at time

t, we assume ατ = α̂τ for 1 ≤ τ ≤ t− 1 [24, 31].

3.2. Online SALT Denoising

Based on the online unitary transform learning formu-

lation, we propose an online tensor reconstruction scheme,

dubbed online SALT, that denoises streaming tensor data

{Ũτ}tτ=1 based on sparse and low-rank approximation. The

noisy tensor measurement is Ũτ = Uτ + ǫτ , where Uτ is the

clean tensor, and ǫτ is additive noise.

To facilitate our discussion of sparse and low-rank ap-

proximation, we define some reshaping operations on ten-

sors. We use mat(·) : R
n1×n2×K → R

ns×K to denote

the matricization operation that unfolds the first two modes

of a third-order tensor, where ns = n1 × n2. We use

vec(·) : Rns×K → R
n to denote the vectorization opera-

tion on a matrix, where n = ns × K. The relations be-

tween a third-order tensor U ∈ R
n1×n2×K , its matriciza-

tion U = mat(U), and its vectorization u = vec(U) can be

summarized by the following diagram:

U ∈ R
n1×n2×K mat

⇋

mat−1

U ∈ R
ns×K vec

⇋

vec−1

u ∈ R
n.

The SALT model assumes that the vectorization u is ap-

proximately sparsifiable by some unitary transform W ∈
R

n×n , i.e., Wu = α + e, where α is a sparse vector, and

e is a small (in terms of ℓ2 norm) modeling error. Addi-

tionally, the SALT model enforces the matricization U to

be approximately low-rank, i.e., U = D + E, where D is

a low-rank matrix, and E is a small (in terms of Frobenius

norm) residual. Figure 1 illustrates SALT model for video.

Consider streaming tensor data with noise corruption,
{

Ũτ

}t

τ=1
, that we wish to denoise sequentially. The online

SALT denoising scheme is solving the following optimiza-

tion problem sequentially (for t = 1, 2, 3, ...):

min
{W,αt,Dt,Ut}

γs
1

t

t
∑

τ=1

{

‖W uτ − ατ‖22 + ρ2 ‖ατ‖0
}

+γl
1

t

t
∑

τ=1

{

‖Uτ −Dτ‖2F + θ2 rank(Dτ)
}

+γf
1

t

t
∑

τ=1

∥

∥

∥
Uτ −mat(Ũτ)

∥

∥

∥

2

F

s.t. uτ = vec(Uτ) ∀τ, WTW = In (P2)

where rank(·) returns the rank of a matrix. The solution to

(P2) at time t is denoted as
{

Ŵt, α̂t, D̂t, Ût

}

, which jointly

minimizes the sparsity and the LR modeling errors, as well

as the data fidelity to mat(Ũτ) – the matricized version of

the noisy tensor measurement. Here α̂t is the optimal sparse

code for ut, D̂t is the low-rank approximation of Ut, and

Ût is the reconstruction of Ut under the SALT model. We

update the sparsifying transform Ŵt, and the sparse code α̂t

online to be optimal for {uτ}tτ=1, which coincides with the

online unitary transform learning problem in Section 3.1.

3.3. MiniBatch SALT in Video Denoising

We now discuss the mini-batch SALT denoising formu-

lation, which is extended from the online SALT denois-

ing problem (P2) described in Section 3.2, and used in the

proposed video denoising framework. The modified mini-

batch SALT denoising problem is the following

min
{W,{αi,Di,Ui}i∈St}

γf
tN

t
∑

τ=1

̺t−τ
∑

i∈Sτ

∥

∥

∥
Ui −mat(Ũi)

∥

∥

∥

2

F

+
γl
tN

t
∑

τ=1

̺t−τ
∑

i∈Sτ

{

‖Ui −Di‖2F + θ2 rank(Di)
}

+
γs
tN

t
∑

τ=1

̺t−τ
∑

i∈Sτ

{

‖W um
i − αi‖22 + ρ2 ‖αi‖0

}

s.t. um
i = vec(C1:m Um

i) ∀i, WTW = In (P3)

where Sτ = {N(τ −1)+1, ... , Nτ} indicates the range of

tensors {Ũi}i∈Sτ
in the current mini-batch Vτ . There are in

total N tensors in each mini-batch. Comparing to the online

SALT denoising problem (P2), there are three major varia-

tions introduced in this extension: (a) mini-batch transform

update, (b) temporal forgetting factor, and (c) reduced-size

sparse approximation.

(a) Mini-batch transform update: Instead of updating

the transform after each tensor reconstruction, we only up-

date it once per mini-batch [24, 31]. This is motivated by

two reasons: a) each mini-batch Vτ contains relatively sta-

tionary training data, which can be sparsified by the same

transform W , and b) transform update involves a relatively

intensive computation of a full SVD with O(n3) complex-

ity. Mini-batch updates lower the overall computational

cost by reducing the number of transform updates by a fac-

tor of N .

(b) Temporal forgetting factor: To better adapt the

sparsifying transform W to temporally local structures of

video data, we introduce a temporal forgetting factor ̺t−τ

with a constant 0 < ̺ < 1. The use of the forgetting fac-

tor diminishes the influence from early training data [31].

This is especially useful when denoising videos with dy-

namically changing frames, or scene changes.

(c) Reduced-size sparse approximation: In the on-

line SALT reconstruction, we find the sparse approxima-

tion of the entire Ui ∈ R
ns×K under the adaptive 3D

244

Algorithm A1: Mini-batch SALT Denoising

Input: The noisy mini-batch {Ṽτ}tτ=1 sequence (Ṽτ =
{

Ũi

}Nτ

i=N(τ−1)+1
), and the initial transform W0.

Initialize: Ŵ0 = W0, Γ̃0 = 0, and Ui = mat(Ũi) ∀i =
1, 2, ...Nt.
For τ = 1, 2, ..., t Repeat

Index set: Sτ = {N(τ − 1) + 1, ... , Nτ}.

1. Sparse Coding: ∀i ∈ Sτ

(a) Vectorize um
i = vec(C1 :m(Ui)).

(b) Sparsify α̂i = Hρ(Ŵτ−1u
m
i).

2. Mini-batch Transform Update:

(a) Γτ = ̺(1− τ−1)Γτ−1 + τ−1
∑

i∈Sτ
um
i α̂T

i .

(b) Full SVD: ΦτΣτΨ
T
τ = SVD(Γτ).

(c) Update Ŵτ = ΨτΦ
T
τ .

3. LR Approximation: ∀i ∈ Sτ

(a) Economy-size: ΛiΩi∆
T
i = SVD(Ui).

(b) LR Approximate D̂i = ΛiHθ(Ωi)∆
T
i .

4. SALT Reconstruction: ∀i ∈ Sτ

(a) Sparse coding: α̂i = Hρ(Ŵτu
m
i).

(b) Reconstruct first m columns of Ûi by (4).

(c) Reconstruct last K −m columns of Ûi by (5).

(d) Tensorize Ûi = mat−1(
[

Ûi,1 | Ûi,2

]

).
End

Output: The reconstructed (denoised) tensor mini-batch
{

V̂τ

}t

τ=1
sequence, the learned transform Ŵt.

transform W . As a relatively large K is used in our ap-

proach, we need to train a large transform W , which leads

to high computational cost and overfitting. To alleviate this

issue, we only find sparse approximation of the reduced-

size Um
i = C1:m Ui, where the operator C1:m maps Ui to

the sub-matrix formed by the first m columns of Ui. The

sparsifying transform W is of reduced size n × n, where

n = ns ×m.

4. Algorithm

We solve problem (P3) using an efficient block coordi-

nate descent algorithm, which runs one iteration per time

instance t. Each iteration involves 4 steps: (i) sparse cod-

ing, (ii) mini-batch transform update, (iii) LR approxima-

tion, and (iv) SALT reconstruction, which compute or up-

date
{

αi

}

i∈St

, Wt,
{

Di

}

i∈St

, and
{

Ui

}

i∈St

, respectively.

At each time instance t, each noisy tensor Ũi from the

current input Ṽt (i.e., ∀i ∈ St), is first matricized to mat(Ũi)
as an initial estimate of Ui. Once an iteration completes, we

recover each tensor Ûi by reshaping the denoised output Ûi

back to tensor Ûi = mat−1(Ûi), to form the output of the

mini-batch algorithm V̂t. The four steps of one iteration at

time t are illustrated as follows:

(i) Sparse Coding: Given the initial value of each Ui

and the updated sparsifying transform Ŵt−1 from the last

iteration, we first vectorize the first m columns of the noisy

measurement as um
i = vec(C1:mUi). We solve the Problem

(P3) for the optimal sparse code ∀i ∈ St,

α̂i = argmin
αi

∥

∥

∥
Ŵt−1u

m
i − αi

∥

∥

∥

2

2
+ ρ2 ‖αi‖0 (1)

which is the standard sparse coding problem under the

transform model. The optimal solution α̂i is obtained as

α̂i = Hρ(Ŵt−1u
m
i) by cheap hard thresholding [22], where

the hard thresholding operator Hρ(·) is defined as

(Hρ(b))j =

{

0 , |bj | < ρ
bj , |bj | ≥ ρ

where b ∈ R
n denotes the input vector, scalar ρ ≥ 0 denotes

the threshold value, and the subscript j denotes indices of

vector entries. Note that Hρ(·) can be generalized to take a

matrix as the input, and similarly it zeros out all elements

with magnitude smaller than ρ in the matrix.

(ii) Mini-batch transform update. Fixing
{

um
i

}Nt

i=1

and {α̂i}Nt
i=1, we solve for the mini-batch unitary transform

update sub-problem at time t in (P3) as follows:

Ŵt = argmin
W

1

tN

t
∑

τ=1

̺t−τ
∑

i∈Sτ

‖Wum
i − α̂i‖22 (2)

s.t. WT W = In

Prior work on batch unitary transform learning introduced

closed-form transform update [22]. Similarly, the optimal

solution Ŵt to problem (2) has a simple and exact solution.

We define Γt =
∑t

τ=1 ̺
t−τ

∑

i∈Sτ
um
i α̂T

i , and compute

its full SVD ΦtΣtΨ
T
t = SVD(Γt). The closed-form solu-

tion to problem (2) is Ŵt = ΨtΦ
T
t . The matrix Γτ is com-

puted sequentially over time as Γτ = ̺(1 − τ−1)Γτ−1 +
τ−1

∑

i∈Sτ
um
i α̂T

i .

(iii) LR Approximation: We solve (P3) for the LR ma-

trix D̂i to approximate Ui ∀i ∈ St as

D̂i = argmin
Di

‖Ui −Di‖2F + θ2 rank(Di). (3)

Suppose the economy-size SVD of Ui is ΛiΩi∆
T
i =

SVD(Ui). Then (3) has a closed-form solution: D̂i =
ΛiHθ(Ωi)∆

T
i .

(iv) SALT reconstruction. We reconstruct each Ui, part

of which has a sparse approximation, based on the SALT

model. With fixed Ŵt, α̂i, and D̂i, we solve (P3) for Ui as

follows:

Ûi = argmin
Ui

γs

∥

∥

∥
vec(C1:m Ui)− ŴT

t α̂i

∥

∥

∥

2

2

+ γl

∥

∥

∥
Ui − D̂i

∥

∥

∥

2

F
+ γf

∥

∥

∥
Ui −mat(Ũi)

∥

∥

∥

2

F

245

Denote the optimal Ûi =
[

Ûi,1 | Ûi,2

]

, where Ûi,1 ∈ R
n×m

and Ûi,2 ∈ R
n×(K−m) are two sub-matrices. The closed-

form solutions for the sub-matrices are

Ûi,1 =
γsvec

−1(WT
t α̂i) + C1 :m(γlD̂i + γfmat(Ũi))

γs + γl + γf
(4)

Ûi,2 =
Cm+1 :K(γl D̂i + γf mat(Ũi))

γl + γf
(5)

When the iteration completes at time t, each denoised Ûi

is tensorized to be Ûi = mat−1(Ûi) as output. Algorithm

A1 summarizes the SALT mini-batch denoising algorithm.

Algorithm Complexity. The computational cost for

SALT algorithm is O(Ntmh1h2 + Ntn2K + Ntm2n2 +
tm3n3+Nt), corresponding to block matching (BM), low-

rank approximation, sparse coding, transform update, and

aggregation steps. It is on par with the state-of-the-art

VBM3D, which is O(Ntmh1h2 + Ntn2K). The current

implementation of SALT algorithm, including single-thread

patch extraction and BM Matlab functions, is not yet opti-

mized for real-time applications. We anticipate optimized

code on a GPU to be significantly faster in future works.

5. Experiment

5.1. Implementation and Parameters

Testing data. We present experimental results demon-

strating the promise of the proposed SALT video denois-

ing scheme. We evaluate the proposed algorithm over

commonly used videos from the Arizona State University

(ASU) dataset [27] 2 and Tampere University of Technology

(TUT) dataset [3, 14]. The selected testing videos contain

50 to 494 frames, with different spatial resolutions ranging

from 176 × 144 to 720 × 576. Each video involves differ-

ent types of motion, including translation, rotation, scaling,

etc. The color videos are first converted to gray-scale. We

simulate i.i.d. zero-mean Gaussian noise at 5 different noise

levels (i.e., with standard deviation σ = 5, 10, 15, 20, and

50) for each video.

Implementation details. We explain several implemen-

tation details and minor modifications. First, at each time

instant t, instead of grouping the noisy patches directly

by KNN, we pre-clean the input buffer sequentially, and

then group pre-cleaned patches. Secondly, when the KNN

searching window slides through a video, the spatial and

temporal corner cases need special treatment. We extend

frames by mirroring them at all boundaries and corners

(symmetric boundary conditions) to accommodate search

windows exceeding frame boundaries [10]. The reconstruc-

tion of the extended pixels are not aggregated to the out-

2Videos from ASU dataset with less than 1000 frames are selected.

(a) (b)
Figure 3. Frame-by-frame (a) PSNR(dB) and (b) SSIM of the

video Gbicycle with σ = 20, denoised by the proposed SALT

denoising scheme, VIDOLSAT, VBM3D and VBM4D.

(a) (b)

(c) (d)

(e) (f)
Figure 4. Denoising result: (a) One frame of the clean video

Gbicycle, (b) Frame corrupted with noise at σ = 20 (PSNR =

22.12 dB), (c) Denoised frame using the proposed SALT denois-

ing (PSNR = 35.67 dB). (d) Denoised frame using VIDOSAT

(PSNR = 31.80 dB). (e) Magnitude of error in (c). (f) Magnitude

of error in (d).

put buffer, for the sake of computational and memory effi-

ciency. We choose the h1 × h2 × m window surrounding

a patch in the first (m − 1)/2 frames to be the same win-

dow centered at the patch in the (m + 1)/2-th frame with

the same spatial location, to ensure that the window does

not temporally exceed the first frame, and still has the same

size. We also apply similar treatments to the last (m− 1)/2
frames. Thirdly, when each denoised tensor Ûi is aggre-

gated to the output buffer Ȳt, we weight the first m slices of

246

(a) (b)
Figure 5. Frame-by-frame (a) PSNR(dB) and (b) SSIM of the

video Stefan with σ = 20, denoised by the proposed SALT de-

noising scheme, VIDOLSAT, VBM3D and VBM4D.

(a) (b)

(c) (d)

(e) (f)
Figure 6. Denoising result: (a) One frame of the clean video Ste-

fan, (b) Frame corrupted with noise at σ = 20 (PSNR = 22.11 dB),

(c) Denoised frame using the proposed SALT denoising (PSNR =

29.69 dB). (d) Denoised frame using VBM4D (PSNR = 28.56

dB). (e) Magnitude of error in (c). (f) Magnitude of error in (d).

Ûi by an extra factor of (γs + γl + γf)/(γl + γf) (assum-

ing the last K −m slices have unit weights). Intuitively, as

the first m slices of Ûi are reconstructed with both sparse

and low-rank approximations, we expect their denoised es-

timates to be better, and hence assign more weights to them

in the aggregation.

Parameters. The proposed SALT video denoising

scheme uses an unsupervised approach, though there are

several hyperparameters that require tuning. We randomly

select a tuning set of 10 videos from ASU dataset, which

are excluded in the denoising test in this paper. After tun-

ing, all of the hyperparameters are fixed for evaluation over

the other 18 videos from ASU dataset, and 8 videos from

TUT dataset.

We work with square patches of size n1 = n2 = 8. We

set the temporal search range m = 9, the penalty weights

ρ = 3σ, θ = 1.1σ(
√
K+

√
ns), γl = 1, and γf = 10−4/σ.

We set γs,i = 60/si for each Ûi (see A1, Step 4(b)), where

si is the sparsity of α̂i (see A1, Step 4(a)). We use square

search windows of size h1 = h2 = h, where h decreases

from 30 to 16 as σ increases from 5 to 50. We set K = 32,

48, 64, 80 and 96, for σ = 5, 10, 15, 20, and 50, respec-

tively. We use the same forgetting factor values as in the

VIDOSAT algorithm [31], which are tuned empirically for

each σ. We initialize the sparsifying transform with the 3D

DCT W0.

5.2. Video Denoising

Competing methods. We compare the numerical re-

sults obtained using our proposed online denoising algo-

rithm (SALT), to various well-known alternatives including

frame-wise BM3D denoising (fBM3D) [4], sparse KSVD

image sequence denoising (sKSVD) [25], VIDOSAT [31],

VBM3D [3], and VBM4D [14]. We use their publicly

available codes for implementation. Among these methods,

fBM3D makes use of only non-local spatial structures by

applying a state-of-the-art image denoising method, while

sKSVD and VIDOSAT exploit local spatial-temporal spar-

sity. VBM3D and VBM4D are considered as state-of-the-

art methods for video denoising. Additionally, to better

understand the benefit of each of the regularizers used in

our SALT model, we evaluate the denoising results recon-

structed separately using only the adaptive sparse approx-

imation (BM-TL) and the low-rank approximation (BM-

LR). To verify the advantage of adaptive transform learning,

we fix the sparsifying transform in BM-TL as 3D DCT, and

denote such a method as BM-DCT. Table 1 summarizes the

key attributes of the SALT denoising, as well as other com-

peting methods.

Denoising results. To evaluate the performance of the

denoising schemes, we measure the peak signal-to-noise-

ratio (PSNR) in decibel (dB), which is computed between

the noiseless reference and the denoised video. Table 2 and

3 list the average denoised PSNRs over videos from TUT

and ASU (excluding the 10 videos used for tuning) datasets,

obtained by our proposed SALT video denoising method, as

well as the eight competing methods. The proposed SALT

video denoising method provides PSNR improvements (av-

eraged over all 26 testing videos from both datasets) of 1.3
dB, 1.2 dB, 1.0 dB, 1.6 dB, and 3.6 dB, over the VBM4D,

VBM3D, VIDOSAT, sKSVD, and fBM3D denoising meth-

ods, respectively. The proposed SALT denoising method

consistently provides better PSNRs than all of the compet-

247

Data TUT Dataset (8 videos) ∆ P

σ 5 10 15 20 50 (std.)

fBM3D
38.05 34.06 31.89 30.42 25.88

-2.86

[4] (0.78)

sKSVD
38.87 34.95 32.80 31.33 26.89

-1.95

[25] (1.02)

VIDO-
39.56 35.75 33.54 31.98 27.29

-1.30

SAT [31] (0.92)

VBM3D
39.20 35.75 33.87 32.49 26.51

-1.36

[3] (0.57)

VBM4D
39.37 35.73 33.70 32.24 26.68

-1.38

[14] (0.51)

BM-
38.76 34.80 32.63 31.15 26.82

-2.09

DCT (1.13)

BM-
40.54 36.93 34.82 33.32 28.42

-0.11

LR (0.05)

BM-
40.03 36.41 34.31 32.84 27.49

-0.70

TL (0.32)

SALT 40.65 37.05 34.98 33.47 28.47 0

Table 2. Comparison of video denoising PSNR values, averaged

over TUT dataset, for the proposed SALT and competing meth-

ods. ∆P denotes the average PSNR difference (with its standard

deviation) relative to SALT. For each video and noise level, the

best denoising PSNR is marked in bold.

ing methods for almost all videos and noise levels, demon-

strating state-of-the-art performance in denoising natural

videos. Furthermore, we observe that the average PSNR im-

provements of SALT denoising over BM-LR, BM-TL, and

BM-DCT are 0.2 dB, 0.6 dB, and 3.1 dB, respectively. The

empirical evidence indicates that both low-rank and sparse

approximations contribute positively to the final denoising

quality. Additionally, adaptively learned transform can pro-

vide much better data sparse representation, which trans-

lates to improved sparse approximation.

Figures 3 and 5 show the frame-by-frame denoised

PSNRs and SSIMs, which are obtained using the SALT

denoising algorithm for the video Gbicycle (example from

TUT dataset) and Stefan (example from ASU dataset) re-

spectively at σ = 20, along with the corresponding PSNR

and SSIM values for VIDOSAT, VBM3D, and VBM4D. It

is clear that SALT outperforms the three competing meth-

ods in terms of both PSNRs and SSIMs for all frames. Fig-

ure 4 illustrates the visual comparisons of the denoised re-

Data ASU Dataset (18 videos) ∆ P

σ 5 10 15 20 50 (std.)

fBM3D
39.44 35.47 33.26 31.73 27.00

-3.90

[4] (0.95)

sKSVD
41.83 38.09 35.96 34.46 29.80

-1.45

[25] (0.77)

VIDO-
42.49 38.63 36.36 34.79 29.78

-0.87

SAT [31] (0.47)

VBM3D
41.66 38.55 36.32 34.70 29.72

-1.09

[3] (0.82)

VBM4D
42.00 38.36 36.18 34.58 28.70

-1.32

[14] (0.52)

BM-
39.70 35.74 33.52 32.01 27.73

-3.54

DCT (0.93)

BM-
43.13 39.36 37.05 35.42 30.11

-0.26

LR (0.20)

BM-
42.61 39.01 36.84 35.27 29.97

-0.54

TL (0.28)

SALT 43.29 39.59 37.38 35.73 30.41 0

Table 3. Comparison of video denoising PSNR values, averaged

over ASU dataset, for the proposed SALT and competing methods.

For each video and noise level, the best denoising PSNR is marked

in bold.

sults, by showing one frame of the denoised Gbicycle at

σ = 20 (the clean and noisy frames are shown in Figures

4(a) and (b)), obtained by SALT (see Figure 4(c)) and VI-

DOSAT (see Figure 4(d)). The denoised frame by SALT

preserves more details while VIDOSAT generates unde-

sired artifacts, e.g., the zoomed-in region in the red and

blue boxes. It is also evident that the denoised frame by

VIDOSAT exhibits higher reconstruction error than that by

SALT, especially around the moving objects (see Figure

4(e) and (f)). Similarly in Figure 6, we observe better de-

noised result by SALT compared to VBM4D.

6. Conclusion

We propose an efficient and scalable online video de-

noising method called SALT. Our method groups similar

noisy patches into tensors, adaptively learns a sparsifying

transform, and cleans the patches jointly by adaptive sparse

and low-rank approximations. Denoising experiments show

that our method outperforms competing methods consis-

tently, sometimes by a sizable margin.

248

References

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD : An al-

gorithm for designing overcomplete dictionaries for sparse

representation. IEEE Transactions on Signal Processing,

54(11):4311–4322, 2006. 2

[2] A. Buades, J.-L. Lisani, and M. Miladinovic. Patch-based

video denoising with optical flow estimation. IEEE Transac-

tions on Image Processing, 25(6):2573–2586, 2016. 2

[3] K. Dabov, A. Foi, and K. Egiazarian. Video denoising by

sparse 3D transform-domain collaborative filtering. In Eu-

ropean Signal Processing Conference, pages 145–149, Sept

2007. 2, 6, 7, 8

[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Im-

age denoising by sparse 3-D transform-domain collabora-

tive filtering. IEEE Transactions on Image Processing,

16(8):2080–2095, 2007. 2, 7, 8

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Bm3d

image denoising with shape-adaptive principal component

analysis. In Signal Processing with Adaptive Sparse Struc-

tured Representations (SPARS), 2009. 2

[6] W. Dong, G. Li, G. Shi, X. Li, and Y. Ma. Low-rank ten-

sor approximation with laplacian scale mixture modeling for

multiframe image denoising. In Int. Conf. Comput. Vision

(ICCV), pages 442–449, 12 2015. 2, 3

[7] W. Dong, X. Li, L. Zhang, and G. Shi. Sparsity-based image

denoising via dictionary learning and structural clustering. In

IEEE Conf. Comput. Vision and Pattern Recognition (CVPR

2011), pages 457–464, June 2011. 2

[8] M. Elad and M. Aharon. Image denoising via sparse and

redundant representations over learned dictionaries. IEEE

Transactions on Image Processing, 15(12):3736–45, Dec.

2006. 2

[9] H. Guo and N. Vaswani. Video denoising via online sparse

and low-rank matrix decomposition. In IEEE Statistical Sig-

nal Processing Workshop (SSP), pages 1–5, 6 2016. 2

[10] H. Hu, J. Froment, and Q. Liu. Patch-based low-

rank minimization for image denoising. arXiv preprint

arXiv:1506.08353, 2015. 6

[11] K. Lee, Y. Li, M. Junge, and Y. Bresler. Blind recovery of

sparse signals from subsampled convolution. IEEE Transac-

tions on Information Theory, 63(2):802 – 821, 2017. 1

[12] Y. Li, K. Lee, and B. Yoram. Blind gain and phase calibra-

tion for low-dimensional or sparse signal sensing via power

iteration. In Int. Conf. Sampling Theory and Applications

(SampTA), 2017. 1

[13] D. Liu, B. Wen, X. Liu, and T. S. Huang. When image de-

noising meets high-level vision tasks: A deep learning ap-

proach. arXiv preprint arXiv:1706.04284, 2017. 1

[14] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazarian. Video

denoising, deblocking, and enhancement through separable

4-D nonlocal spatiotemporal transforms. IEEE Transactions

on Image Processing, 21(9):3952–3966, 2012. 1, 2, 3, 6, 7,

8

[15] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi. Non-

local transform-domain filter for volumetric data denoising

and reconstruction. IEEE Transactions on Image Process-

ing, 22(1):119–133, 2013. 1, 2

[16] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.

Non-local sparse models for image restoration. In Int. Conf.

Comput. Vision (ICCV), pages 2272–2279, Sept 2009. 2

[17] B. Natarajan. Sparse approximate solutions to linear sys-

tems. SIAM journal on computing, 24(2):227–234, 1995. 2

[18] D. Needell and J. Tropp. CoSaMP: Iterative signal recov-

ery from incomplete and inaccurate samples. Appl. Comput.

Harmon. Anal., 26(3):301–321, May 2009. 2

[19] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal

matching pursuit: recursive function approximation with ap-

plications to wavelet decomposition. Proceedings of 27th

Asilomar Conference on Signals, Systems and Computers,

pages 40–44, 1993. 2

[20] Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, and B. Zhang.

Decomposable nonlocal tensor dictionary learning for multi-

spectral image denoising. In IEEE Conf. Comput. Vision and

Pattern Recognition (CVPR), pages 2949–2956, 6 2014. 1, 2

[21] N. Rajpoot, Z. Yao, and R. Wilson. Adaptive wavelet restora-

tion of noisy video sequences. In Proc. IEEE Int. Conf. Im-

age Proc. (ICIP), volume 2, pages 957–960, 2004. 1

[22] S. Ravishankar and Y. Bresler. Closed-form solutions within

sparsifying transform learning. In 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing,

pages 5378–5382. IEEE, 2013. 2, 5

[23] S. Ravishankar and Y. Bresler. Learning sparsifying

transforms. IEEE Transactions on Signal Processing,

61(5):1072–1086, 2013. 2

[24] S. Ravishankar, B. Wen, and Y. Bresler. Online sparsifying

transform learningpart i: Algorithms. IEEE Journal of Se-

lected Topics in Signal Processing (JSTSP), 9(4):625–636,

2015. 2, 4

[25] R. Rubinstein, M. Zibulevsky, and M. Elad. Double sparsity:

Learning sparse dictionaries for sparse signal approximation.

IEEE Transactions on Signal Processing, 58(3):1553–1564,

2010. 2, 7, 8

[26] D. Rusanovskyy and K. Egiazarian. Video denoising algo-

rithm in sliding 3D DCT domain. In Proc. Advanced Con-

cepts for Intelligent Vision Systems, pages 618–625, 2005.

1

[27] P. Seeling and M. Reisslein. Video traffic characteristics

of modern encoding standards: H.264/AVC with SVC and

MVC extensions and h.265/HVEC. The Scientific World

Journal, 2014:1–16, 2014. 6

[28] I. Tosic and P. Frossard. Dictionary learning. IEEE Signal

Processing Magazine, 28(2):27–38, Mar 2011. 2

[29] B. Wen, Y. Li, and Y. Bresler. When sparsity meets low-

rankness: Transform learning with non-local low-rank con-

straint for image restoration. In IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP),

pages 2297–2301, March 2017. 2

[30] B. Wen, S. Ravishankar, and Y. Bresler. Structured overcom-

plete sparsifying transform learning with convergence guar-

antees and applications. International Journal of Computer

Vision (IJCV), 114(2-3):137–167, 2015. 2

[31] B. Wen, S. Ravishankar, and Y. Bresler. Video denoising

by online 3D sparsifying transform learning. In IEEE In-

ternational Conference on Image Processing (ICIP), pages

118–122. IEEE, 2015. 1, 2, 3, 4, 7, 8

249

[32] B. Wen, S. Ravishankar, and Y. Bresler. Learning flip-

ping and rotation invariant sparsifying transforms. In Image

Processing (ICIP), 2016 IEEE International Conference on,

pages 3857–3861. IEEE, 2016. 2

[33] Z. Zha, X. Liu, X. Huang, X. Hong, H. Shi, Y. Xu, Q. Wang,

L. Tang, and X. Zhang. Analyzing the group sparsity

based on the rank minimization methods. arXiv preprint

arXiv:1611.08983, 2016. 2

[34] J. Zhang, D. Zhao, and W. Gao. Group-based sparse repre-

sentation for image restoration. IEEE Transactions on Image

Processing, 23(8):3336–3351, Aug 2014. 2

250

