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Abstract

While natural beauty is often considered a subjective

property of images, in this paper, we take an objective ap-

proach and provide methods for quantifying and predicting

the scenicness of an image. Using a dataset containing hun-

dreds of thousands of outdoor images captured throughout

Great Britain with crowdsourced ratings of natural beauty,

we propose an approach to predict scenicness which explic-

itly accounts for the variance of human ratings. We demon-

strate that quantitative measures of scenicness can benefit

semantic image understanding, content-aware image pro-

cessing, and a novel application of cross-view mapping,

where the sparsity of ground-level images can be addressed

by incorporating unlabeled overhead images in the training

and prediction steps. For each application, our methods for

scenicness prediction result in quantitative and qualitative

improvements over baseline approaches.

1. Introduction

Recent advances in learning with large-scale image col-

lections have led to methods that go beyond identifying ob-

jects and their interactions toward quantifying seemingly

subjective high-level properties of the scene. For exam-

ple, Isola et al. [6] explore image memorability, finding that

memorability is a stable property of images that can be pre-

dicted based on the image attributes and features. Other

similar high-level image properties include photographic

style [28], virality [4], specificity [7], and humor [3]. Quan-

tifying such properties facilitates new applications in image

understanding.

In this paper we consider “scenicness”, or the natural

beauty of outdoor scenes. Despite the popularity of the say-

ing “beauty lies in the eye of the beholder,” research shows

that beauty is not purely subjective [12]. For example, con-

sider the images in Figure 1; mountainous landscapes cap-

tured from an elevated position are consistently rated as

more beautiful by humans than images of power transmis-

sion towers.

Figure 1: Most observers agree that images of mountains

are more scenic than power lines. Our work seeks to au-

tomatically quantify “scenicness” and demonstrate applica-

tions in image understanding and mapping.

Understanding the perception of landscapes has been

an active research area (see [41] for a comprehensive re-

view) with real-world importance. For example, McGrana-

han [19] derives a natural amenities index and shows that

rural population change is strongly related to the attractive-

ness of a place to live, as well as an area’s popularity for

retirement or recreation. Seresinhe et al. [26] show that in-

habitants of more beautiful environments report better over-

all health. Runge et al. [24] characterize locations by their

visual attributes and describe a system for scenic route plan-

ning. Lu et al. [16] recover cues from millions of geotagged

photos to suggest customized travel routes.

Recently, a number of algorithms have been developed

to automatically interpret high-level properties of images.

Laffont et al. [11] introduce a set of transient scene at-

tributes and train regressors for estimating them in novel im-

ages. Lorenzo et al. [21] use a convolutional neural network

to estimate urban perception from a single image. Deza and

Parikh [4] study the phenomenon of image virality. Sim-

ilarly, a significant amount of work has sought to under-
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(a) Scenic
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(b) Non-Scenic

Figure 2: Example images (and human-provided scenicness ratings) from the ScenicOrNot (SoN) dataset: (a) “scenic”

images (average rating above 7.0) and (b) “non-scenic” images (average rating below 3.0).

stand the relationship between images and their aesthet-

ics [10, 18, 37]. Karayev et al. [9] recognize photographic

style. Su et al. [28] propose a method for scenic photo qual-

ity assessment using hand-engineered features. Developed

independently from our work, Seresinhe et al. [25, 27] ex-

plore models for quantifying scenicness. Lu et al. [15] apply

deep learning to rate images as high or low aesthetic quality.

In this paper, we start with a large-scale dataset con-

taining hundreds of thousands of images, individually rated

by humans, to quantify and predict image scenicness. Our

main contributions are:

• an analysis of outdoor images to identify semantic con-

cepts correlated with scenicness;

• a method for estimating the scenicness of an image

which accounts for variance in the ratings and human

perception of scenicness;

• a new dataset of ground-level and overhead images

with crowdsourced scenicness scores; and

• a novel cross-view mapping approach, which incorpo-

rates both ground-level and overhead imagery to ad-

dress the spatial sparsity of ground-level images, to

provide country-scale predictions of scenicness.

2. Exploring Image Scenicness

Our work builds on a publicly-available crowd-sourced

database collected as part of an online game, ScenicOrNot,1

which contains images captured throughout Great Britain.

As part of the game, users are presented a series of im-

ages from around the island of Great Britain and invited to

rate them according to their scenicness, or natural beauty,

on a scale from 1-10. From a user standpoint, in addition

1ScenicOrNot (http://scenicornot.datasciencelab.

co.uk/) is built on top of Geograph (http://www.geograph.

org.uk/), an online community and photo-sharing website.

Figure 3: The word cloud depicts the relative frequency of

title and caption terms found in scenic images from the SoN

dataset.

to being exposed to the diverse environments of England,

Scotland and Wales, the purpose of the game is to compare

aesthetic judgments against those of other users.

We apply our work to a database of 185,548 images and

associated natural beauty rating histograms. Each image in

the dataset was rated at least five times. We refer to this

set of images as the ScenicOrNot (SoN) dataset. In addi-

tion to retaining the rating distribution and average rating,

we partition the set of images into “scenic” (average rat-

ing above 7.0) and “non-scenic” (average rating below 3.0)

subgroups. Figure 2 shows sample images from the dataset.

In the remainder of this section, we explore image proper-

ties that may be associated with scenicness, including: text

annotations, color statistics, and semantic image attributes.

2.1. Image Captions

Like most images hosted on image sharing sites, the

SoN images have associated metadata, including a title and
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less scenic more scenic

Figure 4: Distribution of color with respect to the average

scenicness rating of the SoN image set.

caption. For example, the image in Figure 1 (top, left) is

titled From Troutbeck Tongue and has the following cap-

tion: “Looking over the cairn down Trout Beck. Winder-

mere and the sea in the distance”. For all of the images

in the SoN dataset, we analyzed the title and captions to

explore whether these associated text annotations are corre-

lated with scenicness.

Using the scenic and non-scenic subsets, we compute the

relative term frequency for each of the extracted words. Fig-

ure 3 shows a word cloud of the most frequent 100 extracted

terms from scenic images, where the size of the word repre-

sents the relative frequency. While some of the terms (e.g.,

“ridge”, “cliffs”, “summit”) may universally correlate with

scenicness, other terms, such as “loch”, “na”, and “beinn”

reflect the fact the data originates from Great Britain. Con-

versely, example terms that are negatively correlated with

scenicness include “road”, “lane”, “house”, and “railway”.

2.2. Color Distributions

The images in Figure 2 and terms in Figure 3 suggest

that images with blue skies, green fields, water, and other

natural features tend to be rated as more scenic. For this

analysis, we computed the distribution of quantized color

values, using the approach of Van De Weijer et al. [30], as

a function of the average scenicness rating of the SoN im-

age set. Figure 4 shows the distribution, where we see blue

overrepresented in scenic images and, conversely, black and

gray overrepresented in non-scenic images.

2.3. Scene Semantics

For each image, we compute SUN attributes [20], a

set of 102 discriminative scene attributes spanning several

types (e.g., function, materials). Figure 5 shows an occur-

rence matrix for a subset of attributes correlated with image

scenicness. Attributes such as “asphalt”, “man-made”, and

less scenic more scenic

asphalt
driving
transporting things or people
man-made
metal
shingles
wood (not part of a tree)
mostly vertical components
biking
brick
pavement
fencing
glass
mostly horizontal components
competing
dry
rugged scene
running water
rock/stone
still water
warm
digging
swimming
diving
ocean
sailing/ boating
cold
ice
snow
climbing

Figure 5: Distribution of the frequency of SUN at-

tributes [20] in “scenic” versus “not scenic” images. Warm

colors indicate higher frequency.

“transporting things or people” occur often in less scenic

images, suggesting that urban environments are more typ-

ical of images with low scenicness. In contrast, attributes

such as “ocean”, “climbing”, and “sailing/boating” occur

more often in the most scenic images.

Similarly, we compared scenicness to the scene catego-

rizations generated by the Places [40] convolutional neural

network. Of the 205 Places scene classes (e.g., “airplane

cabin”, “hotel room”, “shed”), 135 describe outdoor cate-

gories. We aggregate the outdoor classes into seven higher-

level scene categories (similar to Runge et al. [24]), such as

“buildings and roads”, “nature and woods”, and “hills and

mountains”. Each image is classified using Places into one

of these high-level categories. Figure 6 shows the frequency

of each category as a function of the average user-provided

rating of SoN images. The trend follows previously ob-

served patterns; on the whole, images containing natural

features, such as hills, mountains, and water, are rated as

more scenic than images containing buildings, roads, and

other man-made constructs.

2.4. Summary

This analysis shows that scenicness is related to both

low-level image characteristics, such as color, and semantic

properties, such as extracted attributes and scene categories.

This suggests that it is possible to estimate scenicness from

images. In the following section, we propose a method for

directly estimating image scenicness from raw pixel values.

3. Predicting Image Scenicness

We use a deep convolutional neural network (CNN) to

address the task of automatically estimating the scenicness

of an image. Following other approaches (e.g., [31, 35]),
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Nature & Woods

Hills & Mountains

Water
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Figure 6: Distribution of high-level categories for the im-

ages in the SoN dataset.

we partition the output space and treat this prediction as a

discrete labeling task where the output layer corresponds

to the integer ratings (i.e., 1, 2, . . . , 10) of scenicness. We

represent our CNN as a function, G(I; Θg), where I is an

image and the output is a probability distribution over the 10

scenicness levels. We consider multiple loss functions dur-

ing training to best capture the distribution in human ratings

of scenicness for a given image.

The baseline approach follows recent work (e.g., [36]),

which trains a model to predict a single value. For this vari-

ant, each image is associated with the label corresponding

to the mean human rating, rounded to the nearest integer

value, r̄. Training involves minimizing the typical cross-

entropy loss:

E = −
1

N

N∑

n=1

log(G(In; Θg)(r̄n)), (1)

where N is the number of training examples.

The baseline approach assumes a single underlying value

for scenicness. However, as shown in Figure 2, for many

images, there may be high variability in the ratings. In these

cases, the mean scenicness may not serve as a representative

value. So, instead of directly predicting the mean scenic-

ness, we train the model to predict the human rating distri-

bution for a particular image. For this variant, we treat the

normalized human ratings as a target distribution and train

the model to predict this distribution directly, by minimiz-

ing the cross-entropy loss:

E = −
1

N

N∑

n=1

10∑

r=1

pnr log(G(In; Θg)(r)), (2)

where pnr is the proportion of r ratings for image n.

However, the previous formulation assumes a large num-

ber of ratings so that pn approaches the true distribution. In

our case, this assumption does not hold. As an alternative

to predicting the mean scenicness or the empirical scenic-

ness distribution, we model the set of ratings for an image

as a sample from a multinomial distribution. Each training

example is associated with a set of (potentially noisy) la-

bels {(I1, {v1i}), . . . , (IN , {vNi})}, where {vji} is the set

of ratings for image Ij . This results in the following loss:

E = −
1

N

N∑

n=1

Vn∑

i=1

pni log(G(In; Θg)(vni)), (3)

where Vn is the total number of ratings for image n.

3.1. Comparison with Human Ratings

We evaluate our scenicness predictions using the SoN

dataset. We reserved 1,413 images that have at least ten

ratings as test cases for evaluation, with the remaining data

used for training and validation. For predicting scenicness,

we modify the GoogleNet architecture [29] with weights

initialized from the Places network [40]. We selected this

CNN because it had been trained for the related task of out-

door scene classification; however, our methods could be

applied to other related architectures or trained from scratch

with sufficient data. Our implementation uses the Caffe [8]

deep learning toolbox. For training, we randomly initial-

ize the last layer weights and optimize parameters using

stochastic gradient descent with a base learning rate of 10−4

and a mini-batch size of 40 images. Roughly 10% of the

training data is reserved for validation. All trained models,

including example code, are available at our project web-

site.2

We refer to the three models as: (1) AVERAGE, the

baseline approach that predicts the mean scenicness (Equa-

tion 1); (2) DISTRIBUTION, the model that minimizes

cross-entropy loss to the normalized distribution of human

ratings (Equation 2); and (3) MULTINOMIAL, which max-

imizes the multinomial log-likelihood (Equation 3). We

compare performance on two tasks: (1) predicting the av-

erage human rating and (2) predicting the distribution of

ratings for a given image.

The output of each network is a posterior probability for

each integer rating for a given input image. To evaluate

the average user predictions, we consider the order of the

predictions, ranked by posterior probability and use the in-

formation retrieval metric, Normalized Discounted Cumu-

lative Gain (nDCG), which penalizes “out of order” poste-

rior probabilities, given the ground-truth rating. The second

column of Table 1 shows the nDCG scores for each of the

three models. Overall, the models trained using different

loss functions performed similarly well under this evalua-

tion metric.

For the task of predicting the distribution of ratings for a

given image, the performance of the models diverged. We

take a hypothesis testing approach and consider whether or

2http://cs.uky.edu/˜scott/research/scenicness/
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Table 1: Quantitative results comparing models with differ-

ent loss functions. For each metric, higher is better.

Loss Metric

nDCG K-S

AVERAGE .9780 14.8%

DISTRIBUTION .9678 50.0%

MULTINOMIAL .9745 58.4%

not the set of human ratings could be drawn from the distri-

bution represented by the output probabilities of the CNN.

For this, we applied the one-sample Kolmogorov-Smirnov

(K-S) test with a non-parametric distribution and computed

the proportion of testing images for which the human rat-

ings come from the posterior distribution at the 5% signifi-

cance level. The last column of Table 1 shows the percent-

age of testing images that matched the predicted distribu-

tion. The models trained using distribution of ratings, DIS-

TRIBUTION and MULTINOMIAL, significantly outperform

the model trained on average rating, with MULTINOMIAL

showing the best performance.

Figure 7 visualizes these results qualitatively. Several

example images are shown alongside the distribution of hu-

man ratings (green) and predictions from the three models.

In general, the results follow the quantitative analysis. The

MULTINOMIAL method better captures human uncertainty

as compared to the other methods. For example, in Figure 7

(row 1), the baseline approach, AVERAGE, provides a much

higher posterior probability for a rating of 2 than the distri-

bution of humans ratings. Comparatively, MULTINOMIAL

is more consistent with human ratings and closer to the av-

erage user predictions. For the remaining experiments, the

MULTINOMIAL model is used unless otherwise specified.

3.2. Receptive Fields of Natural Beauty

For additional insight into our scenicness predictions,

following Zhou et al. [39], we apply receptive field analysis

to highlight the regions of the image that are most salient

in generating the output distribution. Briefly, the approach

computes the differences in output predictions for a given

image with a small (i.e., 7×7) mask applied. Using a sliding

window approach, the prediction differences (compared to

the unmasked image) are computed on a grid across the im-

age. A large difference signifies the masked region plays a

significant role in the output prediction. This process leads

to a saliency map over the input image. For visualization

purposes, we represent the map as a binary mask (thresh-

olded at 0.6). Figure 8 shows several examples of this anal-

ysis. Each pair of images shows the input and the image re-

gions with the most contribution to the (high or low) scenic-

ness score. In most cases, the receptive fields match the

intuition and semantic analysis of scenicness. Regions con-

taining water, trees, and horizons contribute to scenicness,
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Figure 7: Example images alongside the distribution of hu-

man ratings (green), and the outputs of AVERAGE (blue),

DISTRIBUTION (black), and MULTINOMIAL (magenta).

The red × corresponds to the mean rating and the magenta ◦
the weighted average of the MULTINOMIAL prediction.
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(a) Scenic

(b) Non-Scenic

Figure 8: Network receptive field analysis. Given an in-

put image (top), the output mask (bottom) highlights the

region(s) that most significantly impact the maximal label

assigned by our network.

while man-made objects, such as buildings and cars, con-

tribute to non-scenicness.

3.3. Scenicness-Aware Image Cropping

The previous experiment shows that components within

a given image contribute differently to the overall scenic-

ness. For this experiment, we solve for the image crop

that maximizes scenicness. This approach follows the style

of previous methods for content-aware image processing

(e.g., seam carving for image resizing [2]). We used con-

strained Bayesian optimization [5] to solve for the position

and size of the maximally scenic image crop, where scenic-

ness is measured as the weighted average prediction from

the MULTINOMIAL network. Figure 9 shows representative

examples. In some cases, cropping improved the scenicness

scores greatly. For example, in the top image in Figure 9,

cropping out the vehicles increased the predicted scenicness

from 5.0 to 7.3.

4. Mapping Image Scenicness

The previous sections considered scenicness as a prop-

erty of an image. Here, we consider scenicness as a prop-

erty of geographic locations and propose a novel approach

for estimating scenicness over a large spatial region. We

Figure 9: For each image, the green bounding box shows

the image crop that maximizes scenicness. The predicted

scenicness scores for both the entire image and the cropped

region are shown in the inset.

extend our approach for single-image estimation to incor-

porate overhead imagery. The result is a dense, high-

resolution map that reflects the scenicness for every loca-

tion in a region of interest. Such a map could, for example,

be used to provide driving directions optimized for “sight

seeing” [23, 24] or suggest places to go for a walk [22].

We consider geotagged images as noisy samples of the

underlying geospatial scenicness function. The challenge

is that ground-level imagery is sparsely distributed, espe-

cially away from major urban areas and tourist attractions.

This means that methods which estimate maps using only

ground-level imagery [1, 21, 36] typically generate either

low-resolution or noisy maps.

To deal with the problem of interpolating sparse exam-

ples over large spatial regions, we apply a cross-view train-

ing and mapping approach. Cross-view methods [14, 33,

38] incorporate both ground-level and overhead viewpoints

and take advantage of the fact that, while ground-level im-
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Figure 10: Examples of the co-located ground-level (top) and overhead (bottom) image pairs contained in the Cross-View

ScenicOrNot (CVSoN) dataset.

ages are spatially sparse, overhead imagery is available at a

high-resolution in most locations. Jointly reasoning about

ground-level and overhead imagery has become popular

in recent years. Luo et al. [17] use overhead imagery to

perform better event recognition by fusing complementary

views. Lin et al. [13, 14] introduce the problem of cross-

view geolocalization, where an overhead image reference

database is used to support ground-level image localization

by learning a feature mapping between the two viewpoints.

Workman et al. [32, 33] study the geo-dependence of image

features and propose a cross-view training approach.

To support these efforts, we extend the ScenicOrNot

(SoN) dataset to incorporate overhead images. Specifi-

cally, for each geotagged, ground-level SoN image, we ob-

tained a 256 × 256 orthorectified overhead image centered

at that location from Bing Maps (zoom level 16, which

is ∼2.4 meters/pixel). Figure 10 shows co-located pairs

of ground-level and overhead images from the Cross-View

ScenicOrNot (CVSoN) dataset. The dataset is available at

our project website.2

4.1. Cross-View Mapping

To predict the scenicness of an overhead image even

though labeled overhead images are not available, we ap-

ply a cross-view training strategy; instead of predicting the

scenicness of the overhead image, we predict the scenicness

of a ground-level image captured at the same location. We

use the same network architecture and training methods as

with the ground-level network, with two changes: (1) over-

head (instead of ground-level) images are used as input and

(2) the weights are initialized with those learned from the

ground-level network. Similar to our ground-level network,

after training, the output of this overhead image network is

a distribution over scenicness ratings.

While using overhead images as input may address the

!
(#
$ )

!
(#
& )

!
(#
' )

{)*+,-*,+))}

Figure 11: The architecture for our hybrid approach to

cross-view mapping.

issue of sparse spatial coverage of ground-level imagery,

an overhead-only network may miss, for example, scenic

views hidden amongst dense urban areas. To address this is-

sue, we introduce a novel variant to the cross-view approach

for combining ground-level and overhead imagery to esti-

mate the scenicness of a query location. This is similar to

our framework for estimating geospatial functions [34].

Figure 11 shows an overview of our hybrid cross-view

approach. For a given query location, q, consider the co-

located overhead image, set of the k closest ground-level

images, and the distances of the ground-level images to the

query location, {δ1, δ2, . . . , δk}. For the images, we can

compute scenicness features using the existing ground and

overhead networks. For the hybrid approach, we learn and

predict scenicness from the fused features (overhead image

features, ground-level features, weighted distances) using a
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Table 2: Comparison of mapping strategies.

Method 1NN LWA CVH

AUC 64.38% 66.86% 68.51%

small feed-forward network, with three hidden layers con-

taining 100, 50, and 25 neurons, respectively. The activa-

tion function on the internal nodes is the hyperbolic tangent

sigmoid. The network weights are regularized using an L2

loss with a weight of 0.5. The output is the predicted distri-

bution of ratings for a ground-level image taken at the input

location. We refer to this as the Cross-View Hybrid (CVH)

network.

4.2. Mapping the Scenicness of Great Britain

To evaluate CVH, the CVSoN dataset is divided as be-

fore, with the same 1,413 ground-level images (with at least

10 ratings) held out for testing. For CVH, the test input in-

cludes the co-located overhead image. We compare against

two baseline methods for constructing dense maps of visual

properties:

• 1NN: return the prediction from the ground-level im-

age closest to the query location; and

• LWA: return the locally weighted average prediction of

neighboring ground-level images with a Gaussian ker-

nel (σ = 0.01 degrees).

To compare our methods, we formulate a binary classifica-

tion task to determine if a given test image is above or below

a scenicness rating of 7. Table 2 shows the results for each

method as the area under the curve (AUC) of the ROC curve

computed from the output distributions. The results show

that including orthographic overhead imagery improves the

resulting predictions.

These results are supported qualitatively in Figure 12,

which shows scenicness maps for several regions around

Great Britain. We observe that by including overhead im-

agery we are able to construct a significantly more accurate

map than purely interpolating scenicness estimates obtained

from ground-level images alone. The maps created using

only ground-level images (e.g., 1NN, LWA) are susceptible

to both underprediction (e.g., no nearby scenic ground-level

images) and overprediction (e.g., a single nearby scenic im-

age with a narrow field of view). On the other hand, the

cross-view approach can be more robust against these types

of mispredictions due to effectively averaging across many

images (by marginalizing through the overhead imagery),

not just those in the nearby area.

5. Conclusions

We explored the concept of natural beauty as it per-

tains to outdoor imagery. Using a dataset containing hun-

ROI 1NN LWA CVH

Figure 12: Scenicness maps. The first column shows

an overhead image where dots correspond to geotagged

ground-level imagery, colored by average scenicness rating

(warmer colors correspond to more scenic images). The re-

maining columns show false-color images that reflect the

average scenicness predicted by each method.

dreds of thousands of ground-level images rated by hu-

mans, we showed it is possible to quantify scenicness, from

both ground-level and overhead viewpoints. To our knowl-

edge, this is the first time a combination of overhead and

geotagged ground-level imagery has been used to map the

scenicness of a region. The resulting maps are higher-

resolution than those constructed by previous approaches

and can be quickly computed. Such methods have signifi-

cant practical importance to many areas, including: tourism,

transportation routing, and environmental monitoring.
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