
Interpretable Transformations with Encoder-Decoder Networks

Daniel E. Worrall Stephan J. Garbin Daniyar Turmukhambetov Gabriel J. Brostow

University College London ∗

Abstract

Deep feature spaces have the capacity to encode complex

transformations of their input data. However, understanding

the relative feature-space relationship between two transformed

encoded images is difficult. For instance, what is the relative

feature space relationship between two rotated images? What

is decoded when we interpolate in feature space? Ideally, we

want to disentangle confounding factors, such as pose, appear-

ance, and illumination, from object identity. Disentangling these

is difficult because they interact in very nonlinear ways. We

propose a simple method to construct a deep feature space,

with explicitly disentangled representations of several known

transformations. A person or algorithm can then manipulate

the disentangled representation, for example, to re-render an

image with explicit control over parameterized degrees of free-

dom. The feature space is constructed using a transforming

encoder-decoder network with a custom feature transform layer,

acting on the hidden representations. We demonstrate the ad-

vantages of explicit disentangling on a variety of datasets and

transformations, and as an aid for traditional tasks, such as

classification.

1. Introduction

We seek to understand and exploit the deep feature-space

relationship between images and their transformed versions.

Different feature spaces are illustrated in Figure 1, and

support different use-cases: separability helps discriminate

between categories such as identity, while invariance improves

robustness to nuisance variables during data capture. Taking

head pose as an example, what is a nuisance for one task could

be the focus of another. Therefore, we propose deep features

with transformation-specific interpretability, which combine

both (1) discriminative and (2) robustness properties, with the

further benefits of (3) a user-guided parameterized space for

controlling image synthesis through interpolation.

Learning such a feature space is difficult. In image data, trans-

formations of objects usually couple in complex nonlinear ways,

leading to an entangling of transformations. The reverse process

of disentangling is then especially hard. An obvious post hoc

∗http://visual.cs.ucl.ac.uk/pubs/interpTransform/

Uninterpretable feature space Invariant feature space Interpretable feature space

Figure 1. Three alternative feature spaces and how each encodes images

of the same person. (Left) A feature space that is hard to interpret,

similar to one learned by a typical CNN. While transformation

information is present, it is not obvious how to extract that directly from

the feature space. (Middle) A transformation-invariant feature space.

(Right) An interpretable feature-space, where ordered transformations

of the input subject relate to ordered, structured features. This is like

a learned metric space, but also allows for image synthesis. Images

of another person are not shown, but would ideally project similarly,

albeit elsewhere in each feature space.

solution is to learn disentangling transformations using a regres-

sor [31], but this is a time-consuming and inexact process. We

cannot assume that the change in representation of a chair and its

rotated twin is necessarily the same as the change in representa-

tion between a banana and its equally rotated twin. We propose

disentangling as an end-to-end supervised learning problem.

Some image variations are hard to quantify or explain. But oth-

ers, for instance 2D and 3D warps or color appearance changes,

allow ready access to pre- and post-warp image pairs, along

with their ground-truth transformation parameters. These easier

transformations, we find, lend themselves to smooth parameteri-

zation in feature space, and therefore interpretability. One could

argue that it is nicer to learn everything only from raw data,

but the transformation parameter labels considered here are ob-

tained with little or no human effort. We therefore pre-define the

feature-space structures that encode basic transformations, and

train neural networks that map into and out of this feature-space.

We take our motivation from considering the feature space

structure, introduced by convolutional neural networks [30]

(CNNs). CNNs owe their success to two differences from the

older and more general multilayer perceptrons [36]: 1) the recep-

tive field of deep neurons is localized to a small neighborhood,

typically not greater than 7×7 pixels from the layer below, and

2) incoming weights are tied between all translated neurons. The

motivation behind translational weight-tying is that correlations

in the activations are invariant under translation. The side-effect

of enforcing such a structure on the weights of a neural network

15726

is that integer pixel translations of the image input induce

proportional integer pixel translations of the deep feature

maps. This phenomenon is called equivariance, meaning the

feature-representation of a shifted input is the same, save for

its location. We explore continuous transformation equivariance

for CNNs, and for the first time, for fully connected models.

In this paper, we consider rotations in 2D and 3D, out-of-

plane rotations, small translations, stretchings, uniform scalings

and changes in lighting direction. For these transformations

CNNs do not generally display the equivariance property;

although, there are a number of works, which do tackle the

problem of rotation [6, 10, 41, 12, 16, 28, 50, 15, 56]. The

main problem with all these approaches (which we detail

in the next section) is that the equivariance properties are

handcrafted, and suffer from unmodeled oversights in the

design process. For instance, all but [50] consider equivariance

to discretely sampled rotations, when real world rotations

are in fact continuous. Given that we can simulate many

image-space transformations, it seems only natural to simply

acquire equivariance through learning.

We now cover related work and theory, followed by Section 3

where we introduce our method and the new feature transform

layer, and Section 4 where we test our framework on de-render–

re-render problems and for view independent features.

2. Related Work and Theory

Here we outline basic concepts for us to formalize the task

of encoding interpretable transformations, and break down a

list of related works into categories of handcrafted or learned

equivariance in traditional vision and deep learning.

Definition 1 A function f : X → Y is equivariant [49]

under a set of transformations Θ if for any transformation

T :Θ×X→X of the input, we can associate a transformation

F :Θ×Y→Y of the output such that

Fθ[f(x)]=f(Tθ[x]), (1)

for all θ∈Θ. Transformations Tθ and Fθ represent the same

underlying transformation but in different spaces, denoted θ.

Equivariance is desirable, because it reveals to us a direct

relationship between image-space and feature-space transforma-

tions, which for deep neural networks are usually elusive [31].

Note that invariance is a special case of equivariance, where

Fθ=I is the identity for all input transformations.

Definition 2 We define an interpretably equivariant feature-

space to be an equivariant feature-space as in Equation 1, where

the transformation functionsFθ and Tθ are quantitatively known

and can be implemented for all θ, x and f.

At an abstract level, an equivariant function is one where

some level of structure is preserved between the input and out-

put. Interpretability is the added requirement that for a given θ

we know how to apply Fθ and Tθ. It may be the case that one of

these transformations is complicated and cannot be written down

as a mathematical expression in closed form (e.g., the rendering

equation), but as long we are able to simulate it that is enough.

As we show in Section 3.2, one way of preserving the structure

of transformations across a feature mapping is via a condition

called the homomorphism property. In all of the subsequent re-

lated works, equivariance to transformations is the central theme.

Handcrafted methods In the 1980s, Crowley and Parker

[9] studied scale-space representations. These are formed by

convolving images with scaled versions of a filter. Scale-space

methods exhibit interpretable equivariance. They can be

extended to invertible transformations by transforming the

filters [35, 1] but has computational complexity exponential in

the number of degrees of freedom (DOF) of the transformation.

Furthermore, we can only convolve with a finite number of

filters, when in reality many transformations are continuous.

Freeman and Adelson [13] and Lenz [33] simultaneously solved

the continuity problem, through orientation steerable filters wθ.

These can be synthesized at any continuous orientation θ. These

are formed as a linear combination of fixed basis filters φn:

wθ(x)=

N
∑

n=1

αn(θ)φ(x). (2)

αn(θ) are known as the interpolation functions. These are still

band-limited but unlike scale-space the frequency character-

istics are easier to design. Steerable filters were extended to

most transformations with one DOF (one-parameter subgroups)

[47, 45], for instance, 1D translations, 2D rotations, scalings,

shears, and stretches. For these transformations, there is a func-

tion ρ, under which transformation θ becomes a shift, so I(x)
Tθ→

I(ρ−1(ρ(x)− tθ)), where tθ is the shift. Meanwhile, Perona

[42] showed that in practical situations some transformations

cannot be enacted exactly using steerable functions, for instance

scale and affine transformations (specifically those which do not

have compact group structure). He showed these can be approxi-

mated well with very few basis functions, computed from the sin-

gular value decomposition of a matrix of transformed versions

of a template patch. This is limited by template choice, SVD ef-

ficiency, and figuring out the interpolation functions for steering.

More recently Hasegawa [17] and Koutaki [26] used a variant

of this method to learn an affine-equivariant feature detector.

Invariance to 1 DOF transformations can be gained via

the Fourier Transform (FT) Modulus method [25]. This uses

the time-shifting property of the FT w(x−t)
FT
⇐⇒ eiωtW(ω),

where W(ω) is the FT of w(x). The FT modulus

|eiωtW(ω)| = |W(ω)| is independent of the shift t. As

noted in Scattering Networks [4], this operation removes exces-

sive localization information and is unstable to high-frequency

deformations noise. They instead take the modulus of the

response to a bank of discretely rotated and scaled wavelets,

repeatedly in a deep fashion. This is perhaps the most successful

version of a handcrafted deep equivariant feature map.

5727

Neural Networks Equivariance in deep learning has very

deep roots as far back as the early 1990s. Barnard and Casasent

[2] split the main approaches to transformation invariance into

three categories: 1) Data augmentation: This is effective and

simple to implement, but lacks interpretability. 2) Preprocessing:

This is effective, but cannot be applied to geometric transforma-

tions. 3) Structured weight networks: These are numerous in the

literature. CNNs [30] are the most famous example. Pixel-wise

integer shifts of an input image will induce proportional pixel-

wise shifts in the deep feature space. For partial translation

invariance, there is the Global Average Pooling layer [34]. For

rotations there are two major approaches for discrete rotations:

rotate the filters [6, 8, 16, 41, 15, 56] and rotate the input/feature

maps [10, 12, 28]. Continuous rotations were recently proposed

by [50]. They restrict their filters and architectures so that

the convolutional response is equivariant to continuously

rotated inputs. Beyond rotation, [18] warp the input, so that

general transformations are globally linearized, facilitating the

application of CNNs. This requires prior knowledge of the type

of transformation and where it is applied in the image. [8] can

deal with multiple transformations, but these are restricted to

group-theoretic structures. [22] are able to explicitly transform

feature maps with the spatial transformer layer, but do not trans-

form features in the channel dimension. In contrast to the above

methods, our method is general and does not require extensive

architectural engineering. We can also disentangle confounding

factors such as out-of-plane rotation and lighting direction.

Deeply Learned Equivariance Some have sought to learn

equivariance directly from data. These broadly split into

purely generative, purely discriminative and auto-encoded

methods. Discriminative: [32] regress affine equivariant

feature-descriptors directly using supervised data. Their frame-

work is easy to implement, but restricted to group-theoretic

transformations. Generative: [11] generate views of 3D chairs

by regressing appearance with a CNN from an embedding

space. In InfoGAN, [5] instead used a mutual information

maximizing criterion for unsupervised learning of the ‘natural’

transformations in a training set. This mostly manages to

disentangle transformation, but unlike [11] is non-interpretable.

Auto-encoded: [27] presented the deep convolutional inverse

graphics network (DC-IGN), a partially supervised variational

auto-encoder [24], equivariant to out-of-plane rotation and

relighting. Their model is impressive but requires a complicated

training procedure, is partially interpretable, and unlike us

does not fully exploit known supervised information about

transformations. [39, 19, 55] instead reconstruct transformed

versions of an image, given the image and transformation

parameters as input. These are similar to our method, but cannot

be used to extract interpretable transformation equivariants,

which we can do. [7] does learn interpretable equivariance to

manipulate images of 3D objects from 2D images, but this is

only demonstrated on 3D rotations. [43] also does learn inter-

pretable equivariance for 3D volumes from 2D images, but their

representation space is entire 3D volumes. This is impressive,

but it is computationally expensive to represent entire volumes

in memory, when sometimes it may not be necessary.

3. Method

CNNs are interpretably equivariant to pixel-wise translations

of their input up to boundary effects, but not to transformations

such as 2D and out-of-plane rotations, uniform scalings,

stretches, relighting, flips, etc. In this section we design a

neural network to learn an interpretable transformation equiv-

ariant feature-space. Our method can cope with continuous

transformations on intervals, for example, uniform scalings

and stretches, and continuous transformations on circles,

such as, geometric rotation and relighting, but not discrete

transformations, like vertical flips. In Section 3.1 we outline

our general framework and in Section 3.2 we introduce the

feature transform layer, a channel-wise analogue of the spatial

transformer, which can also be applied to fully-connected layers.

3.1. Problem Setup

We assume that we are given a training set D =
{(x1, x̃1θi,θ

1), ...,(xN , x̃Nθi ,θ
N)} containing pairs of views of

transformed examples (xi,x̃iθi) and relative transformation vec-

tors θi. The relative transformations may be the result of a sensor

measurement, or they may be the result of artificial data aug-

mentation, in which case the training set is potentially infinite.

The task is to predict x̃
i
θi given xi and θi (from now on we just

write θ for short). We use relative transformation information in-

stead of absolute transformations, because there is no canonical

pose, which generalizes across object classes, where alignment

between, say, a banana and an airplane does not make sense.

Many images x ∈X are formed from capturing an object

o∈O in the 3D world projected via a function Π:O→X onto

a 2D canvas. To transform image x into x̃θ we have to invert Π
to find o, perform the world-space transformation and re-project

back into image space, so

x̃θ=Π[Tθ[o]]=Π
[

Tθ
[

Π−1[x]
]]

. (3)

The problem with this approach is that Π is in usually

non-invertible. Our solution is to infer the 3D object o given x

via statistical methods. CNNs are good at this kind of task (e.g.,

[27]), so we opt to use a CNN. Now storing a full volumetric

representation like in [43] is costly, so we instead opt to use a

compressed feature encoding e(x) to approximately represent o,

this requires we also have a feature-space representation of the

transformation, Fθ—see Section 3.2 for details. In our case the

feature space is partially learnable, with pre-defined structure

imposed by Fθ. Our basic model is shown in Figure 2, it is an

encoder-decoder network. Loosely speaking

e(•) approximates Π−1[•],

Fθ is the feature space equivalent to Tθ,

d(•) approximates Π[•],

5728

DecoderFTLEncoder

Figure 2. We enforce equivariance by minimizing the loss ℓ between

reconstruction of transformed features dθ and a transformed target

x̃θ. Given just x, the encoder-decoder network does not have enough

information to produce a transformed output, thus supplying the

missing information θ via the feature transform layer (FTL) forces

the network to learn a mapping in and out of the FTL. Critically,

whereas other approaches, such as transforming auto-encoders [19]

and InfoGAN [5], learn the reconstruction to be sensitive to feature

transformation information, we can simultaneously learn to map from

images to transformation equivariant features.

where we have written Π−1[•] to mean inversion of the

projection if possible, or approximation of it. We train the

weights of the encoder and decoder by minimizing a summed

reconstruction loss ℓ, where

L(D)=
∑

i

ℓ
(

d
(

Fθi

[

e(xi)
])

,x̃iθ

)

. (4)

In our experiments we use a diverse set of losses, namely, L1

loss, SSIM, and balanced cross-entropy. Note that since we

define Fθ the feature space of encodings e(x) is interpretable

by Definition 2. In Section 3.2, we demonstrate an encoding,

which enforces explicit disentangling and from which we can

gain approximate transformation invariance ‘for free’.

3.2. The Feature Transform Layer

The feature-space equivalent of the image-space transform

Tθ is the feature transform layer Fθ. It is an analogue of the

spatial transformer [22], but applied to general feature-spaces,

not necessarily with spatial dimensions. This means that we

can apply it to fully connected layers as well as convolutional

layers. It is easiest to describe the feature transform layer via

its implementation.

Consider a feature vector e, which may be a column of

CNN feature channels above a pixel location in an image, or

the output of a fully-connected layer. The feature transform

layer performs a linear transformation of e via matrix Fθ, such

that the output y of the layer is

y=Fθ[e]=Fθe. (5)

We only consider linear transformations, where

Fθ2θ1 =Fθ2Fθ1. (6)

This condition says that if we apply transformation θ1 to an

image, followed by transformation θ2, which we have written

as θ2θ1, then in feature space this should be equivalent to

applying Fθ1 followed by Fθ2 . We refer to Equation 6 as the

homomorphism property. Abstractly, we can think about it as

forcing the neural network to learn a mapping from image-space

to feature-space, which preserves the intrinsic structure of the

transformations. The homomorphism property implies that (see

Supplementary Material)

Fθ
−1

1

=F−1

θ1
. (7)

This means that invertible transformations of the input are

invertible in feature-space. The homomorphism property is

key to ensuring that transformation information is not lost when

mapping into feature-space. Examples of Fθ are N-dimensional

rotation matrices, also known as SO(N), full-rank diagonal

matrices, or most generally the group of invertible N ×N

matrices, known as GL(N). We use rotation matrices, Rθ,

which have the additional property of being orthogonal or

norm-preserving. This means that we can use the feature vector

lengths as transformation invariants because

‖Rθe‖2
2
=e⊤R⊤

θ Rθe=e⊤e=‖e‖2
2
, (8)

which shows that ‖Rθe‖2
2

is in fact independent of θ. Feature

vectors are usually high-dimensional consisting of many

channels. We thereform implement the feature transform layer

by applying the same rotation matrix on multiple groupings of

channels, which we call subvectors of e. We can then define a

larger set of invariants, by measuring the relative phase between

different subvectors. These are invariant to θ, because if e1 and

e2 are two subvectors of e, then

(Rθe2)
⊤Rθe1=e⊤

2
R⊤
θ Rθe1=e⊤

2
e1, (9)

which is independent of θ. If e1 = e2, this reduces down to

the feature vector length. We denote the concatenation of all

subvector dot products as ‖e‖F . While at first not obvious, we

can encode many transformations using rotation matrices, even

ones which do not have periodic structure. The trick is to map

the domain of the transformation onto the half-circle/sphere, see

Figure 3. We prefer to do this rather than using another, perhaps

more natural, representation because of the convenience of

taking L2-norms and inner products to form invariants.

Disentangling We now consider how to disentangle

transformations. Since we can model transformations, whose

Figure 3. We encode transformations by mapping them on to circles

and N-dimensional hyperspheres in feature space. This parameteriza-

tion can deal with periodic and bounded transformations on an interval.

The L2-norm of the result feature vectors are transformation invariant.

5729

Method x̃θ|θ x̃θ|θ,x θ|x CNN MLP Interpretable Supervised Image size

DC-IGN [27] ✓ ✗ * ✓ ✓ † ‡ 150x150

InfoGAN [5] ✓ ✗ ✗ ✓ ✓ ✗ ✗ 64x64

Generating Chairs [11] ✓ ✗ ✗ ✓ ✓ ✓ ✓ 128x128

Transforming AEs [19] ✗ ✓ ✗ ✗ ✓ ✗ ✓ 96x96

Learned Visual Reps. [7] ✗ ✓ ✗ ✗ ✓ ✓ ✗ 96x96

Unsup. 3D from images [43] ✗ ✓ ✗ ✓ ✓ ✓ ✗ 30x30x30

Covariant features [32] ✗ ✗ ✓ ✓ ✓ ✓ ✓ 57x57

Spatial Transformer [22] ✗ ✓ ✗ ✓ ✗ ✓ - Any

Ours ✗ ✓ ✓ ✓ ✓ ✓ ✓ 150x150

Table 1. Comparison of method scopes. In the first 3 columns we display whether a method can generate an image x̃θ given just parameters θ, x̃θ|θ;

conditioned on an original image x̃θ|θ,x; or infers transformation parameters given an image θ|x. * Qualitative relationship only.†Correspondence

between feature dimensions and transformations known, qualitative relationship only.‡Partial supervision: minibatches grouped into variation

of single parameter, but values not given.

parameters exist on a circle or interval, we can model each

independent transformation DOF by mapping it to a different

circle or half-circle. Some transformations, like lighting

direction, are more conveniently mapped to the surface of a

3D-sphere. Thus the feature transform layer is

Fθe=

Rθ1

. . .

RθN

e, (10)

with possible tied θi when we apply a transformation to multiple

subvectors. The feature transform layer is simple to implement—

it is just a matrix multiplication and the block diagonal structure

allows efficiency saving via reshapes. In our experiments we

found a slow down of just 2%. Furthermore, it can be applied to

convolutional features in synchrony with a spatial transformer

[22] for complete control of both spatial and feature properties.

4. Experiments, Results, and Discussion

d Below we demonstrate the ability of our system to

learn meaningful features on MNIST [54], MNIST-rot [29],

the Basel Face Dataset [20], and ModelNet10 [51]. We

choose these datasets because they demonstrate our system’s

general-purpose usage and performance on 2D and 3D images,

for transformations with complex entanglement, and with and

without information loss. Our encoder-decoder structure is

shown in Figure 5. They are all implemented in TensorFlow.

4.1. MNIST: 2D images—2D transformations

This experiment demonstrates our system’s ability to disen-

tangle confounding transformations and how it reconstructs an

input, after manipulation of the features. The MNIST dataset

[54] contains 50k training, 10k validation, and 10k grayscale

test images of handwritten digits, size 28× 28. The images

are very simple, usually just a pen-stroke. We apply random

scalings in the x- and y-directions followed by a random 2D

rotation. Due to the simplicity of the images, we use an MLP

for both encoder and decoder. Both encoder and decoder have 3

layers, separated by batch normalization [21] and leaky ReLU

nonlinearities [37] apart from the input and output of the feature

transform layer, which are linear. All layers except the input

and output are 510 neurons wide1. The feature transform ma-

trices are a block diagonal composition of three 2D rotation

matrices repeated 85 times: rotation Rrot, x-scaling Rscale-x, and

y-scaling Rscale-y. We train with the Adam optimizer [23] for

200 epochs, with minibatch size 128 and initial learning rate

10−3. After training we pass a random digit from the test set

through the encoder and transform the code by multiplying by

feature transform matrix Fθ. In Figure 4 we show random digits

from the test set, slowly varying the transformation vectors on

an interval. Each row shows a random digit under a combination

of rotation, x-, and y-scaling. Notice how the encoder-decoder

successfully learns to rotate digits, solely from the feature trans-

formation. Notice also that the scalings are applied in the x- and

y-directions of a coordinate system aligned to the canonical pose

1We use this non-standard width because we model three transformations,

with each transformation modeled on a separate circle. So feature-space

dimensionality must be a multiple of 3×2=6. Furthermore, the value of 510

is close to 512, a common feature-space dimensionality.

R

X

Y

XY

RXY

RX

RY

Figure 4. MNIST reconstructions: The left most column indicates

transformation. The second to left column shows the input. Subsequent

columns show the transformed images. The reconstruction struggles

slightly with enlarged images, on the left, but on the whole clearly

show that we have control over the disentangled representation. Notice

that the x- and y-scalings are in the coordinate frame of the canonical

pose of the digits. This demonstrates the ability to disentangle

confounding transformations.

5730

of the digit. The system struggles when the images are magni-

fied, nonetheless these results demonstrate clearly that we can

learn a feature-space, where we have control over reconstruction

transformations. MNIST-rot Next we explore if we could im-

prove classification on the MNIST-rot dataset, with an explicitly

rotationally equivariant feature space. We feed the learned trans-

formation invariant subvector relative phases ‖e(x)‖F into a

classifier f (Figure 5) and use the output f(‖e(x)‖F) for classi-

fication. MNIST-rot [29] is a specific subset of MNIST split into

10k train, 2k validation, and 55k test images, rotated randomly

on the circle. Our results are in Table 2. While we do not achieve

state-of-the-art on this benchmark, we do beat standard CNNs

trained with data augmentation. All models better than us are

designed specifically for rotation. This indicates that in low data

scenarios, it pays to exploit our prior knowledge of how trans-

formations affect data. We can use this knowledge to construct

meaningful feature spaces, where equivariance and invariance

can be utilized. We found that it helps to add a regularization

term ‖‖e(x)‖F−‖e(x̃θ)‖F‖
2

2
to the loss function encouraging

transformed encodings of the input to be equal in length

4.2. Basel Faces: 2D images—3D transformations

In this experiment, we return to disentangling transformations

for superior control in reconstruction. The Basel Face dataset

[20] contains synthetic face renderings encoded using a PCA

model. We can randomly draw faces with vertex positions s and

vertex colors t from the model by sampling two 199-dimensional

vectors α and β from a unit Gaussian and retrieving the face by

s(α)=µs+Usdiag(σs)α, (11)

t(β)=µt+Utdiag(σt)β. (12)

U• contains the PCA directions and {µ•,σ•} are the PCA

means and per-dimension standard deviations. We use our

Method Test error (%) Flexibility

SVM [29] 11.11 ✓

Transformation RBM [46] 4.2 ✓

Conv-RBM [44] 3.98 ✓

CNN [6] 5.03 ✗

CNN [6] + data aug* 3.50 ✗

P4CNN rotation pooling [6] 3.21 ✗

P4CNN [6] 2.28 ✗

Harmonic Networks [50] 1.69 ✗

RotEqNet [15] 1.16 ✗

Ours (MLP variant) 4.90 ✓

Ours (CNN) 2.14 ✓

Table 2. MNIST-rot test accuracy: We beat standard CNNs with

similar architectures. Even our MLP variant can beat a baseline CNN.

The state-of-the-art is reserved for models specifically designed for

rotation. FLEXIBLE models can learn general transformations, while

others only deal with translation and rotation. Interestingly, we beat

[6], which was designed for rotation.

Facial transformer MNIST-rot network ModelNet network

28x28x1 conv3x3/1

26x26x24 conv3x3/1

24x24x24 conv3x3/2

11x11x48 conv3x3/1

9x9x48 conv3x3/1

7x7x96 conv3x3/1

5x5x96 conv3x3/1

3x3x192 conv3x3/1

1x1x192 FTL

1x1x192 dcnv1x1/1

1x1x191 dcnv1x1/1

1x1x114 dcnv3x3/1

3x3x67 dcnv5x5/1

28x28x1

150x150x3 conv5x5/1 48x48x48x1 conv3x3x3/1

46x46x46x8 conv3x3x3/2

24x24x24x16 conv3x3x3/1

24x24x24x16 conv3x3x3/2

12x12x12x32 conv3x3x3/1

146x146x32 conv3x3/1

73x73x64 conv3x3/1

37x37x128 conv3x3/1

19x19x256 conv3x3/1

10x10x512 conv3x3/1

5x5x1024 conv3x3/1

1x1x1024 conv3x3/1

1x1x1026 FTL

1x1x1026 dcnv3x3/1

2x2x1024 dcnv3x3/1

5x5x512 dcnv3x3/1

9x9x256 dcnv3x3/1

18x18x128 dcnv3x3/1

37x37x64 dcnv3x3/1

75x75x32 dcnv3x3/1

150x150x3

Gaussian dropout

192 fc

192 fc

192 fc

10

12x12x12x32 conv3x3x3/2

6x6x6x64 conv3x3x3/1

6x6x6x64 conv6x6x6/1

1x1x1x1024 conv1x1x1/1

1x1x1x1024 FTL

1x1x1x1024 dcnv1x1x1/1

1x1x1x1024 dcnv6x6x6/1

6x6x6x128 dcnv3x3x3/1

6x6x6x64 dcnv3x3x3/1

12x12x12x64 dcnv3x3x3/1

12x12x12x32 dcnv3x3x3/1

24x24x24x32 dcnv3x3x3/1

24x24x24x16 dcnv3x3x3/1

48x48x48x16 dcnv3x3x3/1

48x48x48x1

Classifier branch

7x7x40 dcnv3x3/1

Figure 5. The architectures used in our experiments. LEFT: Facial

transformer, CENTER MNIST-rot network, RIGHT: ModelNet network.

The first set of numbers indicate input tensor shape, the second set of

numbers indicate operation (conv: convolution, dcnv: deconvolution,

FTL: feature transformer layer, fc: fully-connected). The number

trailing the / is the stride. For deconvolution, we first nearest-neighbor

upsample, followed by convolution.

framework to reorient out-of-plane rotations and relight faces.

This is a difficult task, because the encoder-decoder only sees

2D views of a self-occluding 3D scene. The encoder has to

learn to decouple the complex interaction between light and 3D

surfaces, while inferring missing information, then the decoder

has to convert this representation into a faithful ‘rendering’ of

the transformed scene. A key difficulty is to infer occluded

surfaces, which may be disoccluded upon out-of-plane rotation

of the face.

We generate 1000 random RGB faces of size 150× 150.

For each face we generate 240 random views varying azimuth

[−43◦,43◦] and elevation [−15◦,15◦] from head on (we use

a right-handed coordinate frame with the x-axis pointing

through the nose and z-axis pointing upwards), and with

random lighting directions azimuth [−57◦,57◦] and elevation

[−57◦, 57◦]. Both the rotations of the faces and lighting

positions can be efficiently encoded using 3D rotation matrices

Rrot and Rlight, each with 2 degrees of freedom—azimuth ψ

and elevation θ, but no roll. Thus a natural form for the feature

transform matrices, which we use is

Fθ=

[

Rrot

Rlight

]

(13)

R•=

cosθ• sinθ•
1

−sinθ• cosθ•

cosψ• −sinψ•

−sinψ• cosψ•

1

 (14)

5731

Figure 6. (Viewed best in color). Relit and re-rotated reconstructions from our Basel face encoder-decoder model. The input faces shown on the

left (blue box) are not presented to the encoder-decoder at training time. From left to right we vary one degree of freedom only. Outside the large

green box the encoder-decoder has never seen those transformation parameters. We note the impressive ability of the model to rotate out-of-plane

and to relight a 3D surface, when only given a 2D input and a pair of 3D rotation matrices. For unseen transformation parameters, notice that the

relighting is of perceptually decent quality, but that the geometric rotations degenerate in quality around the boundaries, such as the nose and chin.

We dub it the facial transformer. As basic design principles,

we avoid max-pooling, favoring strides, and use batch

normalization and leaky ReLUs after all layers, apart from

before and after the feature transform layer. For deconvolution

we upsample with nearest-neighbor interpolation followed

by regular convolution [40, 27]. Inspired by [53, 14] our

reconstruction loss is a convex combination of the structural

similarity index (SSIM) [48] and L1 loss. The L1 loss

encourages low-frequency shape information and accurate color

matching, and the SSIM encourages high-frequency details, for

instance, the shading of the ears. The loss is

Lface=
α

N

∑

j∈pixels

1−SSIM(xj,x̃j)

2
+(1−α)|xj−x̃j| (15)

whereN is number of pixels times 3 color channels. Similarly

to [53, 14], we use the blending coefficient of α=0.85. We

optimize the loss using Adam [23], minibatch size 32, and initial

learning rate 10−4, dividing by 10 at iteration 30000 and 50000,

for a total of 60000 iterations. We train on a single TITAN X

Pascal GPU. 1/4-2 hours is sufficient for good results. Figure

6 shows the results of reoriented and relit faces from a held-out

validation set. The input is on the left and the transformed

outputs on the right. Top to bottom each row shows a different

Figure 7. Side-by-side output of DC-IGN [27] TOP and our facial

transformer BOTTOM. We have grayscaled our image for a fairer

comparison. Input on left, smoothly rotated faces on right. We

emphasize here that the goal of DC-IGN is different to ours, since they

learn unsupervised disentangling. We argue to use supervision when

the information is accessible. Our use of supervision is evident in that

we can quantitatively rotate our faces; whereas, DC-IGN cannot.

transformation, namely, lighting azimuth, lighting elevation,

rotation azimuth, and rotation elevation. Faces inside the large

green box span the transformation parameters seen at training

time, those outside were not seen. We note the reconstruction

fidelity and impressive ability to reorient out-of-plane rotations,

but zooming in shows that the reconstructions lack high-

frequency detail to be foolproof replicas of the input and the

overall face shape changes slightly. For unseen transformation

parameters, notice how faces just outside the green box are of

similar quality to inside, but large deviations from the training

set degrade. This is especially so for the geometric rotations,

where the boundary surfaces (nose and chin in particular) begin

to protrude from the face. Surprisingly, the shading of the

faces is realistic outside of the box. We also compare against

DC-IGN [27] in Figure 7. Our superior quality is partially

down to better training, but also to improved alignment in

feature-space, from supervised transformation information.

Interpretability of our features allows for more accurate control

over the azimuthal rotation. Feature stability In Figure 8 we

test the feature stability under transformations of the input. We

take an invariant representation of the data using L2-norms and

relative phases, then measure the cosine similarity (top) and

L2-distance (bottom) between a face and transformed versions

of itself (blue), and we also compute these metrics between

transformed versions of a face and a randomly selected face

of another identity. There is a clear separation between faces

of different identities for medium sized transformations, but this

breaks down for large values of the parameters for geometric

rotations. This is especially so, when the parameter values are

close to the limit of the training data, as would be expected.

Real faces For fun, we feed images of real faces into our

system, to recognize basic pose, shape, appearance, and lighting.

We take internet images, cropping out background and hair. The

system makes crude, but convincing enough matches to pose,

skin tone, and lighting. The bottom image is particularly hard

due to the side pose and lighting. This shows our system has

learned a generalizable representation of faces, despite training

5732

