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Abstract

Anticipating human intention by observing one’s actions

has many applications. For instance, picking up a cell-

phone, then a charger (actions) implies that one wants to

charge the cellphone (intention) (Fig. 1). By anticipating

the intention, an intelligent system can guide the user to

the closest power outlet. We propose an on-wrist motion

triggered sensing system for anticipating daily intentions,

where the on-wrist sensors help us to persistently observe

one’s actions. The core of the system is a novel Recurrent

Neural Network (RNN) and Policy Network (PN), where the

RNN encodes visual and motion observation to anticipate

intention, and the PN parsimoniously triggers the process

of visual observation to reduce computation requirement.

We jointly trained the whole network using policy gradi-

ent and cross-entropy loss. To evaluate, we collect the first

daily “intention” dataset consisting of 2379 videos with

34 intentions and 164 unique action sequences (paths in

Fig. 1). Our method achieves 92.68%, 90.85%, 97.56% ac-

curacy on three users while processing only 29% of the vi-

sual observation on average.

1. Introduction

Thanks to the advance in Artificial Intelligence, many in-

telligent systems (e.g., Amazon Echo, Google Home.) have

become available on the markets. Despite their great abil-

ity to interact with humans through a speech interface, they

are currently not good at proactively interacting with hu-

mans. Thus, we argue that the key for proactive interaction

is to anticipate user’s intention by observing their actions.

Given the anticipated intention, the intelligent system may

provide service to facilitate the intention. More specifically,

the ability to anticipate a large number of daily intentions

will be the key to enable a proactive intelligent system.

Many researchers have tackled tasks related to intention

anticipation. [11, 28, 18] focus on early activity prediction
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Figure 1. Illustration of intention anticipation. An action sequence

(i.e., an ordered list of actions) is a strong cue to anticipate inten-

tion – predicting an intention before it occurs. For instance, the ac-

tions on the dark blue path (i.e., pick-up the cellphone; then, pick-

up cellphone charger) strongly imply “charge cellphone”. The task

is challenging since (1) the same action (pick-up the cellphone)

can lead to different intentions (talk on the cellphone vs. charge

cellphone), and (2) multiple paths can lead to the same intention

(see Fig. 5). Bottom-right panel: actions are recorded by our on-

wrist sensors including a camera and an accelerometer.

– predicting actions before they have completed. However,

the time-to-action-completion of this task is typically very

short. Hence, there are only a few scenarios that intelligent

systems may take advantage of the predicted activity. Ki-

tani et al. [15] propose to forecast human’s trajectory. Fore-

casting trajectory is very useful, but it does not directly tell

you the “intention” behind a trajectory. [3, 12, 13] antici-

pate the future events on the road such as making a left turn

or involving in an accident. Although these events can be

considered as intentions, only few intentions (at most five)

are studied. Moreover, none of the work above leverages

heterogeneous sensing modalities to reduce computing re-

quirement.

In this work, we anticipate a variety of daily intentions

(e.g., “go outside”, “charge cellphone”, in Fig. 1) by sens-

ing motion and visual observation of actions. Our method

is unique in several ways. Firstly, we focus on On-Wrist

sensing: (1) an on-wrist camera (inspired by [24, 2]) is used

to observe object interactions reliably, and (2) an on-wrist

accelerometer is used to sense 3D hand motion efficiently.

Since both on-wrist sensors are unconventional, we collect

auxiliary object appearance and motion data to pre-train two
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encoders: (1) a Convolutional Neural Network (CNN) to

classify daily objects, and (2) a 1D-CNN to classify com-

mon motions. Secondly, we leverage heterogeneous sensing

modalities to reduce computing requirement. Note that vi-

sual data is very informative but costly to compute. In con-

trast, motion data is less informative but cheap to compute.

We propose a Policy Network to determine when to peek at

some images. The network will trigger the camera only at

some important moments while continuously analyzing the

motions. We call this as Motion Triggered sensing. Finally,

we propose to use a Recurrent Neural Network (RNN) to

model important long- and short-term dependency of ac-

tions. Modeling this dependency properly is the key of ac-

curate anticipation, since daily action sequences are subtle

and diverse. For instance, while multiple action sequences

leading to the same intention, the same subset of actions can

lead to different intention as well (see “go exercise” and “go

outside” in Fig. 1).

In order to evaluate our method, we collect the first daily

intention dataset from on-wrist sensors. It consists of 2379

videos with 34 intentions and 164 unique action sequences.

For pre-training encoders, we collect an object dataset by

manipulating 501 daily objects without any specific inten-

tion, and a 3D hand motion dataset with six motions per-

formed by eight users. On the intention dataset, our method

achieves 92.68%, 90.85%, 97.56% accuracy while process-

ing only 29% of the visual observation on average.

Our main contributions can be summarized as follows.

(1) We adapt on-wrist sensors to reliably capture daily hu-

man actions. (2) We show that our policy network can effec-

tively select the important images while only slightly sacri-

ficing the anticipation accuracy. (3) We collected and will

release one of the first daily intention dataset with a diverse

set of action sequence and heterogeneous on-wrist sensory

observations.

2. Related Work

We first describe works related to anticipation. Then, we

mention other behavior analysis tasks. Finally, we describe

a few works using wearable sensors for recognition.

2.1. Anticipation

The gist of anticipation is to predict in the future. We

describe related works into groups as follows.

Early activity recognition. [11, 28, 18] focus on predicting

activities before they are completed. For instance, recog-

nizing a smile as early as the corners of the mouth curve up.

Ryoo [28] introduces a probability model for early activity

prediction. Hoai et al. [11] proposed a max-margin model

to handle partial observation. Lan et al. [18] propose the

1including a hand free class, which means that hand is not interacting

with any objects.

hierarchical movemes representation for predicting future

activities.

Event anticipation. [17, 13, 12, 3, 33] anticipate events

even before they appear. Jain et al. [13, 12] propose to fuse

multiple visual sensors to anticipate the actions of a driver

such as turning left or right. Fu et al. [3] further propose a

dynamic soft-attention-based RNN model to anticipate ac-

cidents on the road captured in dashcam videos. Recently,

Vondrick et al. [33] propose to learn temporal knowledge

from unlabeled videos for anticipating actions and objects.

However, the early action recognition and anticipation ap-

proaches focus on activity categories and do not study risk

assessment of objects and regions in videos. Bokhari and

Kitani [1] propose to forecast long-term activities from a

first-person perspective.

Intention anticipation. Intention has been explored more

in the robotic community [35, 17, 16, 22]. Wang et al. [35]

propose a latent variable model for inferring human inten-

tions. Koppula and Saxena [17] address the problem by

observing RGB-D data. A real robotic system has exe-

cuted the proposed method to assist humans in daily tasks.

[16, 22] also propose to anticipate human activities for im-

proving human-robot collaboration. Hashimoto et al. [8]

recently propose to sense intention in cooking tasks via the

knowledge of access to objects. Recently, Rhinehart and Ki-

tani [27] propose an on-line approach for first-person videos

to anticipate intentions including where to go and what to

acquire.

Others. Kitani et al. [15] propose to forecast human trajec-

tory by surrounding physical environment (e.g., road, pave-

ment). The paper shows that the forecasted trajectory can

be used to improve object tracking accuracy. Yuen and Tor-

ralba [39] propose to predict motion from still images. Ju-

lian et al. [34] propose a novel visual appearance prediction

method based on mid-level visual elements with temporal

modeling methods.

Despite many related works, to the best of our knowl-

edge, this is the first work in computer vision focusing

on leveraging a heterogeneous sensing system to anticipate

daily intentions with low computation requirement.

2.2. Highlevel Behavior Analysis

Other than activity recognition, there are a few high-level

behavior analysis tasks. Joo et al. [14] propose to predict the

persuasive motivation of the photographer who captured an

image. Vondrick et al. [33] propose to infer the motivation

of actions in an image by leveraging text. Recently, many

methods (e.g., [38, 25, 26, 40, 32, 37]) have been proposed

to generate sentence or paragraph to describe the behavior

of humans in a video.
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Figure 2. Visualization of our motion-triggered model. Our model consists of an RNN with LSTM cell encoder (blue block) and a Policy

Network (yellow block). At each frame, RNN will generate an anticipated intention according to a new embedded representation g and the

previous hidden state h of the RNN. The policy will generate the motion-trigger decision a for next frame, based on motion representation

fm and the hidden state h of the RNN. The orange circle represents the fusion operation (details in Sec. 3.2). The red and black circles

represent a trigger and non-trigger decision of policy network, respectively (details in Sec. 3.3). When a = 0, fo is empty since it is not

processed.

2.3. Recognition from Wearable Sensors

Most wearable sensors used in computer vision are first-

person (i.e., ego-centric) cameras. [23, 31, 6, 19] propose

to recognize activities. [21, 7] propose to summarize daily

activities. Recently, two works [24, 2] focus on recognition

using on-wrist camera and show that it outperforms ego-

centric cameras. Inspired by them, we adapt a similar on-

wrist sensor approach.

3. Our Approach

We first define the problem of intention anticipation.

Next, we introduce our RNN model encoding sequential

observations and fusing multiple sensors’ information from

both hands. Then, we talk about our novel motion-triggered

process based on a policy network. Finally, we describe

how we pre-train the representation from auxiliary data.

3.1. Problem Formulation

Observations. At frame t, the camera observes an image

It, and the motion sensor observes the 3D acceleration of

hands At ∈ R3.

Representations. The image I and 3D acceleration A are

raw sensory values which are challenging to be used di-

rectly for intention anticipation, especially when lacking

training data. Hence, we propose to learn visual object

(referred to as object) fo,t and hand motion (referred to as

motion) fm,t representations from other tasks with a larger

number of training data. Note that, for all the variables, we

use superscript to specify left or right hand (when needed).

For instance, fL
o,t indicates left-hand object representation.

Goal. At frame t, our model predicts the future intention

yt ∈ Y based on the observations, where Y is the set of

intention indices. Assuming the intention occurs at frame

T , we not only want the prediction to be correct but also to

predict as early as possible (i.e., T − t to be large).

3.2. Our Recurrent and Fusion Model

Intention anticipation is a very challenging task. In-

tuitively, the order of observed objects and hand motions

should be a very strong cue. However, most orders are not

strict. Hence, learning composite orders from limited train-

ing data is critical.

Recurrent Neural Network (RNN) for encoding. We pro-

pose to use an RNN with two-layers of Long-Short-Term-

Memory (LSTM) cell to handle the variation (Fig. 2-Top)

as follows,

gt = Emb(Wemb, con(fm,t, fo,t)) , (1)

ht = RNN(gt, ht−1) , (2)

pt = Softmax(Wy, ht) , (3)

yt = argmax
y∈Y

pt(y) , (4)

where pt ∈ R|Y| is the softmax probability of every in-

tention in Y , Wy is the model parameter to be learned,

ht is the learned hidden representation, and gt is a fixed

dimension output of Emb(·). Wemb is the parameter of

embedding function Emb(·), con(·) is the concatenation

operation, and Emb(·) is a linear mapping function (i.e.,
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g = Wemb · con(fm, fo, 1). RNN has the advantage of

learning both long- and short-term dependency of observa-

tion which is ideal for anticipating intentions.

Fusing left and right hands. Since tasks in real life typi-

cally are not completed by only one hand, we allow our sys-

tem to observe actions on both hands simultaneously. We

concatenate the right (i.e., the dominant hand) and left-hand

observations in a fixed order to preserve the information of

which hand is used for certain actions more frequently. The

fused observation is fi = con(fR
i , fL

i ), where i ∈ {o,m}.

Training for anticipation. Since our goal is to predict at

any time before the intention happened, anticipation error

at different time should be panelized differently. We use

exponential loss to train our RNN-based model similar to

[12]. The anticipation loss LA is defined as,

T
∑

t=1

LA
t =

T
∑

t=1

− log pt(y
gt) · elog(0.1)

T−t

T , (5)

where ygt is the ground truth intention and T is the time

when intention reached. Based on this definition, the loss

at the first frame (t=0) is only 10% of last frame (t=T). This

implies that anticipation error is panelized less when it is

early, but more when it is late. This encourages our model

to anticipate the correct intention as early as possible.

The current RNN considers both motion fm and object

fo representations as shown in Eq. 1. It is also straightfor-

ward to modify Eq. 1 such that RNN considers only motion

or only object representation. However, the RNN needs to

consider the same type of representation at all times. In the

following section, we introduce the Motion-Triggered sens-

ing process, where the RNN considers different representa-

tions at different frames depending on a learned policy.

3.3. RLbased Policy Network

We propose a policy network π to determine when to

process a raw image observation I into an object represen-

tation fo. The network continuously observes motion fm,t

and hidden state of RNN ht to parsimoniously trigger the

process of computing fo,t+1 as follows,

at = argmax
a

π(a | (ht, fm,t);Wp) ∈ {0, 1} , (6)

f̂o,t+1 = (1− at) · f̂o,t + at · fo,t+1(It+1) , (7)

gt+1 = Emb(Wemb, con(fm,t+1, f̂o,t+1)) , (8)

where at is the decision of our policy network to trigger

(at = 1) or not trigger (at = 0), Wp is the parameters of

the policy network, the policy π outputs a probability dis-

tribution over trigger (at = 1) or non-trigger (at = 0), and

f̂o,t+1 is the modified object representation. As shown in

Eq. 7, when at = 1, the visual observation at frame t + 1
will be updated (f̂o,t+1 = fo,t+1(It+1)) with high cost on

CNN inference. When at = 0, the previous representation

will simply be kept (f̂o,t+1 = f̂o,t). The modified object

representation f̂o,t+1 will influence the embedded represen-

tation gt+1 as shown in Eq. 8.

Reward. We set our reward to encourage less triggered op-

eration (a = 1) while maintaining correct intention antici-

pation (y = ygt) as shown below.

R =







pt(y
gt) ·R+ · (1−

n

T
), if y = ygt

pt(y
gt) ·R− ·

n

T
, if y 6= ygt

(9)

where ygt is the ground truth intention, y is the predicted in-

tention, n is the number of triggered operations in T frames

of the video, pt is the probability of anticipated intention,

R+ is a positive reward for correct intention anticipation,

and R− is a negative reward for incorrect intention antic-

ipation. Note that, when the trigger ratio n/T is higher,

the positive reward is reduced and the negative reward gets

more negative.

Policy loss. We follow the derivation of policy gradient

in [36] and define a policy loss function LP ,

LP = −
1

KT

K
∑

k=1

T
∑

t=1

log(π(akt | (hk
t , f

k
m,t);Wp)) ·R

k
t , (10)

where {akt }t is the kth sequence of trigged patterns sam-

pled from π(·), K is the number of sequences, and T is the

time when intention reached. Rk
t is the reward of the kth

sampled sequence at time t computed from Eq. 9. Please

see Sec.2 of the supplementary material for the derivation.

Joint training. The whole network (Fig. 2) consists of a

RNN and a policy network. We randomly initialize the pa-

rameters Wp of policy network. The parameters of RNN is

initialized by the RNN encoder trained on both representa-

tion fo and fm. This initialization enables the training loss

to converge faster. We define the joint loss L = LP + λLA

for each training example, where λ is the weight to balance

between two loss. Similar to the standard training proce-

dure in deep learning, we apply stochastic gradient decent

using mini-batch to minimize the total joint loss.

3.4. Learning Representations from Auxiliary Data

Due to the limited daily intention data, we propose to use

two auxiliary datasets (object interaction and hand motion)

to pre-train two encoders: an object Convolutional Neural

Network (CNN) and a hand motion 1D-CNN. In this way,

we can learn a suitable representation of object and motion.

Object CNN. It is well-known that ImageNet [5] pre-

trained CNN performs well on classifying a variety of ob-

jects. However, Chan et al. [2] show that images captured

by on-wrist camera are significantly different from images

in ImageNet. Hence, we propose to collect an auxiliary im-

age dataset with 50 object categories captured by our on-

wrist camera, and fine-tuned on Imagenet [5] pre-trained
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Figure 3. Illustration of our 1D-CNN pre-trained to classify six

motions. Conv, MP, FC stand for Convolution, Max Pooling, and

Fully Connected, respectively. 3@150 × 1 denotes that there are

three 150×1 matrices. Since the second dimension is always one,

it is a 1D-CNN. Our model has three stacks of Conv+MP layers

and a FC layer at the end.

ResNet-based CNN [9]. After the model is pre-trained, we

use the model to extract object representation fo from the

last layer before softmax.

Hand motion 1D-CNN. Our accelerometer captures accel-

eration in three axes (s ∈ R3) with a sampling rate of 75Hz.

We calibrate our sensor so that the acceleration in 3 axes are

zero when we placed it on a flat and horizontal surface. We

design a 1D-CNN to classify every 150 samples (2 seconds)

into six motions: lift, pick up, put down, pull, stationary,

and walking. The architecture of our model is shown in

Fig. 3. Originally, we plan to mimic the model proposed by

[4], which is a 3-layer 2D-CNN model with 1 input channel.

Considering that there are no stationary properties among

three acceleration values for each sample, we adjust the in-

put channel number to 3 and define the 1D-CNN. For train-

ing the model, we have collected an auxiliary hand motion

data with ground truth motions (Sec. 4). After the model is

trained, we use the model to extract motion representation

fm at the FC4 layer (see Fig. 3).

3.5. Implementation Details

Intention anticipation model. We design our intention an-

ticipation model to make a prediction in every half second.

All of our models are trained using a constant learning rate

0.001 and 256 hidden states.

Policy Network. Our policy network is a neural network

with two hidden layers. For joint training, we set learning

rate 0.001, λ 0.1 for joint loss. The reward of R+ and R−

are 100 and -100, respectively.

Object CNN. Following the setting of [2], our object CNN

aims at processing 6 fps on NVIDIA TX1. This frame rate

is enough for daily actions. Since most of the actions will

last a few seconds, it’s unnecessary to process at 15 or 30

fps. We take the average over 6 object representations as the

input of our model. Different from [2], our on-wrist camera

has a fish-eye lens to ensure a wide field-of-view captur-

ing most objects. For fine-tuning the CNN model on our

dataset, we set maximum iterations 20000, step-size 10000,

momentum 0.9, every 10000 iteration weight decay 0.1, and

learning rate 0.001. We also augment our dataset by hori-

embedded 

system

accelerometer

fisheye lens

camera

power bank

Figure 4. Our on-wrist sensing system. The fisheye camera is be-

low the wrist. The embedded system and motion sensor are on the

forearm. Both hands are equipped with the same system.

zontal flipping frames.

Hand motion 1D-CNN. Motion representation is extracted

for a 2-second time segment. Hence, at every second, we

process a 2-second time segment overlapped with previous

processed time segment for 1 second. For training from

scratch, we set the base learning rate to 0.01 with step-size

4000, momentum 0.9 and weight decay 0.0005. We adjust

the base learning rate to 0.001 when fine-tuning.

4. Setting and Datasets

We introduce our setting of on-wrist sensors and describe

details of our datasets.

4.1. Setting of Onwrist Sensors
Following similar settings in [24, 2], our on-wrist cam-

era2 and accelerometer3 are mounted as shown in Fig. 4.

Both camera and accelerometer are secured using velcro.

We use the fisheye lens to ensure a wide field-of-view. We

list some simple rules to be followed by users. First, the

camera is under the arm, toward the palm. Second, the

camera should roughly align the center of the wrist. This

ensures that camera can easily record the state of the hand.

4.2. Datasets

We collect three datasets4 for the following purposes. (1)

Daily Intention Dataset: for training our RNN model to an-

ticipate intention before the intention occurs. (2) Object In-

teraction Dataset: for pre-training a better object interaction

encoder to recognize common daily object categories. (3)

Hand Motion Dataset: for pre-training a better motion en-

coder to recognize common motions.

2fisheye lens mounted on noIR camera module with CSI interface.
3MPU-6050.
4Our dataset and code can be downloaded from http://

aliensunmin.github.io/project/intent-anticipate
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Figure 5. Daily intention dataset. We show examples of two action sequences (red line and yellow line) reaching to the same intention (go

outside). In yellow line and green line, we show that the same object (bottle) involves in two intentions (go outside vs. drink water).

User A B C

# of action sequences 1540 358 481

avg. per sequence 9.4 2.2 2.9

Table 1. Statistics of our intention dataset.

4.2.1 Daily Intention Dataset

Inspired by Sigurdsson et al. [29], we select 34 daily in-

tentions such as charge cellphone, go exercise, etc. Note

that each intention is associated with at least one action se-

quence, and each action consists of a motion and an object

(e.g., pick up+wallet). We propose two steps to collect var-

ious action sequences fulfilling 34 daily intentions.

Exploring stage. At this stage, we want to observe various

ways to fulfill an intention (Fig. 1). Hence, we ask a user

(referred to as user A) to perform each intention as different

as possible. At this step, we observed 164 unique action

sequences.

Generalization stage. At this stage, we ask user A and

other users (referred to as user B and user C) to follow 164
action sequences and record multiple samples5 for each ac-

tion sequence. This setting simulates when an intelligent

system needs to serve other users. We show by experiment

that our method performs similarly well on three users.

In Table 1, We summarize our intention dataset. Note

that the number of action sequences recorded by user A is

much more than others. Since we will train and validate on

user A, selecting the proper hyper-parameters (e.g., design

reward function). Next, we’ll apply the same setting to the

training process of all users, and evaluate the result. This

can exam the generalization of our methods. Design of re-

ward function is described in the Sec.3 of the supplementary

material.

4.2.2 Object Interaction Dataset.

We select 506 object categories and collect a set of 940
videos corresponding to 909 unique object instances7. Each

510, 2, 3 times for user A, B, C, respectively
6including a hand-free category.
7not counting “free” as an instance.

Figure 6. Auxiliary object dataset. Sample images overlaid with

their ground truth categories.

video records how an object instance is interacted by a

user’s hand. We sample 362 frames on average in each

video. At the end, we collected an auxiliary dataset con-

sisting of 340, 218 frames in total to pre-train our object

encoder. Example frames of the dataset are shown in Fig. 6.

4.2.3 Hand Motion Dataset

Inspired by [4], we select six motions. We ask eight users

to collect 609 motion sequences from the right hand and

one user to collect 36 motion sequences from the left hand.

For the right-hand data collected by eight users, we aim at

testing cross users generalizability. For the left-hand data,

we aim at testing cross hand generalizability.

5. Experiments

We first conduct pilot experiments to pre-train object and

hand motion encoders. This helps us to select the appropri-

ate encoders. Next, we conduct experiments for intention

anticipation with policy network and evaluate our method

in various settings. Finally, we show typical examples to

highlight the properties of our method.
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Model Training Acc. Testing Acc. Speed

VGG-16 98.58% 77.51% 4 fps

ResNet-50 99.92% 80.77% 6 fps

ResNet-101 97.45% 82.79% 4 fps

ResNet-152 96.83% 83.09% 3 fps

Table 2. Classification accuracy and processing speed of different

models. We highlight the best performance using bold font.

Model Training Acc. Testing Acc.

1ch-3layer [4] 100.00% 81.41%

3ch-1layer 100.00% 77.21%

3ch-2layer 100.00% 78.37%

3ch-3layer 100.00% 83.92%

left 52.78%

left-flip 83.33%

Table 3. Motion classification accuracy of different models. We

highlight best performance using bold font.

5.1. Preliminary Experiments

Object pre-training. We evaluate multiple Convolution

Neural Network (CNN) architectures on classifying 50 ob-

ject categories in our object intention auxiliary dataset.

These architectures include VGG-16 [30] and Residual Net

(ResNet) [10] with 50, 101, 152-layers. We separate the

whole dataset into two parts: 80% of object instances for

training and 20% for testing. The testing accuracy is re-

ported on Table. 2. Our results show that deeper networks

have slightly higher accuracy. Another critical considera-

tion is the speed on the embedded device. Hence, we report

the processed frames per second (fps) on NVIDIA TX1 in

the last column of Table. 2. Considering both accuracy and

speed, we decide to use ResNet-50 since we designed our

system to process at 6 fps similar to [2].

For hand motion, We describe two experiments to (1) se-

lect the best model generalizing across users, and (2) select

the pre-processing step generalizing to the left hand.

Generalizing across users. Given our dataset collected by

eight different users, we conduct a 4-fold cross validation

experiment and report the average accuracy. We compare a

recent deep-learning-based method [4] (1ch8-3layer model)

with our 3ch models trained from scratch in Table. 3. The

results show that our 3ch-3layer model generalizes the best

across different users. At the end, we pre-train our 3-layer

model on data collected by [20]9 to leverage more data.

Then, we fine-tune the model on our auxiliary data.

Generalizing across hands. We propose the following pre-

process to generalize our best model (3ch-3layer trained on

right hand data) to handle left hand. We flip the left hand

samples by negating all values in one channel (referred to

as flip). This effectively flips left-hand samples to look sim-

8ch stands for number of input channels
9Their data is collected by cellphone’s accelerometer while the cell-

phone is in user’s pocket.

ilar to right-hand samples. In the last two rows of Table. 3,

we show the accuracy of left-hand data. Our method with

flip pre-processing achieves better performance. In the in-

tention anticipation experiment, we use “3ch-3layer” and

apply flip pre-process on left hand.

5.2. Motion Triggered Intention Anticipation

For intention anticipation, we evaluate different settings

on all three users. In the following, we first introduce our

setting variants and the evaluation metric. Then, we com-

pare their performance in different levels of anticipation

(e.g., observing only the beginning X percent of the action

sequence).

Setting variants.

(1) Object-only (OO): RNN considering only object repre-

sentation fo.

(2) Motion-only (MO): RNN considering only motion rep-

resentation fm .

(3) Concatenation (Con.): RNN considering both object fo
and motion fm representations.

(4) Motion-Triggered (MTr.): RNN with policy network,

where the input of RNN is determined by the policy net-

work. In this setting, we also report the ratio of triggered

moments (referred as to Ratio). The lower the ratio the

lower the computation requirement.

Metric. We report the intention prediction accuracy when

observing only the beginning 25%, 50%, 75%, or 100% of

the action sequence in a video.

Comparisons of different variants on all users (referred

to as user A, B, and C) are shown in Table. 4. We sum-

marize our findings below. Object-only (OO) outperforms

Motion-only (MO). This proves that object representation

is much more influential than motion representation for

intention anticipation. We also found that concatenating

motion and object (Con.) does not consistently outper-

form Object-only (OO). Despite the inferior performance

of MO, the tendency of MO under different percentage

of observation is pretty steady. This implies that there

are still some useful information in the motion represen-

tation. Indeed, MTr. can take advantage of motion obser-

vation to reduce the cost of processing visual observation to

nearly 29% while maintaining a high anticipation accuracy

(92.68%, 90.85%, 97.56%).

In Fig. 8, we control the ratio of triggered moments and

change the anticipation accuracy by adjusting the threshold

of motion triggers. The results show that increasing the ratio

of triggered moments leads to higher accuracy on intention

anticipation. Most interesting, the accuracy only decrease

slightly when the ratio is larger than 20%. Note that the

default threshold is 0.5, which means the policy will decide

to trigger when the probability of trigger is larger than non-

trigger. Some quantitative results are described in Sec.4 of

the supplementary material.
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User A User B User C

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

Con. 88.41% 90.24% 92.07% 93.29% 90.85% 92.68% 94.51% 95.12% 97.56% 97.56% 98.17% 98.17%

OO 89.63% 92.68% 92.68% 94.51% 91.46% 94.51% 94.51% 95.73% 96.95% 96.95% 98.17% 98.17%

MO 65.85% 70.73% 75.61% 75.61% 62.20% 66.46% 69.51% 72.56% 71.34% 79.88% 85.37% 87.20%

Mtr. 86.58% 90.24% 92.07% 92.68% 84.75% 88.41% 88.41% 90.85% 94.51% 96.34% 97.56% 97.56%

Ratio 34.00% 32.34% 30.72% 28.42% 31.13% 33.23% 30.88% 29.67% 33.40% 33.88% 30.89% 29.17%

Table 4. Intention anticipation comparison. OO stands for object-only observation. MO stands for motion-only observation. Con. stands

for concatenating fo and fm. Mtr. stands for motion-triggered. Ratio stands for triggered ratio. In the second row, 25% denotes only the

beginning 25% of the action sequence is observed. All methods are evaluated on A, B, and C users. Note that Mtr. is significantly better

than MO and only slightly worse than Con. while processing only about 29% of the frames.

Pick up the keys Pick up the cellphone Pick up the backpack Open the door

Pick up the cellphone Plug in the wire

Pick up the cup Open the fridge
Time

filled with drink

[ ratio = 13.51%]

cellphone charging

[ ratio = 21.05%]

go outside

[ ratio = 21.87%]

Figure 7. Typical Examples. In each row, we show an example of our motion-triggered method selecting visual observations. The gray

block represents non-triggered frames, and red block represents triggered frames. Each block stands for half second. A few triggered (red

boxes) and non-triggered (regular boxes) frames are visualized. At the end of each example, We show the trigger ratio and the correctly

predicted intention. More results are shown in the Sec.1 of the supplementary material.

5.3. Typical Examples

We show typical examples in Fig. 7. In the first example,

our Policy Network (PN) efficiently peeks at various objects

(e.g., keys, cellphone, backpack, etc.). In other examples,

PN no longer triggers after some early peeks. Specifically,

in the second example, once the cellphone is observed and

the wire is plugged in, PN is confident enough to anticipate

cellphone charging without any further triggered operation.

6. Conclusion

We propose an on-wrist motion triggered sensing system

for anticipating daily intentions. The core of the system is

a novel RNN and policy networks jointly trained using pol-

icy gradient and cross-entropy loss to anticipate intention

as early as possible. On our newly collected daily intention

dataset with three users, our method achieves impressive

anticipation accuracy while processing only 29% of the vi-

sual observation. In the future, we would like to develop an

on-line learning based method for intention anticipation in

the wild.

63.41%

81.70%
85.97%

86.58%
88.41% 91.46%

66.46%

90.85%
92.68% 92.68% 93.90%

94.51%

89.63%

94.51%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

A
cc
u
ra
cy

Ratio

observation 25% 100%

Figure 8. Anticipation accuracy (vertical axis) of our motion-

triggered process on user A for sensing the beginning 25% (or-

ange solid curves) and 100% (blue solid curves) of the action se-

quence. The horizontal axis is the triggered ratio from 0% (equals

to motion-only process) to 100% (equals to motion-object com-

bined process). We also show the accuracy of object-only process

using dash curves.
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