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Abstract

Current work on facial action unit (AU) recognition re-

quires AU-labeled facial images. Although large amounts

of facial images are readily available, AU annotation is ex-

pensive and time consuming. To address this, we propose a

deep facial action unit recognition approach learning from

partially AU-labeled data. The proposed approach makes

full use of both partly available ground-truth AU labels and

the readily available large scale facial images without an-

notation. Specifically, we propose to learn label distribution

from the ground-truth AU labels, and then train the AU clas-

sifiers from the large-scale facial images by maximizing the

log likelihood of the mapping functions of AUs with regard

to the learnt label distribution for all training data and min-

imizing the error between predicted AUs and ground-truth

AUs for labeled data simultaneously. A restricted Boltzman-

n machine is adopted to model AU label distribution, a deep

neural network is used to learn facial representation from

facial images, and the support vector machine is employed

as the classifier. Experiments on two benchmark databases

demonstrate the effectiveness of the proposed approach.

1. Introduction

Facial behavior is one of the most important emo-

tion communication channels for human-human interaction.

Therefore, a great progress on automatical facial action unit

recognition has been achieved due to its wide application in

many user-centered fields in recent years.

Automatical AU recognition is very challenging due to

many factors, such as imaging conditions and individual

subject differences. Large-scale training data can facilitate

the learning process of AU classifiers. Although it is easy

to obtain a large-scale facial images due to the popularity of

digital cameras, portable devices and internet, providing AU

labels for the obtained large-scale facial images is very time

consuming and difficult, since AU labels should be anno-

∗This is the corresponding author.

tated by experts. However, almost all current work formu-

lates AU recognition as a supervised learning process, and

thus requires facial images and their corresponding AU la-

bels. The requirement of corresponding AU labels prevents

leveraging large-scale available facial images for improving

AU recognition.

Fortunately, behavior research shows that there exist reg-

ular spatial and temporal patterns in AU labels due to fa-

cial anatomy and human’s behavior habits. For example,

as stated in Du et al.’s [2] work, 99 percent of the time,

persons show happiness by raising their cheeks and stretch-

ing their mouth in a smile. Persons can not pull lip corner

(AU12) and depress lip corner (AU15) at the same time due

to the constraint of facial anatomy. Such regular spatial and

temporal patterns embedded in AU labels can be described

probabilistically as label distribution, which is also exist-

ed in ground-truth AU labels of existing benchmark expres-

sion databases. Take the DISFA database as an example,

as shown in Figure 1, when AU6 appears, AU12 and AU25

occur with a probability higher than 0.7, but AU1 rarely oc-

curs. Similarly, when AU12 or AU25 occur, AU6 appears

with a probability higher than 0.6. Therefore, the annotated

AU labels are samples of AU label distributions, which are

inherent in facial anatomy and human’s behavior habits. In

fact, the AUs appear on any facial images, whether manual-

ly annotated or not, are samples of the underlying AU label

distributions. Inspired by the above observations, we pro-

Figure 1. Dependencies between AU labels (each entry represents

the conditional probability of p(yj = 1|yi = 1))

pose a deep facial action unit recognition approach learning

from partially AU-labeled training data through incorporat-

ing such spatial regular patterns of AU labels presented in
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ground-truth AU labels into the learning process of AU clas-

sifiers from a large-scale facial images without AU anno-

tations. Specifically, we utilize the Restricted Boltzmann

Machine (RBM) [5] to learn the AU label distribution from

the available AU labels. And a large number of facial im-

ages are used to learn a deep framework to exploit the facial

representation from facial images. Then we train multiple

support vector machines through maximizing the log like-

lihood of the mapping functions of AUs with regard to the

learnt label distribution for all training data and minimizing

the error between predicted AUs and ground-truth AUs for

labeled data simultaneously. The experimental results on

two benchmark databases prove the effectiveness of deep

neural network in feature learning and illustrate that the AU

label constraint can improve the performance of AU recog-

nition under either complete AU annotations or incomplete

AU annotations.

2. Related work

2.1. AU recognition using shallow models

Most AU recognition works classify AUs from the hand-

craft features, i.e., geometric features and appearance fea-

tures. We refer to them as shallow models. In addition

to recognizing each AU independently, recent work begin-

s to exploit AU dependencies for multiple AU recognition

through either generative strategy or discriminative strategy.

For generative approaches, the structure and parameters

of probabilistic graphic models are adopted to capture AU

dependencies from AU labels. For instance, Tong et al. [16]

introduced a generative model based on dynamic Bayesian

networks (DBN) to model the semantics of different AUs

through its structure and conditional probabilities. Wang et

al. [18] proposed a three-layer RBM model to capture high-

order dependencies among different AUs, and the weights

between hidden layer and target labels measure the proba-

bilistic patterns among AU labels. These two works learned

AU relations from ground-truth AU labels. However, Li

et al.[21] proposed to generate pseudo-data according to

AU dependencies summarized from prior knowledge, then

learnt a Bayesian Network (BN) model from the pseudo-

data.

For discriminative approaches, the relations among AUs

are adopted as constraint of the objective function. For ex-

ample, Zhu et al. [26] and Zhang et al. [22] used the con-

straint to supervise the multi-task learning process so as to

exploit the AU co-occurrences among AU labels and facial

regions. Zhao et al. [24] leveraged group sparsity by s-

electing a sparse subset of facial patches while learning a

multi-label classifier. Through jointly patch learning, both

positive correlations and negative competitions among AUs

are introduced to model a discriminative multi-label clas-

sifier. Eleftheriadis et al. [4] proposed a multi-conditional

latent variable model by performing the fusion of differen-

t facial features and AU detection jointly. They attained

the feature fusion by learning a low-dimensional subspace

which is constrained by the local dependencies among mul-

tiple AUs.

All of the above work requires complete AU annotations

to train AU classifiers. It is not practical since AU anno-

tation is an expensive and time consuming task. What’s

more, all of them use hand-craft features, and thus do not

fully exploit the current development of deep learning and

large-scale facial images.

2.2. AU recognition from partially annotated train-
ing sample

The mainstream of AU recognition trains AU classifiers

from fully annotated facial images. Only very recently, a

few works begins to consider AU classification under partial

AU annotations.

Wang et al. [17] proposed an expression-assisted AU

recognition method under incomplete AU labeling. A BN

model is adopted to capture the dependencies among AUs

and expression, and a structured EM is used to learn the

structure and parameters of the BN when AU labels are

missing. Although Wang et al.’ work can handle incom-

plete AU labeling, their method requires expression labels

as hidden knowledge to complement the missing AU labels.

Wu et al. [20] formulated AU recognition under partial

AU annotations as a multi-label learning with missing labels

(MLML). They proposed to handle the missing labels by

enforcing the consistency between the predicted labels and

the provided labels as well as the local smoothness among

the label assignments. The same features are used for all

AU classifiers. Since the discriminative features for each

AU are different, Li et al. [11] extended Wu et al.’s MLML

method to discriminate each AU based on the most related

features. Both work assumes local smoothness to handle

missing labels. However, this assumption may be invalid,

since the samples closed in feature space may belong to the

same subject, other than the same expressions.

Song et al. [15] proposed a Bayesian graphical mod-

el that simultaneously handles sparsity and co-occurrence

structure of facial action units using compressed sensing

and group wise inducing priors. Their method handles miss-

ing labels by marginalizing over the unobserved values dur-

ing the inference procedure. As a generative model, Song et

al. [15] work can hand missing labels effectively, but may

not obtain better performance in classification tasks com-

pared with discriminative models.

Ruiz et al. [13] proposed to learn AU classifiers under

the help of a large-scale facial images with expression la-

bels, but without AU labels. They proposed to exploit prior

knowledge about the relations between Hidden-Tasks (AUs)

and Visible-Tasks (expressions). Although this works can
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learn AU classifiers from images without AU labels, it re-

quires another big amount of expression-annotated facial

images.

Although these work considers AU recognition under in-

complete AU annotations, all of them used hand-craft fea-

tures. In order to handle missing annotations, they adopt-

ed local smoothness, or required expression labels, or em-

ployed generative models. While, in our paper, we propose

a discriminative model to exploit the inherent label distribu-

tions, which are extracted from ground-truth AU labels and

are caused by facial anatomy and human behavior habits, as

weak supervisory information to help feature learning and

AU recognition with the deep model.

2.3. AU recognition using deep networks

Recently, feature learning using deep hierarchical struc-

tures has emerged as an effective methodology to automat-

ically extract features from data for many computer vision

problems. Most deep networks for AU detection directly

adopt Convolutional Neural Network (CNN) to learn spatial

representation. Ghosh et al. [6] proposed a multi-label con-

volutional neural network approach to learn a shared repre-

sentation between multiple AUs from facial images. Gadi et

al. [7] proposed to estimate AU occurrence and intensity us-

ing a 7-layer CNN, which consists of 3 convolutional layers

and a max-pooling layer. Khorrami et al.[10] examined how

much convolutional neural networks (CNNs) can improve

performance on expression recognition and what they ac-

tually learn. Their experimental results showed that CNNs

trained for expression recognition are indeed able to model

high-level features that strongly correspond to AUs. Zhao

et al. [25] proposed Deep Region and Multi-label Learning

(DRML), a unified deep network that simultaneously ad-

dresses region learning and multi-label learning for multiple

AU recognition. The proposed DRML architecture consists

of a standard convolution layer filtering on an aligned face

image, followed by the region layer, one pooling layer and

four convolution layers, three fully connected layers, and

one multi-label cross-entropy loss layer at the end. To ad-

dress the overfitting problem of CNN due to limited training

data, Han et al. [14] proposed an incremental Boosting C-

NN (IB-CNN) to integrate boosting into the CNN through

introducing an incremental boosting layer and a new loss

function. The incremental boosting layer selects discrim-

inative neurons from the lower layer and is incrementally

updated on successive mini-batches. The loss function con-

sists of errors from both the incremental boosted classifier

and individual weak classifiers. Other than using CNN to

capture spatial representation only, Jaiswal and Valstar [9]

combined convolutional neural networks and bi-directional

long short-term memory neural networks (CNN-BLSTM)

to jointly learn shape, appearance and dynamics in a deep

learning manner for AU recognition.

All these work demonstrates the potential of deep net-

work for AU recognition. However, all of them require a

large number of fully annotated facial images, which is un-

realistic and is very time consuming.

To sum up, current research on AU recognition either us-

es hand-craft features or recognizes AUs under fully labeled

data. Therefore, in this paper, we propose a method to per-

form AU recognition with partially labeled data based on a

deep framework. Specifically, we learn a deep neural net-

work from a large amount of images, and then learn the AU

label distribution from partially available AUs. During the

learning process of AU classifiers, we optimize the model

parameters with the help of the learnt AU label distribution.

Compared with related work, our contributions are as

follows: (1) we are the first to deal with AU recognition with

partially labeled data using a deep framework by exploit-

ing the AU label distribution during the training phase of

AU classifier; (2) we perform experiments with complete-

ly labeled data and partially labeled data, demonstrating the

effectiveness of AU label distribution constraint.

3. Problem Statement

The purpose of our work is to learn AU classifier from a

larger-scale partially-labeled facial images. Our assumption

is that the regular spatial patterns embedded in AU labels

can be described probabilistically as label distribution. Both

the ground-truth AU labels for labeled facial images and the

un-annotated AU labels for the larger-scale unlabeled facial

images are samples of such distributions. Therefore, in ad-

dition to leaning AU classifiers by minimizing label errors

between predicted AU labels and the ground-truth AU label-

s, we regulate the AU classifier through maximizing the log

likelihood of the mapping functions of AUs with regards to

the label distribution, which can be learnt from the ground-

truth AU labels.

Let D = {xt, yt}
N
t=1 denotes a set of d dimensional

training instances xt ∈ R
d and the corresponding labels

yt ∈ {−1, 0, 1}p, where p is the number of labels and N is

the number of instances. Specifically, the positive label is

denoted as 1, the negative label is denoted as −1, and the

missing label is denoted as 0. Therefore, yt ∈ {−1, 1}p

represents the case of completely labeled examples, and

yt ∈ {−1, 0, 1}p represents the case of partially labeled

examples. Given the training data D, our goal is to learn

a classifier f : Rd → {−1, 1}p from partially labeled data

according to Equation 1. The first term in this equation is

the error between predicted AUs and ground-truth AUs for

labeled data. The second term is the log likelihood of the

mapping functions of AUs with regard to the label distribu-

tion learnt from AU label set, and this term acts as a con-

straint to make the output of f(x) to be more approximate
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with the regular spatial patterns embedded in AU labels.

min
Θ

N
∑

t=1

Loss(yt, f(xt; Θ))− β

N
∑

t=1

log p(f(xt; Θ)) (1)

As can be seen in Equation 1, when β = 0, the optimization

problem is equivalent to learning the AU classifiers without

taking the AU label distribution into account; otherwise, our

model can learn the classifier either with completely anno-

tated images in a supervise way or partially labeled data in

a semi-supervise manner.

4. Proposed approach

As discussed in Section 1, AU annotation is a time con-

suming task which needs professionals to annotate multiple

AUs for each image. Therefore there is a serious lack of im-

ages annotated with AU labels for AU recognition research.

However, there are a large amount of images without AU

labels, thus we can utilize a deep learning method to train a

deep framework to learn some important properties of each

image. Furthermore, there exists mutual-exclusive and co-

occurrence relations among multiple AUs due to the facial

muscle structure. Restricted Boltzmann Machine is a good

model to capture the inherent patterns in visible units. Thus

we use this model to capture the inherent relations among

multiple AU labels to improve the AU recognition result-

s. In this section, we introduce the details of our proposed

model.

4.1. Deep Neural Network

Deep neural network (DNN) is a feedforward network

with many hidden layers. As shown in Figure 2(a), x repre-

sents input features (usually the raw features, such as the

raw pixel of image), h(l) represents the l-th hidden lay-

er, and y represents the target outputs, e.g. AUs. In the

DNN model, each two adjacent layers can be considered as

a sharing component. Thus we can train the deep network

in a layer-wise manner. Through multiple hidden layers, the

raw input features x can be encoded with a high-order rep-

resentation h(L). The top hidden layer h(L) and the output

(a) DNN (b) RBM

Figure 2. The structure of DNN and the target prior model (RBM).

layer y form a classifier. In our work, we employ multiple

Support Vector Machines (SVM) for multiple AU recogni-

tion based on the high-layer features, i.e., h(L). Thus AU

recognition is performed according to Equation 2, where

W = (w1, . . . ,wp), d = (d1, . . . , dp) is the parameters for

p classifiers of SVM, and wi ∈ R
d, di ∈ R is the parameters

for the i-th SVM.

yi = sign(wT
i h(L) + di) (2)

The loss function is defined in Equation 3, where the first

item is a L2 regularization term, the second item is the

squared hinge loss function, and α is a hyper-parameter. D-

ifferent with the original hinge loss function, we replace the

constant 1 by yT y in order to make the loss function also

apply to the case of missing tags. When yi is not missing,

i.e., yi = 1 or yi = −1, yi×yi = 1; when yi is missing, i.e.,

yi = 0, the hinge loss is equal to 0, which does not increase

the value of the loss function.

L(Θ) =
1

2
∥W∥

2
2 + α

N
∑

t=1

∥

∥

∥

∥

[

y
t
· y

t
− y

t
·
(

W
T

h
(L)
t

+ d
)]

+

∥

∥

∥

∥

2

2

(3)

4.2. AU Label Distribution

A Restricted Boltzmann Machine (RBM) is bipartite net-

work, including two types of nodes: visible units and hid-

den units. A graphical depiction of RBM is shown in Figure

2(b), where h represents the hidden units, and y represents

the visible units. In our work, we use RBM to model the

global dependencies among multiple AUs.

The energy function of RBM is defined as follows,

E(h, y; Υ) = −bT y − cT h − yT Uh (4)

where Υ = (U, b, c) represents the parameters of the mod-

el. Specifically, bi represents the bias of AU labels, ci repre-

sents the bias of hidden units, and Uij represents the weight

between the i-th AU and j-th hidden unit.

The joint distribution p(y) of the model is defined as fol-

lows,

p(y) =
1

Z

∑

h

exp(−E(h, y; Υ)) (5)

where Z =
∑

y,h exp(−E(h, y; Υ)).
When analysing Equation 4 and Equation 5, we can find

that there is a positive correlation between p(y) and U. In

more detail, the larger weight represents a higher prob-

ability of AU occurrence, and the smaller weight repre-

sents a higher probability of AU absence. In other word-

s, the weights between the hidden units and the AUs cap-

ture the mutual-exclusive and co-occurrence relationships

among AU labels.

According to Equation 6, we employ a Maximum Like-

lihood Estimation method to learn the parameters Υ. Due to

the complexity of calculating the normalizing factor Z, we

use contrastive divergence [8] to estimate Υ. The gradient

of γ ∈ Υ is defined in Equation 7.

Υ∗ = argmax
Υ

log p(y; Υ) (6)
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∂ log p(y)

∂γ
= ⟨

∂E

∂γ
⟩p(h,y) − ⟨

∂E

∂γ
⟩p(h|y) (7)

4.3. Learning with AU label constraint

Since the DNN learning process ensures fidelity in data

reconstruction, such learnt features may not perform well

on a specific task. What’s more, there exists co-occurrence

and mutual-exclusive relations among AU labels. Hence we

intend to capture the inherent relations among AU labels to

regularize the feature learning by making the prediction of

the target variable consistent with the AU label distribution

[19]. Due to the range of visible units in RBM model, dif-

ferent with the previous setting, we set the negative label to

0.

The AU label constraint is defined in Equation 8. When

parameters Υ = (U, b, c) is fixed, the normalizing factor

Z in p(y) is a constant, so we drop it off from the con-

straint. The derivation of log p̃(y) over y is given by E-

quation 9, where σ(s) = 1
1+exp(−s) is a sigmoid func-

tion. Thus the derivation of log p̃(y) over Θ is obtained by
∂log p̃(y)

∂Θ = ∂ log p̃(y)
∂y

∂y

∂Θ .

log p̃(y) = log
∑

h

exp(−E(y, h))

=
∑

i

yibi +
∑

j

log(1 + exp(cj +
∑

i

yiUij))
(8)

∂log p̃(y)

∂y
= b +

∑

j

σ(cj +
∑

k

ykUkj)U.j (9)

Considering the AU label distribution constraint, given the

training data D = {(xt, yt)}
N
t=1, the loss function is defined

as follows,

F (Θ) =
1

2
∥W∥22 + α

N
∑

t=1

∥

∥

∥

∥

[

yt · yt − yt ·
(

W
T

h
(L)
t + d

)]

+

∥

∥

∥

∥

2

2

− β

N
∑

t=1

log p̃
(

σ
(

W
T

h
(L)
t + d

)

; Υ
)

(10)

where α ≥ 0, β ≥ 0 are the hyperparameters , and Θ in-

cludes the parameters of both DNN and SVM.Υ is already

learnt from the available AU labels. Minimizing F (Θ) is

equivalent to minimizing the structural risk for SVM and

maximizing the log likelihood of the AU label distribution

model.

4.3.1 Parameters Learning

As discussed in the previous section, the AU label distribu-

tion can be learnt from the available AU labels. Given a set

of training data D = {xt, yt}
N
t=1 = {X,Y}, we learn our

model from the image data X and the associated AU label-

s Y. First, we pre-train the DNN based on the image data

in an unsupervised manner, and then fine-tune the param-

eters of both DNN and SVM by minimizing the objective

function F (Θ) defined in Equation 10.

As explained in Section 4.1, we can use partially labeled

data during the procedure of fine-tuning. From Equation 10,

we find that the completely labeled samples supervise the

model learning in two ways: minimizing the differences be-

tween the ground-truth labels and the predicted labels, and

making the predicted labels to be consistent with the learnt

AU label distributions. As for the samples without AU la-

bels, they have no contribute on the hinge loss function, but

play a role in AU label constraint. Therefore, our proposed

model can not only utilize the unlabeled data to pre-train the

DNN, but also can use them to fine-tune the parameters of

DNN and AU classifiers through the AU label constraint.

During the fine-tuning process, we employ a backpropa-

gation method to learn the parameters, which uses a chain

rule to calculate the gradient of each parameter. We define

the derivation of F (Θ) over the weighted sum of inputs in

the l-th hidden layer z(l) as δ
(l), which can be calculated

according to Equation 11 in a backward propagation way.

δ
(l) =

∂F (Θ)

∂z(l)
=

(

(W(l+1))T δ(l+1)
)

· h(l) ·
(

1− h(l)
)

(11)

Thus the gradient of the weight W(l) of the DNN model can

be obtained according to Equation 12 (to simplify, we only

consider the gradient of one sample). Specifically, h(0) is

the image features x.

∂F (Θ)

∂W(l)
= δ

(l)
(

h(l−1)
)T

, l = 1, . . . , L (12)

Assuming s = Wh(L)+d, we obtain the derivation of F (Θ)
over the parameter W of SVM according to Equation 13.

∂F (Θ)

∂Wij

=Wij − 2αh
(L)
i yj

[

y
2
j − yj

(

∑

i

h
(L)
i Wij + dj

)]

+

− β
∂ log p̃(σ(s))

∂σ(sj)
σ(sj) (1− σ(sj))h

(L)
i

(13)

4.3.2 Inference

Given a query sample x̂, first, we obtain the state of top

hidden layer ĥ
(L)

by using a forward propagation, then we

perform AU recognition through the learnt multi-SVMs by

Equation 2.

5. Experiments

5.1. Experimental Conditions

Two spontaneous databases are used in our experiments:

the BP4D database [23] and the DISFA database [12].
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The BP4D database contains 2D/3D videos of sponta-

neous facial expressions in young adults during various e-

motion inductions while interacting with an experimenter.

It provides 328 2D videos with 12 AUs coded from 41 par-

ticipants, resulting in ∼ 140, 000 valid samples. In our

work, we use all the valid samples and all the AUs.

The DISFA database contains video recordings of 27

subjects while watching YouTube videos. Each image

frame was coded in terms of 12 AUs and each AU intensity

is ranked from 0 to 5. In our work, we select samples whose

summation of all AUs’ intensity is larger than 6, resulting

in 19850 samples. Then, 10 AUs whose frequency of oc-

curence is higher than 10% are employed in our work, i.e.,

AU1, AU2, AU4, AU6, AU9, AU12, AU15, AU17, AU25,

AU26. And we treat each AU with intensity larger than zero

as active.

The images in both databases are normalized to 100 ×
100. On the BP4D database, we randomly divide the da-

ta into three parts according to subjects: 60% subjects for

training, 20% subjects for validating, and the rest for test-

ing. In order to reduce the impact of randomness, each

experiment on this database is performed for five times,

and the mean F1 Score is used to evaluate the experimen-

tal results. For the DISFA database, a 10-fold subject-

independent cross validation is adopted due to the relatively

small number of samples.

To demonstrate the effectiveness of our method, two ex-

periments were conducted: AU recognition under complete

AU annotation and AU recognition under incomplete AU

annotation. For complete AU annotation, we compare our

proposed method constrained by AU label distribution with

the method without AU label constraint. Similarly, for in-

complete AU annotation, we compare our method with AU

label constraint with the method without AU label distribu-

tion constraint. For the experiment under incomplete AU

annotation, we randomly miss the AU labels with certain

proportion, i.e., 10%, 20%, 30%, 40%, 50%.

5.2. Experimental Results and Analysis

5.2.1 AU recognition with completely annotated data

1) Experimental results: Table 1 and Table 2 summarize the

experimental results of AU recognition with AU label dis-

tribution constraint under completely annotated data on the

BP4D database and the DISFA database respectively. As

can be seen from these two tables, employing AU label dis-

tribution to regularize the AU recognition can improve the

AU detection performance. On the BP4D database, the re-

sults of our method constrained by AU label distribution are

higher than those without AU label constraint on 9 out of 12

AUs, and the average F1 Score of ours is about 5% higher as

well. It strongly demonstrates the effectiveness of AU label

distribution on regularizing the AU recognition. Similarly,

on the DISFA database, our method performs better in most

cases, and the average F1 Score of ours is 5% higher than

the method without AU label constraint. In particular, there

is a significant improvement on AU 17, which is improved

from 0.201 to 0.447. What’s more, AU15 and AU6 are im-

proved for about 10%. These further illustrate the effective-

ness of probabilistic relations among different AUs. 2) E-

valuation of learnt representation: To validate the effective-

ness of DNN, we employ t-SNE to depict the embedding of

images represented by the raw pixel of images and the learnt

deep representation, and visualize the effect of individual d-

ifferences by coloring in terms of subjects [1]. Figure 3 lists

the examples of AU12 on the BP4D database and AU25 on

the DISFA database. From Figure 3(a) and Figure 3(c), we

can see that there exist strong distributional biases in the raw

face images since the images from the same subject tend to

be closer in the feature space. However, as shown in Figure

3(b) and Figure 3(d), images from the same subject tend to

distribute uniformly. It demonstrates that the deep neural

network diminishes the individual differences. 3) Compari-

son with related work: To further evaluate the superiority of

our method under complete AU annotation, we compare our

proposed approach with state-of-the-art learning approach-

es for AU recognition. [25] compared their work with many

state-of-the-art methods on the BP4D database and the D-

ISFA database, including deep models and shallow models.

However, the results on the DISFA in [25] were reported

using the model learnt on the BP4D database, therefore we

only compare our work with theirs on the BP4D database

only. [3] and [4] provided experimental results on the D-

ISFA database, thus we directly compare our results on the

DISFA database with those in [4] and [3].

From Table 1, we can find that the average F1 Scores

of our method are higher than the results of state-of-the-

art approaches. Compared with the deep learning methods,

i.e., DRML, AlexNet, ConvNet and LCN, our method per-

forms best. In more detail, the average F1 Score of ours

is 11% higher than AlexNet, 2% higher than ConvNet, and

3% higher than LCN, respectively. The above three work

did not consider the AU relationships, while our method

regularizes the classifier training and feature learning pro-

cess by AU label distribution constraint. This leads to a

better performance. Compared with DRML, the results of

our method are better on 7 AUs. DRML introduces a region

layer that uses feed-forward functions to capture structural

information in different facial regions, while our method

exploits the statistical relations among different AUs from

target AU labels, and the statistical AU label distribution

is used as a constraint to supervise the learning process

of deep network and AU classifier. When comparing with

shallow models, like LSVM and JPML, our method also

achieves better performance. The average F1 Score of ours

is 14% and 3% higher than LSVM and JPML respective-

ly. Though JPML defines AU relations through dataset s-
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Table 1. F1 Score on the BP4D database.

AU Our
without label DRML AlexNet ConvNet LCN LSVM JPML

constraint [25] [25] [25] [25] [25] [25]

1 0.381 0.287 0.364 0.270 0.404 0.450 0.232 0.326

2 0.166 0.187 0.418 0.255 0.461 0.412 0.228 0.256

4 0.418 0.310 0.430 0.319 0.428 0.423 0.231 0.374

6 0.741 0.737 0.550 0.514 0.518 0.586 0.272 0.423

7 0.620 0.666 0.670 0.554 0.543 0.528 0.471 0.505

10 0.739 0.679 0.663 0.528 0.540 0.540 0.772 0.722

12 0.792 0.778 0.658 0.490 0.610 0.547 0.637 0.741

14 0.588 0.470 0.541 0.517 0.567 0.599 0.643 0.657

15 0.246 0.202 0.332 0.255 0.441 0.361 0.184 0.381

17 0.564 0.503 0.480 0.414 0.383 0.466 0.330 0.400

23 0.261 0.307 0.317 0.261 0.418 0.332 0.194 0.304

24 0.376 0.228 0.300 0.235 0.328 0.353 0.207 0.423

Avg. 0.491 0.446 0.483 0.384 0.470 0.466 0.353 0.459

Table 2. F1 Score on the DISFA database.

AU Our
without label GPDE MC-LVM HRBM lp-MTMKL

constraint [3] [4] [4] [4]

1 0.574 0.608 - 0.586 0.397 0.422

2 0.570 0.489 - 0.630 0.559 0.458

4 0.658 0.665 0.656 0.729 0.616 0.472

6 0.684 0.594 0.536 0.523 0.540 0.628

9 0.334 0.337 0.471 - - -

12 0.791 0.797 0.600 0.847 0.792 0.763

15 0.472 0.363 - 0.494 0.387 0.345

17 0.447 0.201 - 0.486 0.388 0.414

25 0.636 0.625 0.800 - - -

26 0.675 0.643 0.571 - - -

Avg. 0.584 0.532 0.606 0.614 0.526 0.500

(a) raw image pixels on DISFA (b) deep features on DISFA (c) raw image pixels on BP4D (d) deep features on BP4D

Figure 3. A t-SNE embedding of raw image pixels and learnt deep features in term of subjects on the BP4D and DISFA database. DISFA:

colored in AU25; BP4D: colored in AU12. Each text represents one subject ID and is placed at the center of its own frames. The clustering

effect reveals that face images retain individual differences; the learnt deep representation reduces such influence.

tatistics, it uses manually-crafted feature (i.e., SIFT). Our

method learns the feature representations using a deep neu-

ral network. What’s more, in our model, the AU relations

are not only used to train the AU classifiers, but are also

adopted to fine-tune the feature learning process. Linear

SVM (LSVM) is a data-driven method, and it ignores the re-

lations among different AUs. The superiority of our method

over the shallow models demonstrates the effectiveness of

deep framework in learning effective feature representation-

s, and also proves the importance of AU relations in AU

recognition. What’s more, the method of without AU la-

bel distribution constraint is also superior to LSVM, further

demonstrating the effectiveness of deep model in extracting

features.
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The results of the DISFA database are listed in Table

2. Since the number of samples and AUs on the DISFA

database used in each related work are not the same, it is

hard to compare our work with those in a totally fair way.

So the comparison on this database is only for reference. In

terms of the common AUs, our method achieves an average

F1 Score of 0.630, which is 2% higher than GPDE. For the

AUs used in [4], the result of ours is 0.599, which is better

than the state-of-the-art approaches in most cases. In more

detail, the average F1 Score of our method is about 7% and

10% higher than HRBM and lp-MTMKL respectively.

5.2.2 AU recognition on partially labeled data

As discussed in Section 4, our proposed method can learn

AU classifiers from partially labeled data. To validate the

effectiveness of our method in semi-supervise learning, we

perform experiment with partially labeled data with/without

the help of AU label distribution constraint. As mentioned

in Section 2, there are several recent works considering

AU classification under partially AU annotations. [17] re-

quired expression labels as hidden knowledge to comple-

ment the missing AU labels, and [13] also required a large-

scale expression-labeled images. Thus we only compare

our work with MLML [20] and BGCS [15], which train AU

classifier with missing labels without extra label efforts. For

a fair comparison, we rerun their code using our data. Since

MLML involves in calculating the similarities between two

images, the size of similarity kernel function is proportional

to the square of the number of samples, resulting in a mem-

ory problem. Therefore, on the BP4D database, we only

compare our method with BGCS.

Figure 4(a) and Figure 4(b) depict the results on the DIS-

FA database and the BP4D database respectively. As can be

seen, in general, the AU recognition performance decreases

with the increasing of missing rate. On both databases, our

proposed method performs better than the method without

AU label distribution constraint in most cases, demonstrat-

ing the effectiveness of AU label distribution constraint in

regularizing the learning process of deep network and AU

classifier. Compared with BGCS, our method outperforms

in most cases, since the average F1 Scores of ours are high-

er than those of BGCS on both databases. What’s more,

compared with MLML, our method performs better as well.

Both BGCS and MLML used hand-craft features, while we

learn feature representation from deep framework, which is

more effective. Furthermore, they either use label smooth-

ness to fill in the missing values or marginalize over the

missing values during inference. In our model, we enforce

the output of unlabeled data to be consistent with AU label

distribution learnt from ground-truth target labels. These

leads to the superiority of our method in semi-supervise

learning.

(a) DISFA

(b) BP4D

Figure 4. AU recognition results with partially labeled data under

5 different missing rates.

6. Conclusions

Traditional machine learning approaches to AU recogni-

tion require large amounts of labeled data. This requirement

is often unrealistic, since AU annotation is a time consum-

ing task. Thus, in this work, we propose a novel model to

tackle the problem of AU recognition under incomplete AU

annotations. Due to the facial anatomy, there exists spa-

tial patterns in multiple AUs. These relations can be used

to help AU recognition. Hence the AU label relations de-

scribed in a probability form, namely AU label distribution,

are incorporated to learn the AU classifier. First, a deep neu-

ral network is learnt for feature representation from a large-

scale facial images. Then, a restricted Boltzmann machine

is trained to learn the AU label distribution from available

AU labels. Finally, we train the AU classifier by maximiz-

ing the log likelihood of the mapping functions of AUs with

regard to the learnt label distribution and minimizing the er-

ror between predicted AUs and ground-truth AUs from par-

tially labeled data. The experimental results under complete

AU annotations prove that AU label distribution constrain-

t can achieve a better performance on AU recognition and

demonstrate the learnt features from the deep framework

can diminish the individual influence. The experimental re-

sults with partially labeled data demonstrate the superiority

of our method in semi-supervise learning of AU recogni-

tion.

Acknowledgment

This work has been supported by the National Science

Foundation of China (Grant No. 61473270, 61228304,

61175037), and the project from Anhui Science and Tech-

nology Agency (1508085SMF223).

3958



References

[1] W.-S. Chu, F. De la Torre, and J. F. Cohn. Modeling spatial

and temporal cues for multi-label facial action unit detection.

arXiv preprint arXiv:1608.00911, 2016.

[2] S. Du, Y. Tao, and A. M. Martinez. Compound facial ex-

pressions of emotion. Proceedings of the National Academy

of Sciences of the United States of America, 111(15):E1454,

2014.

[3] S. Eleftheriadis, O. Rudovic, M. P. Deisenroth, and M. Pan-

tic. Gaussian process domain experts for model adaptation

in facial behavior analysis. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 18–26, 2016.

[4] S. Eleftheriadis, O. Rudovic, and M. Pantic. Multi-

conditional latent variable model for joint facial action unit

detection. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 3792–3800, 2015.

[5] A. Fischer and C. Igel. An introduction to restricted boltz-

mann machines. In Iberoamerican Congress on Pattern

Recognition, pages 14–36, 2012.

[6] S. Ghosh, E. Laksana, S. Scherer, and L.-P. Morency. A

multi-label convolutional neural network approach to cross-

domain action unit detection. In Affective Computing and In-

telligent Interaction (ACII), 2015 International Conference

on, pages 609–615. IEEE, 2015.

[7] A. Gudi, H. E. Tasli, T. M. den Uyl, and A. Maroulis. Deep

learning based facs action unit occurrence and intensity es-

timation. In Automatic Face and Gesture Recognition (FG),

2015 11th IEEE International Conference and Workshops

on, volume 6, pages 1–5. IEEE, 2015.

[8] G. E. Hinton. Training products of experts by minimizing

contrastive divergence. Neural computation, 14(8):1771–

1800, 2002.

[9] S. Jaiswal and M. Valstar. Deep learning the dynamic ap-

pearance and shape of facial action units. In 2016 IEEE Win-

ter Conference on Applications of Computer Vision (WACV),

pages 1–8. IEEE, 2016.

[10] P. Khorrami, T. Paine, and T. Huang. Do deep neural net-

works learn facial action units when doing expression recog-

nition? In Proceedings of the IEEE International Conference

on Computer Vision Workshops, pages 19–27, 2015.

[11] Y. Li, B. Wu, B. Ghanem, Y. Zhao, H. Yao, and Q. Ji. Fa-

cial action unit recognition under incomplete data based on

multi-label learning with missing labels. Pattern Recogni-

tion, 60:890–900, 2016.

[12] S. M. Mavadati, M. H. Mahoor, K. Bartlett, P. Trinh, and J. F.

Cohn. Disfa: A spontaneous facial action intensity database.

IEEE Transactions on Affective Computing, 4(2):151–160,

2013.

[13] A. Ruiz, J. Van de Weijer, and X. Binefa. From emotions to

action units with hidden and semi-hidden-task learning. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 3703–3711, 2015.

[14] A. S. K. Shizhong Han, Zibo Meng and Y. Tong. Incremen-

tal boosting convolutional neural network for facial action

unit recognition. In Neural Information Processing Systems

(NIPS), pages 1–9, 2016.

[15] Y. Song, D. McDuff, D. Vasisht, and A. Kapoor. Exploiting

sparsity and co-occurrence structure for action unit recogni-

tion. In Automatic Face and Gesture Recognition (FG), 2015

11th IEEE International Conference and Workshops on, vol-

ume 1, pages 1–8. IEEE, 2015.

[16] Y. Tong, W. Liao, and Q. Ji. Facial action unit recognition by

exploiting their dynamic and semantic relationships. IEEE

transactions on pattern analysis and machine intelligence,

29(10), 2007.

[17] S. Wang, Q. Gan, and Q. Ji. Expression-assisted facial ac-

tion unit recognition under incomplete au annotation. Pattern

Recognition, 61:78–91, 2017.

[18] Z. Wang, Y. Li, S. Wang, and Q. Ji. Capturing global seman-

tic relationships for facial action unit recognition. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 3304–3311, 2013.

[19] Z. Wang, S. Lyu, G. Schalk, and Q. Ji. Learning with target

prior. In Advances in Neural Information Processing System-

s, pages 2231–2239, 2012.

[20] B. Wu, S. Lyu, B.-G. Hu, and Q. Ji. Multi-label learning with

missing labels for image annotation and facial action unit

recognition. Pattern Recognition, 48(7):2279–2289, 2015.

[21] Y. Z. Yongqiang Li, Jixu Chen and Q. Ji. Data-free prior

model for facial action unit recognition. IEEE Transactions

on Affective Computing, 2013.

[22] X. Zhang and M. Mahoor. Simultaneous detection of mul-

tiple facial action units via hierarchical task structure learn-

ing. In Pattern Recognition (ICPR), 2014 22nd International

Conference on, pages 1863–1868, Aug 2014.

[23] X. Zhang, L. Yin, J. F. Cohn, S. Canavan, M. Reale,

A. Horowitz, and P. Liu. A high-resolution spontaneous

3d dynamic facial expression database. In Automatic Face

and Gesture Recognition (FG), 2013 10th IEEE Internation-

al Conference and Workshops on, pages 1–6. IEEE, 2013.

[24] K. Zhao, W.-S. Chu, F. De la Torre Frade, J. Cohn, and

H. Zhang. Joint patch and multi-label learning for facial ac-

tion unit detection. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2015.

[25] K. Zhao, W.-S. Chu, and H. Zhang. Deep region and multi-

label learning for facial action unit detection. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3391–3399, 2016.

[26] Y. Zhu, S. Wang, L. Yue, and Q. Ji. Multiple-facial action

unit recognition by shared feature learning and semantic re-

lation modeling. In Pattern Recognition (ICPR), 2014 22nd

International Conference on, pages 1663–1668, Aug 2014.

3959


