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Abstract

In this paper we propose a new solution to the text de-

tection problem via border learning. Specifically, we make

four major contributions: 1) We analyze the insufficiencies

of the classic non-text and text settings for text detection.

2) We introduce the border class to the text detection prob-

lem for the first time, and validate that the decoding pro-

cess is largely simplified with the help of text border. 3) We

collect and release a new text detection PPT dataset con-

taining 10,692 images with non-text, border, and text an-

notations. 4) We develop a lightweight (only 0.28M pa-

rameters), fully convolutional network (FCN) to effectively

learn borders in text images. The results of our extensive

experiments show that the proposed solution achieves com-

parable performance, and often outperforms state-of-the-

art approaches on standard benchmarks–even though our

solution only requires minimal post-processing to parse a

bounding box from a detected text map, while others often

require heavy post-processing.

1. Introduction

As one of the most well-known and oldest problems in

computer vision [20, 27, 7, 43], text detection has attracted

increased attention in recent years [21, 13, 16, 33, 36, 22,

11, 39, 3, 35, 28, 1, 41, 12, 24, 9, 40, 38, 4, 42, 5, 8, 31,

25, 29, 19, 34, 15], bringing benefits to many real-world ap-

plications, including but not limited to image search, docu-

ment analysis, automatic driving, and human-computer in-

teractions. A good review of the text detection problem can

be found in [37].

Although the text detection problem seems to be self-

explanatory, namely detecting texts in a given image, it can

be interpreted in many different ways according to the used

detection unit, e.g., component detection [2, 33, 17, 22, 39],

character detection [19, 40, 5, 38, 24, 28, 29], word detec-

tion [10] , line detection [41], and region/block detection

[42, 34]. From the perspective of detection speed, the com-

ponent detection is the most handy because components can

be efficiently extracted from low-level features like edges,

and some heuristic rules are also effective to distinguish text

from non-text. From the perspective of rigorous problem

definition, character detection is highly preferred because a

character is naturally a unit in any language, and there are

always a small number of characters. From the perspective

of human readable results, the most preferred is either the

word- or line-level detection. From the perspective of re-

ducing false alarms, the region/block-level detection is pre-

ferred because it contains a larger image context region to

differentiate text from non-text. However, text detection is

not an isolated task, but is closely related to text recognition.

From the perspective of a down-streaming recognition sys-

tem, the most preferred is the line- or word-level detection

depending on whether a recognition system is trained by

text lines or isolated words. Consequently, there are three

common strategies: 1) bottom-up [1, 24, 5, 38, 29, 19]: first

detect text at the component- or character-level, and convert

initial detection results to a desired word- or line-level; 2)

top-down [42]: first detect text on the block level, and break

a block to a word- or line-level if necessary; and 3) hy-

brid [34]: take advantage of both bottom-up and top-down

strategies. Actually, these are the mainstream frameworks

used in text detection until now, although people may use

different component/character detectors, rules to connect

character bounding boxes to a word/line, rules to divide a

region into words/lines, etc.

Early efforts under the mainstream frameworks focus on

various heuristics that are helpful for detecting characters or

character components. The two most well-known ones are:

1) maximally stable extremal regions (MSER) [2, 18, 22]

and 2) stroke-width transform (SWT) [6, 17, 23]. MSER

assumes that text components have similar homogeneous

background and foreground and thus are stable with respect

to a range of thresholds. SWT assumes that text components

have comparable stroke width, and thus finding components

with comparable stroke width finds text. Both MSER and

SWT are very useful heuristics, but they have to be com-

bined with additional post-processing to produce reasonable

text candidates.
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More recent efforts focus on reducing the amount of

handcrafted features or man-made rules in text detection,

especially after the big success of deep convolutional neu-

ral networks (CNN) in the ImageNet Challenge [14]. These

recent approaches show very exciting performance scores

on both document images and scene text images. Tian et al.

[24] proposed the Text Flow method that sequences charac-

ter CNN candidate detection, false character removal, text

line extraction and text line verification using minimum cost

flow networks. Cho et al. [5] suggested the Canny Text De-

tector that proposes character candidates using maximum

stable regions and edge similarities, text line tracking and

grouping using heuristic rules. Zhang et al. [42] suggests

a fully convolutional neural network (FCN) to obtain text

block candidates, a character-centroid FCN to assist text

line generation from a text block, and a set of heuristic

rules based on intensity and geometry consistencies to re-

ject false candidates. Yao et al. [34] constructs a similarity

graph based on block-level text detection results, character-

level text detection results and estimated text orientations,

and proposes line-level predictions via region splitting ac-

cording to graph similarities.

There is nothing wrong with those mainstream frame-

works, but they are not desired for neither training nor de-

coding. The multi-step nature of the framework implies that

a text detection system of this type is not fully optimized

even if each individual step is optimized. In other words, it

is very difficult to tune a text detection system in an end-to-

end manner. Furthermore, obtaining line-level text candi-

dates from candidates of other levels is not an easy task due

to variations in both image foreground and background. It is

not rare to see that authors [33, 42, 5, 24, 38] may spend 1/4

to 2/3 of all paper pages discussing how to obtain good line-

level detection results via all kinds of post-processing—

ranging from very simple operations like finding connected

components to complicated region operations [33, 19] like

grouping, division, chaining, linkage, etc., and even more

complicated operations like coarse-to-fine analysis [38, 9],

data clustering [38], additional classifiers [40, 29], condi-

tional random fields [28], etc. At the end of the day, one

may spend more time on tuning post-processing than on the

core “text detection” algorithm.

Instead of considering only non-text and text classes

[33, 22, 11, 39, 3, 35, 28, 41, 24, 9, 40, 38, 4, 42, 5, 31,

25, 29, 19, 34], we consider three classes, namely non-

text, border and text classes, and propose a new text de-

tection framework that self-organizes predicted text groups

as text line candidates. As far as we know, this is the first

attempt to tackle the text detection problem using the bor-

der class. The introduction of the new border class makes a

huge difference in both training and decoding. In training,

all kinds of heuristics about text lines and semantic segmen-

tation are now implicitly encoded into the border and text

classes. Thus, we not only train a text detection system in

an end-to-end manner, but also avoid learning and tuning

explicit post-processing related rules, classifiers, and other

parameters. In testing, we can directly obtain meaningful

text candidates from a predicted probability map, because

borders help isolate each individual text region from the

others (see examples in Fig. 2). In this way, we achieve

the self-organized text detection. In addition to this main

contribution, we also make an effort to 1) collect and re-

lease a text detection PPT dataset with single-column and

single-line annotations, and 2) develop a lightweight FCN

supporting multi-resolution analysis for self-organized text

detection. Our experimental results on the public bench-

marks of ICDAR 2015 Robust Reading Competition Task

1.1 (born-digital images) and 2.1 (focused scene text), and

the MSRA-TD500 dataset support that the proposed new

framework outperforms the state-of-the-art approaches with

heavy post-processing and parameter tuning.

The remainder of this paper is organized as follows: Sec.

2 discusses our motivations; Sec 3. proposes our newly cre-

ated PPT dataset and baseline FCN; Sec. 4 shows our ex-

perimental results on public benchmarks; and we conclude

our paper in Sec. 5.

2. Methodology

2.1. Motivation

When we analyze why so much post-processing is in-

volved under the mainstream text detection frameworks, we

notice that it is mainly to close the gap between text candi-

dates at a desired level (line-level) and initial candidates at

undesired levels (character-level, component-level or block-

level). However, why do we have to format text candidates

at a desired level from initial candidates at other levels?

Why can’t we directly predict text candidates at a desired

line-level?

(a) (b) (c)

Figure 1. Why are non-text and text settings insufficient for text

line segmentation? Color encodes different classes: non-text, bor-

der, and text. (a) two-class annotation with well separated lines;

(b) two-class annotation with very close lines; (c) three-class anno-

tation with very close lines. Yellow shaded blocks indicate space

regions of different semantic meanings (see text body).

Although we failed to find any answer from existing lit-

erature, we found that [42, 34] use line-level annotations

during training. Intuitively, if they train a system using

line-level annotations, then the resulting system should also

give line-level text candidates. Unfortunately, this is not

the case: as Yao et al. stated in [34], “when several text
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Figure 2. Sample results of our self-organized text detection. Upper row: original images; middle row: predicted three-class probability

map (non-text, border, and text); and lower row: rectangular bounding boxes drawn for each text line.

lines are very close, the estimated text regions may stick

together, making it difficult to identify each individual text

line.” These lessons teach us that pure line-level annota-

tions are not sufficient to train a text detection system to

predict text line candidates (see examples in Fig. 1 of [42]

and Fig. 1 and 2 of [34]).

However, two important but unanswered questions re-

main: why are line-level annotations not sufficient? and

what can be done to resolve this problem? After several

rounds of failure analysis we determined the problem was

an inherent limitation of the two-class (i.e. text and non-

text) settings in text detection. As seen in Fig. 1-(a), when

lines are separated by sufficient space, two “text” lines on

an annotated group truth map can be easily identified. When

the space between two lines becomes small enough, it be-

comes very hard to distinguish the two lines, and two “text”

lines merge to one on a corresponding annotated group as

shown in Fig. 1-(b). Hence, it is not surprising to see that

adjacent text lines eventually stick together and are pre-

dicted as a single one in testing.

2.2. The Border Class for Text Detection

Instead of seeking additional post-processing to separate

multiple text lines, we propose a new solution by introduc-

ing a third class, namely the border class, to the text detec-

tion problem. As shown in Fig. 1-(c), two text lines will

never be indistinguishable on the ground truth map after

the border class is used. Moreover, visually similar blocks,

i.e., those yellow blocks in Fig. 1-(c), are now labeled dif-

ferently according to physical meanings, i.e. #1: space in

background (non-text), #2: space between text lines (bor-

der), and #3: space between words (text).

Now we are ready to reformulate the text detection prob-

lem: Given a text image, our aim is to find all text candi-

dates according to detected borders. Fig. 2 shows sample

detection results from our system, which is a fully convolu-

tional network trained with the three-class annotations (see

Sec. 3). It is clear that with the help of the border class:

1) we are able to distinguish one text candidate from the

other, and 2) a text candidate is no longer restricted to only

a rectangular shape, but could be an arbitrary shape.

3. Text Detection via Border Learning

3.1. Data Collection and Border Annotation

To initiate self-organized text detection, we first need

enough training data. Specifically, we expect to have a

dataset that is big enough (e.g., > 10000 sample images)

and is annotated in the format of non-text, border, and text

classes. Although there are many public datasets for text

detection, e.g., MSRA-TD500 [33], HUST-TR400 [32],

COCO-Text [26], and so on, none of them meet our expec-

tations. We therefore create our own dataset.

In total, our PPT dataset contains 10,692 images (72

dpi) with 93,228 text regions mixed of English and Arabic.

As its name implies, all source images are converted from

PowerPoint slides, which are downloaded from the Internet

through the Google search API. Text regions are first au-

tomatically retrieved by using the Office 365 API for each

image, and saved for later human inspection to ensure each

text region is single-line and single-column.

A typical slide of aspect ratio 4:3 is of size 720×540

pixels after converting to an image. Table 1 summarizes

the statistics of the text line height at different percentiles,

where “Abs. LH” computes the actual line height of each

text region in pixels; “Rel. LH” computes the relative line
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Figure 3. Samples images (upper row) and annotations (lower row)

of the PPT dataset, where target colors encode the probability map

of classes non-text, border, and text.

Table 1. Line height (LH) statistics of PPT dataset.

Name\
Perc.

1 10 20 30 40 50 60 70 80 90 99

Abs. LH (pixel) 85 57 49 44 40 37 34 32 29 24 9

Rel. LH (%) 11.55 7.78 6.56 6.00 5.48 5.11 4.78 4.11 3.96 3.37 1.56

{max/min}(LH) 27.69 3.46 2.24 1.85 1.63 1.49 1.37 1.28 1.20 1.13 1.00

height of each text region normalized by corresponding im-

age height; and “{max/min}(LH)” computes the ratio of the

largest line height to the smallest line height for all text re-

gions within an image. Each element in the table tells the

value of the top p percentile of a given variable. For ex-

ample, the element 85 at the row “Abs. LH” and column

Perc = 1 indicates that 1% of the entire data are of “Abs.

LH”—above or equal to 85 pixels.
To effectively learn borders, we also annotate border

pixels for each text region by 1) estimating the origi-

nal text region line height ĥ, and 2) marking the outer

ribbon-like region of width c · ĥ as text borders. For
each slide image in our dataset, we then generate a “tar-
get” of the three classes, i.e., non-text, border, and text.
This completes our PPT dataset. Fig. 3 shows samples
of the PPT dataset and automatically generated target im-
ages (border width coefficient c = 15%); this entire
dataset can be downloaded from https://gitlab.com/

rex-yue-wu/ISI-PPT-Dataset.

3.2. Baseline Training

We partition the PPT dataset into training (90%), validation

(5%), and testing (5%) sets. Instead of choosing a popular archi-

tecture inspired by a different problem, e.g. ImageNet object clas-

sification, we develop our own lightweight architecture as shown

in Fig. 4, which is a simple feed-forward network with targets de-

fined as the probability map of the three classes, i.e., non-text, bor-

der, and text. The reason why a lightweight architecture is still ca-

pable of text detection is that text is, in general a simpler class than

various physical object classes like cat and dog, in the sense that

it often has a homogeneous foreground and surroundings. Both

single and multi-resolution baselines are implemented in Theano

and trained w.r.t. the cross-entropy loss.

With regard to data argumentation, we use 1) random resize

for a ratio in [0.25, 1.25]; 2) random color shift in [−64, 64];
3) random negation; and 4) random rotation for an angle within

[−25o,+25o]. We use the adadelta optimizer and batch size

16 in training, and the single resolution baseline model gets con-

verged after about 150 epochs. Once we obtain the single reso-

lution baseline model, we plug it into our multi-resolution base-

line model and continue training until convergence. This multi-

resolution baseline predicts non-text, border, and text probability

maps on four scales and fuses all maps together. In this way, we

handle the font size variations in the PPT dataset.

Algorithm 1: Rectangular text region decoder.

1 Function RTRD(Y):
Input : Y, a predicted probability map of non-text, border and text.

Output: L, a list of decoded text bounding boxes

2 for each pixel in Y, decide its membership.;

3 obtain a mask M by assigning 1s to pixels belong to the text class and

0s otherwise;

4 initialize L to a empty list;

5 for r ∈ connected component of M do

6 find out text coordinates {(x, y)|(x, y) ∈ r};
7 top← min{y ∈ r}, bot← max{y ∈ r};
8 left← min{x ∈ r}, right← max{x ∈ r};
9 height← bot-top, width← right-left;

10 relax this rectangular box according to the border coefficient c

used in training data;

11 append this relaxed rectangular box to L

12 end

3.3. SelfOrganized Text Detector

One salient advantage of the proposed method is that we pre-

dict non-text, border and text. The knowledge of borders is very

important for two reasons: 1) border separates close-by regions,

and 2) the concurrence of both text class and border class could

help further improve text region prediction. As one can see from

Fig. 2, a predicted non-text, border, and text probability map has

already clearly identified text regions and separated near-by re-

gions via borders. Therefore, we could obtain reasonably well text

candidates with minimal postprocessing, namely simply analyzing

connected components. Alg. 1 shows an example of how to obtain

horizontal rectangular bounding boxes from a predicted probabil-

ity map, but one can easily modify it to predict text bounding boxes

in other forms, e.g. an oriented bounding box. Our pretrained mod-

els are available at https://gitlab.com/rex-yue-wu/

ISI-PPT-Text-Detector.

3.4. The Effect of Border Class in Text Detection

To understand the effect of the proposed border class in text

detection, we evaluate models trained with and without using the

border class. Specifically, besides the two proposed models shown

in Fig. 4, we train two additional models: 1) a single-resolution

FCN variant without border, which adopts the exact same archi-

tecture as the single resolution FCN, except for changing the last

layer from predicting three channels with softmax activation to

predicting only one channel with sigmoid activation to deter-

mine text or non-text; and 2) a state-of-the-art text-block FCN [42]

which does not use the border class. All four models share the

same training, validation and testing dataset. Model performance

is evaluated by the widely used Wolf’s object detection evaluation

method [30] with default parameters1 as shown in Table 2. Decod-

ing speed is estimated based on the NVidia TitanX GPU and

the Intel Xeon CPU E5-2695 v2 @2.4GHz. From Table 2,

1http://liris.cnrs.fr/christian.wolf/software/

deteval/
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Figure 4. Fully convolutional networks used in the proposed method. Left: single resolution FCN. Right: multi-resolution FCN.

it is clear that 1) using a lightweight architecture (2% of [42]’s

#param.) greatly improves decoding speed by 2x while not trad-

ing off detection quality (see row 1-2); 2) the border class helps

better localize a text region and thus largely improve text detection

by 0.27 in F-score (see row 2-3); and 3) multi-resolution analysis

further boosts detection performance to 0.96 in F-score (see row

3-4). Qualitative results can be found in Fig. 5.

Table 2. Performance comparisons on PPT testing Dataset
Models Prec. Recall F-score #Param.(M) sec/img (GPU/CPU)

Text-Block FCN[42] 0.63 0.67 0.65 14.71 0.55 / 14.7

single-res. w/o border 0.61 0.69 0.65 0.27 0.24 / 7.2

single-res. w/ border 0.91 0.94 0.92 0.27 0.25 / 7.4

multi-res. w/ border 0.94 0.97 0.96 0.28 0.32 / 9.8

Figure 5. Effectiveness of the border class for text detection. (a),

(b), and (c) are decoding results on the testing PPT dataset using

models of single-res. w/o border, single-res. w/ border, and multi-

res. w/ border, respectively. See differences in arrowed regions.

4. Experiment Results

4.1. Datasets

To validate the performance of the proposed new framework,

we evaluate our method on the latest ICDAR 2015 Robust Reading

Competition dataset,2 namely Task 1.1 (born-digital images), and

Task 2.1 (focused scene text), and the oriented scene text dataset

MSRA-TD400 [33].

ICDAR 2015 Task 1.1 dataset contains images of born-digital

e.g. online advertisement images. It was first introduced in the

ICDAR 2011 Robust Reading Competition [21]. In total, it con-

tains 551 images, where 410 images belong to the training set. IC-

DAR 2015 Task 2.1 dataset (also known as ICDAR 2013 dataset

[13]) is composed of “focused scene text” images, whose text re-

gions are placed nearly frontal and horizontal. The total number

of images in this dataset is 462, and 229 belong to the training set.

MSRA-TD500 was introduced by [33] and contains 500 images

with scene-text (English and Chinese) of different orientations.

Although the proposed border learning method is also applica-

ble to word-level text detection, which is the ground truth files’

format of the used ICDAR datasets, we use synthesized line-level

annotation instead for two reasons: 1) the provided horizontal rect-

angular boxes for rotated texts may mix non-text regions and thus

are inaccurate for border learning; 2) our pretrained models use on

the line-level annotation, and it is better to finetune it to a dataset

with the same annotation type than a different one. Specifically,

we synthesize a new version of line-level annotation for each train-

ing image by simply merging word-level annotations if they are on

the same horizontal line. Human inspection is involved to verify

and correct the automatically generated line-level annotations. It is

worth noting that an oriented text region in this dataset is originally

treated as a horizontal one (see Fig. 6-left), but we manually cor-

rect it to a polygon covering the oriented text region. Fig. 6 shows

the difference between the original ICDAR 2015 Task 1.1 (born-

digital images ) annotation and the variant we used for training.

This line-level annotation can be provided upon request. Finally,

we apply the same trick as we did in the baseline training to obtain

2http://rrc.cvc.uab.es/
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annotations of the border class.

Figure 6. Original ICDAR 2015 Task 1.1 (born-digital images)

word-level annotation (left) and our modified line-level annotation

(right).

4.2. FineTuning Settings

Fine-tuning is performed with respect to each individual

dataset. We reuse all settings in the multi-resolution baseline train-

ing, except that we resize a training image when its size is too

large. Specifically, we keep all images whose dimensions are be-

low 540×720 unchanged, and only resize images whose dimen-

sions are larger than 540×720 (720×540), while keeping an im-

age’s original aspect ratio. The reasons why we apply resizing

to those very large images are 1) in most cases 540×720 is large

enough for text detection; and 2) a large size image may crash

the entire training process because the required GPU memory is

linearly dependent on the size of a training sample.

4.3. Evaluation Protocol and Decoding Settings

Both ICDAR 2015 Task 1.1 (born-digital images) and 2.1 (fo-

cused scene text) are evaluated through the online system of the

ICDAR 2015 Robust Reading Competition, which uses the Wolf’s

object detection evaluation method [30]. Precision and recall are

computed with respect to the best matches between one-to-one,

one-to-many, and many-to-one matches. More details about this

online evaluation system can be found in [12]. For the MSRA-

TD500 dataset, we follow the evaluation protocol employed by

[33], which considers both the area overlapping ratios and the ori-

entation differences between hypothesis and reference.

It is worth noting that ICDAR and MSRA-TD500 datasets ex-

pect a hypothesis text box in the format of horizontal rectangu-

lar and oriented rectangular, respectively. We therefore parse a

detected text bounding box from a predicted probability map by

finding a smallest horizontal/oriented rectangular (see Fig. 7).

4.4. Results

Fig. 7 shows detection results of the proposed self-organized

text detection method after finetuning our pretrained models on

all three datasets. As one can see, the proposed self-organized

text detector not only works well on those images with a near-

homogeneous text background, but also those images with com-

plicated background and foreground. Even for very difficult cases,

e.g., images with a large perspective change (see CHINA POST

in Fig. 7-(c)), and images with curved texts (see VALUT and

Chocome in Fig. 7-(b)), and bing and COSTA COFFEE in

Fig. 7-(c)), the proposed detector works reasonably well.

Table 3 compares the performance of the proposed self-

organized text detector on the three testing datasets with the state-

of-the-art methods, where * denotes methods relying on no extra

external training data or pretrained weights. As one can see, the

proposed self-organized text detector achieves better or compara-

ble performance on all three testing datasets compared to recent

peer algorithms. It is worth noting that all peer methods listed in

the table have their own post-processing to group small regions,

split a big region, or reject a text line etc., but we do not apply

any post-processing except for finding the smallest rectangle for a

given self-organized text region predicted on a probability map.

Table 3. Performance comparisons between the proposed approach

and state-of-the-art methods.
Algorithm Precision Recall F-Score

ICDAR 2015 RRT 1.1 (born-digital images)

[35] 0.96 0.91 0.93

*[3] 0.92 0.86 0.89

[5] 0.95 0.91 0.93

*[39] 0.94 0.87 0.90

*[4] 0.92 0.89 0.90

Ours 0.91 0.95 0.93

ICDAR 2015 RRT 2.1 (focused scene text)

[38] 0.84 0.65 0.73

*[40] 0.84 0.65 0.73

*[19] 0.82 0.71 0.76

*[1] 0.84 0.69 0.77

[41] 0.88 0.74 0.80

*[29] 0.84 0.77 0.80

*[24] 0.85 0.76 0.80

[5] 0.86 0.79 0.82

[42] 0.88 0.78 0.83

[34] 0.89 0.80 0.84

Ours 0.91 0.78 0.84

MSRA-TD500

[33] 0.63 0.63 0.63

[11] 0.71 0.62 0.61

*[39] 0.71 0.61 0.66

[38] 0.81 0.63 0.71

[42] 0.83 0.67 0.74

[34] 0.76 0.75 0.76

Ours 0.77 0.78 0.77

4.5. Discussions

4.5.1 Imperfect Matching Metrics

We find that the ICDAR online evaluation metric [30] unfairly pe-

nalizes our system, primarily due to the fact that our system out-

puts line-level bounding boxes, and the ICDAR online evaluation

metric uses word-level annotations. This results in poor scores

for what are qualitatively very good outputs. Fig. 8 highlights

some failure cases for the ICDAR evaluation metric. The mid-

dle row of images in each pane is our system’s output probability

map, and the upper and lower rows are the recall and precision vi-

sualizations taken directly from ICDAR’s online evaluation tool.

Colors mean different things in each image: for our output prob-

ability map, blue means a region without text, red means a region

with text, and green means a border region. In the ICDAR met-

ric visualizations, red means either false negative or false positive,

green means true positive, and yellow and blue indicate true pos-

itive under the rule of many-to-one or one-to-many matching. A

more detailed explanation of this online system can be found at

http://rrc.cvc.uab.es/.

The main take away from this figure is that: in all cases our

system correctly detects line boundaries, but is nonetheless penal-
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(a)

(b)

(c)

Figure 7. Probability maps and decoded results of the proposed self-organized text detection on testing dataset. (a) ICDAR 2015 Robust

Reading Competition Task 1.1 (born-digital images); (b) ICDAR 2015 Robust Reading Competition Task 2.1 (focused scene text); and (c)

MSRA-TD500 dataset. Colors in a probability map represent non-text, border, and text, respectively.
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ized by the evaluation metric. For instance, in Fig. 8-(a) our preci-

sion is hurt due to the large amount of space between some of the

words; in Fig. 8-(b) we correctly determine the diagonal line, but

because the evaluation metric expects three separate non-rotated

rectangles for each word, both our precision and recall are penal-

ized. The lower portion of Fig. 8 shows the original online evalu-

ation scores and corrected scores after manual evaluation of these

samples. As one can see, the F-score difference (far-right column)

between the online evaluation and the manual evaluation is huge.

This indicates that our actual performance is even better than

that shown in Table 3.

Online Evaluation Manual Evaluation F-score.

Sample Precision Recall F-Score Precision Recall F-Score Difference

(a) 0.33 0.67 0.44 1.00 1.00 1.00 0.56

(b) 0.50 0.67 0.57 1.00 1.00 1.00 0.43

(c) 0.43 0.52 0.47 1.00 1.00 1.00 0.53

Figure 8. Samples of underestimated performance. This underes-

timate is due to use of the online evaluation tool which unfairly

penalizes word spacing. Details of underestimation for each sam-

ple are shown in the above figure.

Figure 9. Failure cases. (a) over-segmentation; (b) under-

segmentation; and (c) incorrect semantic grouping.

4.5.2 Failure Cases

Although the proposed text detector works well on the majority

of testing images, we find several failure cases. Fig. 9 shows the

three types of failures that we found. It is worth noting that texts in

Fig. 9-(c) should be vertically grouped according to word mean-

ings. However, this kind of grouping is rarely seen in training

samples.

4.5.3 Beyond the Border

The border class provides more information than just barriers to

separate adjacent text candidates. Specifically, 1) border and text

have a strong co-occurrence relationship, and this can be used to

further improve the accuracy of text detection; and 2) border shape

is closely related to the contour of a text region, and thus it can

used to rectify a text region. Though neither is used in this paper,

they can be used to further improve text detection accuracy and are

very important and useful for text recognition.

5. Conclusion

In this paper we analyze why previous efforts failed to distin-

guish adjacent text groups in the text detection problem, and we

show that this issue can be solved by introducing the new border

class. To fully validate this conceptual solution, we first created

a new text detection dataset with the three-class annotations, i.e.,

non-text, border, and text, and proposed a new lightweight multi-

resolution FCN for text detection. We demonstrated that text de-

tection models with the border class outperform those without the

border class by a large margin (see Table 2). Our extensive exper-

iments on external benchmarks further indicate that we can effec-

tively detect text lines via border learning. This is a consummate

improvement compared to all previous methods that require heavy

post-processing to decide when to merge, split, or reject a detected

text candidate. The proposed solution is applicable to other-levels

of text detection, e.g. word-level, and also reveals the possibility

of using the “border” class to distinguish different object instances

in a more general image segmentation/localization problem.
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