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Abstract

Despite remarkable progress of face analysis techniques,

detecting landmarks on large-pose faces is still difficult

due to self-occlusion, subtle landmark difference and

incomplete information. To address these challenging

issues, we introduce a novel recurrent 3D-2D dual

learning model that alternatively performs 2D-based

3D face model refinement and 3D-to-2D projection

based 2D landmark refinement to reliably reason about

self-occluded landmarks, precisely capture the subtle

landmark displacement and accurately detect landmarks

even in presence of extremely large poses. The proposed

model presents the first loop-closed learning framework

that effectively exploits the informative feedback from the

3D-2D learning and its dual 2D-3D refinement tasks

in a recurrent manner. Benefiting from these two

mutual-boosting steps, our proposed model demonstrates

appealing robustness to large poses (up to profile pose)

and outstanding ability to capture fine-scale landmark

displacement compared with existing 3D models. It

achieves new state-of-the-art on the challenging AFLW

benchmark. Moreover, our proposed model introduces

a new architectural design that economically utilizes

intermediate features and achieves 4× faster speed than its

deep learning based counterparts.

1. Introduction

Facial landmark detection aims to locate key fiducial

points such as eye corners, mouth, nose tips and face

contour points for a given 2D face image. It is

fundamental in many face-related applications, e.g., face

recognition [21], 3D face reconstruction [30] and face

synthesis [22].

Despite remarkable progress, detecting landmarks on

large-pose faces is still challenging for existing approaches.

For instance, cascaded regression based approaches [25, 18,

27, 24] offer top performance among modern 2D facial

landmark detection approaches [31, 25, 6, 18, 27, 24].

Figure 1. Flowchart of the proposed model. It first predicts

an initial model and obtain initial 2D landmark location via

direct 3D-to-2D projection for an input 2D face image, and then

alternatively refines the 3D face model and 2D landmark locations

in a mutual-boosting manner. The dual-refinement architecture

ensures our model’s robustness and accuracy for 2D landmark

detection under challenging conditions.

However they still fail at detecting landmarks of challenging

large poses, due to self-occlusion and unreliable features

around invisible landmarks.

To tackle such limitations of 2D-based methods, several

recent works [29, 11, 16] resort to 3D face models

to improve detection robustness to large-pose facial

landmarks. The 3D-based models generally align a 3D

morphable face model [1] to the test 2D face image and

infer landmark locations from the 3D face via single

direction 3D-to-2D projection. Although the 3D model

can effectively observe the entire face, it may fail to

capture small variations over appearance and shape of facial

components, e.g. mouth and eyes. Moreover, 3D faces

fitted via morphable face model may have over-smoothed

shapes and limited expressions. As a result, those models

usually fail to precisely detect landmarks at fine scales,

though being able to localize invisible landmarks.

In this work, to address the challenging large-pose facial

landmark detection problem, we propose a novel Recurrent

Dual Refinement (RDR) model that provides a closed-loop

learning process for 2D landmark detection and its dual task

of 3D face model refinement. Benefiting from informative

feedback and mutual-boosting between these two learning

steps, our model presents outstanding robustness to large

face poses as well as strong ability at detecting landmarks

at fine scale.

The proposed RDR model first introduces an effective
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direct 3D parameter prediction module that reliably

provides good initial 3D face models and facilitates the

following refinement of both 3D face model and 2D

landmark detection. A novel dual refinement module,

consisting of 3D face model refinement and 2D landmark

location refinement components, is then developed to

alternatively update the 3D face fitting and correspondingly

2D landmark detection in a mutual-boosting manner.

As illustrated in Fig. 1, at each refinement iteration,

the 3D face component updates the 3D face model to

strengthen RDR’s robustness to large face poses and

lift the 2D landmark refinement to improve the overall

landmark detection performance. Then, the 2D refinement

component improves the landmark locations inferred from

3D-to-2D projection by capturing the fine scale landmark

displacement. The refined 2D landmark locations are then

used for extracting deep shape-indexed features for dual

refinement at next iteration. This 3D-2D dual refinement

process is repeated recurrently until convergence, providing

new-state-of-art landmark detection performance.

Besides superior performance, our RDR model also

provides appealing efficiency — 4× faster than the most

recent deep neural network based 3D face models [29, 11]

on single GPU. The efficiency comes from economically

utilizing the learned features in the intermediate layers

without passing the images through the entire architecture

as before [29, 11].

RDR is designed to perform 3D faces fitting based on

the dynamic expression model [23, 15, 4]. Thus it can

also be used directly for virtual avatar manipulation [15,

4] by simply being fed the related 3D parameters, i.e.,

coefficients of expression blendshapes, head poses and

camera projection, which we will further explore in future.

The main contributions of this paper can be summarized

as follows:

• We develop the first 3D-2D dual learning model,

i.e., RDR, for addressing large-pose facial landmark

detection within an end-to-end trainable framework.

• The proposed RDR jointly refines 3D face model and

2D landmark locations. It effectively utilizes the 3D

guidance information and localizes facial landmarks

accurately and robustly, even under challenging

conditions.

• RDR offers an efficient solution to large-pose facial

landmark detection, which shows great potential for

practical usage. It runs at least 4× more efficient than

existing deep neural network models [29, 11] on a

GPU in addition to its superior accuracy.

2. Related Work

2.1. Cascaded Regression for Landmark Detection

Methods of facial landmark detection via cascaded

regression [25, 18, 13] refine landmark locations with

features extracted around previously detected landmarks at

each refinement stage. Various features can be used for

regressing the landmark updates, e.g. SIFT, HOG [25] and

binary features [18, 2, 28]. Deep features [20, 13] are also

used to perform facial landmark detection but usually bring

higher computational cost. Those 2D-based regression

approaches have demonstrated appealing performance

under moderate face conditions and a strong ability to

capture fine-scale landmark displacement. However, their

robustness deteriorates significantly when handling with

large-pose face images that have unreliable local features

due to self-occlusion.

2.2. 3D Face Alignment

Many existing 3D face fitting and alignment methods [4,

3, 30] require accurate locations of landmarks, either

from manual annotation or off-the-shelf facial landmark

detectors. For example, the algorithm in [4] needs to

know accurate landmark locations of multiple facial images

to off-line prepare expression blendshapes for 3D face

reconstruction. Similarly, the algorithm proposed in [3]

requires landmark locations for initialization, although

off-line generation of blendshapes is not necessary.

Only very recently, different frameworks [29, 11] are

proposed which directly predict the 3D face based on the

3D morphable model [1]. Both works employ a cascade of

convolutional neural networks (CNNs) to extract features

to predict 3D face parameters iteratively. Specifically, each

regression step can be formulated as

Qt := Qt−1 +∆Qt = Qt−1 +CNNt(h(I,Qt−1)).
Here, Qt denotes the related 3D fitting parameters. The

CNN model CNNt in the cascade takes the h(I,Qt−1) as

input for predicting the updates on Qt−1. h(I,Qt−1) is the

process of generating input for the current iteration with 3D

face information based on previous prediction Qt−1.

The 3D Morphable Model (3DMM) performs PCA

reconstruction to generate a 3D face. It is efficient

but may limit the shape diversity and over-smooth the

3D face model if only a few principal components are

used. Small appearance and expression variations of

facial components are also challenging to be captured

with 3DMM. Consequently, 2D landmark locations directly

inferred via 3D-to-2D projection would be inaccurate.

3. 3D Face Fitting with Dynamic Expression

Model

Before introducing our proposed model, we first explain

the 3D face fitting approach used in the 3D-2D dual
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Figure 2. Overview of the proposed RDR model for large-pose facial landmark detection. Given an input 2D face image, RDR first

directly predicts initial 3D face fitting parameters with the 3D parameter initialization module, generates an initial 3D face mesh and infers

initial 2D landmark locations via 3D-to-2D projection. It then recurrently refines both the 3D face and 2D landmark locations with a dual

refinement module consisting of a 3D face refinement component (PE-LSTM) and a 2D landmark refinement component (C-LSTM) with

deep features directly extracted from the regression feature network.

learning. In the 3D face fitting process within our model,

the Dynamic Expression Model (DEM) [23, 4] is employed

due to its capability of virtual avatar manipulation. Details

of DEM are introduced below.

In 3D face modeling, each 3D face is described by a

set of N vertices F = [v1, . . . , vN ] ∈ R
3×N . Each

vertex v has a 3D-coordinate [x, y, z]⊤ ∈ R
3. The

dynamic expression model [23, 4] represents each 3D face

as a linear combination of d expression blendshapes B =
[B0, B1, . . . , Bd] ∈ R

3×N×d with coefficients αααexp ∈
R

1×d, after proper affine transformation. An expression

blendshape, Bi ∈ R
3×N , is formed by transforming a

neutral 3D face to a 3D face that has a typical expression

with the preserved identity. In this work, we use a neutral

shape B0 and another 46 expression blendshapes with

different expressions to represent a 3D face, similar to [4].

Given a rotation matrix, Rφ,γ,θ ∈ R
3×3 and a translational

vector t3d ∈ R
3, the 3D face reconstruction process of F is

formally described as

F = Rφ,γ,θ(B×3 αααexp) + t3d, (1)

where the rotation parameters φ, γ, θ correspond to pitch,

yaw and roll rotation angles respectively. ×i denotes the

multiplication over the i-th mode of the tensor. Recall

αααexp is the vector of expression manipulation coefficients.

As described in [5, 4], the expression blendshapes B of a

specific person can be described as

B = CB ×2 αααid, (2)

where CB represents the core tensor obtained via

decomposing a large collection of 3D faces along the

identity mode (i.e., mode 2). In this work, we use the 3D

faces from the Face Warehouse [5] to obtain the core tensor.

In addition, αααid is the user-specific identity vector.

Using the 3D face model to detect 2D facial landmarks

needs to project 3D faces onto the 2D image plane. Under

weak perspective projection [3, 29, 11], the 2D locations of

all vertices can be formulated as

M(Q) = ΠfF = Πf (Rφ,γ,θ(B×3 αααexp) + t3d) , (3)

where Q = {P,αααid,αααexp} represents the parameters for

3D face fitting and 3D-to-2D projection. Within Q, we use

P = {φ, γ, θ, t3d, f} to collectively denote the rotations,

translation and 3D-to-2D projection parameters. Assuming

perfect pinhole model, the orthographic projection matrix

Πf is defined as

Πf =

(
f 0 0
0 f 0

)
,

where f is the scale factor. The 2D locations of landmarks

Sp = [s1; . . . ; sL] can be directly obtained from M(Q) as

Sp = M(Q)
{v}

∈ R
2×L, (4)

where v = [vs1 , . . . , vsL ]
⊤ denotes landmark indices.

4. Recurrent Dual Refinement Networks

With the above dynamic expression model and 2D

locations of landmark vertices Sp, we now proceed to detail

our RDR model that alternatively refines 3D face and 2D

landmark locations in this section.

4.1. Overview

Fig. 2 shows the entire framework of the RDR model

for large-pose 2D landmark detection. It first receives

a 2D face image and passes it through a 3D parameter

initialization module to directly predict parameters for

accurate 3D face initialization and prepares deep facial
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representation for 3D-2D dual refinement through the

regression feature network. A dual refinement module has

been developed to take deep features extracted around the

predicted 2D facial landmarks from the regression feature

network, and refine both 3D face and 2D landmark locations

in a mutual-boosting manner, with mutual-boosting

performance achieved. This dual refinement process is

repeated recurrently until convergence.

4.2. Initial 3D Face Prediction

In our proposed RDR model and also in other cascaded

regression ones (see Sec. 2), the quality of initial parameters

is critical for the final landmark detection performance.

Using good initial parameters can improve the overall

performance and accelerate the refinement process. Our

model initializes the 3D fitting parameters, i.e., Q =
{P,αααid,αααexp}, by direct regression via the 3D parameter

initialization module, Fig. 2. We find this strategy indeed

provides higher-quality parameters to start with and leads to

better landmark detection performance, compared to other

common initializations, e.g., mean value initialization [18,

29, 11]. Moreover, such initialization does not bring

significant computational overhead and can be seamlessly

integrated with the following recurrent refinement process.

As shown in the upper panel of Fig. 2, the 3D

parameter initialization module predicts the important

initial parameters Q directly for a given face image.

This network predicts the parameters upon the features

from pool5 by using three independent fc5-fc6’s, each of

which predicts a specific 3D parameter of αααid,P and αααexp

respectively. Given the predicted identity parameter αααid,

the user-specific expression blendshapes B are obtained

via Eqn. (2) and used in the following 3D face refinement

process. The initial 3D face model is generated with

Eqn. (1) and the initial 2D landmark locations are inferred

directly via 3D-to-2D landmark projection with Eqn. (4).

This direct 3D parameter initialization module is trained

by minimizing the discrepancy between the predicted

parameters Q̂0 and ground truth Q∗:

Ld = ‖Q∗ − Q̂0‖22. (5)

We defer the details on preparing the ground truth to

Section 5.1 in experiments. Although the direct prediction

network provides good initial parameters, the output initial

3D face is still inaccurate in rotation and expression. To

ensure the 3D face to provide a solid and accurate prior for

2D landmark detection, further refinement on the 3D face

model is necessary.

4.3. Recurrent Dual 3D­2D Refinement

Before introducing details of recurrent dual 3D-2D

refinement, we explain the inherent error in 2D facial

landmark locations directly inferred from 3D faces via

3D-to-2D projection. Even using the ground truth 3D

parameter Q∗ with perfect projection, the 3D fitting error1

is still at a significant level of around 5%. It comes from the

inherent difficulty of fitting 3D face model to scattered 2D

landmark in a single projection step. This also explains the

limitations of recent 3D alignment methods [29, 11].

To resolve this critical issue and improve the accuracy

of 2D landmark locations (which is also critical for

further enhancing the 3D face model), we propose

the dual refinement module. Concretely, we introduce

a compensation term ∆S that accommodates future

“fine-tuning” on the 2D landmarks locations obtained via

3D-to-2D projection:

S = Sp +∆S. (6)

We propose to detect 2D landmarks through two steps: first

the projection from the 3D key vertices gives Sp and then

“fine-tuning” on Sp gives final 2D locations S. Eqn. (6) also

indicates that the accuracy of S is jointly determined by Sp

and ∆S. Dual refinement of the 3D face and the projected

2D landmark locations is therefore essential.

The dual refinement module, illustrated in Fig. 2, takes

deep shape-indexed features [13] extracted from deconv5

around the predicted 2D landmark locations as input.

Two key components within the dual refinement module,

the 3D face refinement component and the 2D landmark

refinement component, utilize the extracted deep features

and perform refinement on 3D face model and the projected

2D landmark locations accordingly. Both refinement

components are modelled by Long Short-Term Memory [8]

units (LSTM), i.e. PoseExp-LSTM (PE-LSTM) and

Compensator-LSTM (C-LSTM). The PE-LSTM refines the

3D face model by predicting the necessary updates ∆Pk

and ∆αααexp
k. C-LSTM forecasts the suitable compensation

∆Sk to the projected 2D landmark locations Sk
p . The final

facial landmark location, ST = ST
p + ∆ST , is obtained

after T iterations of recurrent dual refinement.

Within the dual refinement module, we choose the

Long-Short Term Memory as the recurrent unit based on

following considerations. First, LSTM has an excellent

capability of modeling historical information through

adaptively memorizing and forgetting. Secondly, LSTM

is easier for gradient descent optimization and allows

long-term recurrent modeling. It is verified that utilizing

historical information with LSTMs can effectively enhance

landmark detection accuracy in [17, 13, 24].

Fast Recurrent Refinement In existing 3D face fitting

methods [29, 11], updated input images have to go

through the entire network to provide updates on the

3D fitting parameters at every iteration. This brings

huge computational overhead and is the bottleneck for

1Measured by normalized distance between locations of landmark

vertices on the 2D plane and the ground-truth 2D locations
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Algorithm 1: Recurrent Dual Refinement.

Inputs: User-specific expression blendshapes B; outputs of

deconv5: Ddeconv5; maximum refinement step K;

Initialization: ααα0
exp, P̂

0, S0 = S0
p , k = 1.

while k ≤ K do

Extract deep shape-indexed feature: Φ(Ddeconv5, S
k−1);

/* 3D Face Refinement */

Φk
PE = Φ(Ddeconv5, S

k−1) ∗ wk
PE + bkPE

{∆αααk
exp,∆P

k} = PE-LSTM(Φk
PE)

/* update α̂ααexp, P̂ */

{α̂ααk
exp, P̂

k} = {α̂ααk−1
exp , P̂k−1}+ {∆αααk

exp,∆P
k}

Obtain 3D face based on parameters σ(α̂ααk
exp), B and

P̂
k via Eqn. (1)

Obtain projected 2D shape Sk
p via Eqn. (6)

/* 2D Location Refinement */

Φk
R = Φ(Ddeconv5, S

k−1) ∗ wk
R + bkR

Updated 2D shape: Sk = Sk
p +C-LSTM(Φk

R)
k = k + 1

end

Outputs: SK , P̂K , α̂αα
K
exp

enhancing the efficiency. Inspired by [13], deep features

extracted from hidden layers of the network are sufficiently

informative for estimating head pose, focal length and

expression related parameters (see Sec. 4.2).

By employing the deep shape-indexed features, our

model does not need to feed-forward the image throughout

the entire refinement process. At each iteration, it simply

extracts regression features from the outputs of the deconv5

layer and passes them to the dual refinement module. This

saves much computational cost and makes our model much

faster than other deep neural network architectures.

Expression Control To ensure an artifact-free 3D face,

the expression coefficients αααexp = [α0, . . . , α46] needs to

satisfy the following natural requirements [14, 4]:

α0 = 1−

46∑

i=1

αi, s.t. |αi| ≤ 1, ∀i = 1, . . . , 46. (7)

To mitigate the difficulty caused by the hard constraint on

estimation of αααexp, we introduce an extra sigmoid function

σ(x) = 1/(1 + e−x) to normalize αi such that they satisfy

the above constraints. Instead of directly predicting the

expression coefficients, we minimize
∑46

i=1 ‖σ(α̂i)− α∗
i ‖

2
2

for all losses related to the expression parameters, where α̂i

is the estimated coefficient for the expression blendshape

Bi. In the 3D face model refinement step, the updated

expression coefficients at the k-th stage αααk
exp are obtained

via αk
i := σ(α̂k−1

i +∆αk
i ), ∀i = 1, . . . , 46. Here ∆αααk

exp is

the update provided by the PoseExp-LSTM.

The above recurrent dual 3D-2D refinement process is

summarized in Algorithm 1. The refinement process does

not update the identity vector αααid as the static face will not

change during the recurrent refinement process. Similarly,

user-specific expression blendshapes B generated at the

initial stage can also be used throughout the entire process.

4.4. Joint Training of 3D Face Fitting and
Landmark Detection

A 3D face generated during the refinement which well

fits a given face image is essential for accurate 2D landmark

detection. The fitness can be simply measured by the

following cost function:

Lp = ‖Sp − S∗‖22. (8)

Here S∗ is the manually annotated locations of 2D face

landmarks. Sp = M(Q̂){v} is the locations of facial

landmarks on the 2D plane from 3D faces generated with Q̂

(see Eqn. (3)). However, only optimizing this 2D landmark

loss is not sufficient as it may lead to 3D faces with obvious

artifacts when there is no constraint on the 3D parameters.

The difference between predicted 3D fitting parameters

P̂,αααexp and their ground truth is also considered in training

the 3D refinement component. The overall loss becomes

L3D = Lp + λ‖P̂−P∗‖22 + λ‖αααexp −ααα∗
exp‖

2
2, (9)

where λ is the trade-off parameter and αααexp = σ(α̂ααexp).
Within the dual refinement module, the projected 2D

shape Sk
p is further refined by the Compensator-LSTM. This

can be achieved by optimizing the L2-distance between the

updated shape S = Sp+∆S and the ground-truth shape S∗.

∆S is the output of the Compensator-LSTM. The overall

loss for dual 3D-2D refinement accumulated through K
recurrent iterations is then formally described as

LRDR =

K∑

k=1

(
‖Sk

p − S∗‖22 + β‖Sk − S∗‖22 (10)

+ λ‖P̂k −P∗‖22 + λ‖σ(α̂αα
k
exp)−ααα∗

exp‖
2
2

)

where the projected 2D shape Sk
p at the k-th iteration is

given by Sk
p = M

(
Q̂k

){v}
with Q̂k = {P̂k,ααα0

id, σ(α̂αα
k
exp)}.

Here β and λ are trade-off parameters to ensure that both

3D vertices and 2D landmarks are close to the ground-truth

landmark locations.

For αααexp, only coefficients for expression blendshapes

are predicted. The coefficient α0 for a neutral face B0 can

be directly obtained through Eqn. (7).

4.5. 3D­to­2D Landmark Projection

We build the correspondence between 3D face and

2D landmarks based on the parallel line method [30],

but our way is more robust to extreme conditions.

Fig. 3 demonstrates that [30] may not work reliably

when the face is with both large yaw and pitch angles.

Unlike [30] searches contour vertices solely based on
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Figure 3. Illustration of applying parallel line method. Parallel

lines (red and yellow) of 4 contour points are drawn. The key

vertices are moving on corresponding parallel lines. (Best viewed

in color)

vertices’ horizontal locations on the parallel lines, we find

the face contour points by looking for the intersection

between true contour line (orange) and parallel lines of

contour landmarks (red and yellow). This overcomes

the limitation of the original method and gives more

robust estimation of landmark correspondence at extreme

conditions. More details are provided in Supplementary

Material.

5. Experiment

5.1. Implementation Details

Architecture Details Our model is developed based on

a variant of ResNet-18 [7]. Due to space limitation,

the details of this network are provided in Supplementary

Material.

Training Data 300W [19] and 300W-LP [29] datasets are

used to train our RDR model. We perform flipping, shifting,

scaling and rotation on the cropped face images for data

augmentation while fixing the size as 256 × 256. During

training data preparation, we find high 3D fitting error

in these face images with extremely large poses (absolute

yaw angle greater than 60◦) because of the unified identity

constraint [4]. Therefore we only use a subset of 300W-LP

for training and the data with 3D fitting error greater than

20% are not included in our training set. Then we obtain in

total 510K training images with ground-truth 3D face fitting

parameters Q∗ and landmarks locations S∗. The average

3D fitting error with the ground truth parameters is about

5.1%. The 3D ground-truth parameters are obtained by the

procedures described in [4].

Training Details We use the pre-trained ResNet-18

provided in [7] to initialize our network. In the experiments,

we set the number of recurrent iterations as K = 5
and the extracted deep shape-indexed features are reduced

to dimension 256 before passing to LSTM units at each

iteration. The RDR model is trained via a standard

stochastic gradient descent method with momentum of 0.9,

mini-batch size of 8 and learning rate of 0.001. The

weights of LSTM are randomly initialized with a uniform

distribution of [−0.1, 0.1]. The whole network is trained

end-to-end on Caffe [9].

Table 1. Landmark detection results of AFLW on different subsets

by yaw angle. 3D approaches perform better than 2D ones on

large-pose faces, i.e., 30◦−60◦ and 60◦−90◦ categories.

Method 0◦−30◦ 30◦−60◦ 60◦−90◦ Mean

CDM [26] 8.15 13.02 16.17 12.44

ESR [6] 5.66 7.12 11.94 8.24

RCPR [2] 5.43 6.58 11.53 7.85

SDM [25] 4.75 5.55 9.34 6.55

3DDFA [29] 5.00 5.06 6.74 5.60

3DDFA+SDM [29] 4.75 4.83 6.38 5.32

RDR (Ours) 3.63 4.29 5.31 4.41

5.2. Datasets

We conduct experiments on two popular landmark

detection datasets, AFLW [12] and 300W [19] with

the model trained on data prepared in Sec. 5.1. The

AFLW dataset contains 21,072 unconstrained faces images

with various poses and annotated with 21 landmarks.

We follow [29] and divide the face images into three

groups based on their absolute ground-truth yaw angles:

[0◦, 30◦], [30◦, 60◦] and [60◦, 90◦], corresponding to

11,636, 5,478 and 3,957 face images respectively. These

images are randomly selected such that each category has

3,957 samples. We also evaluate RDR on the common

set and challenge set of 300-W testing images. The

common set contains test images of unconstrained faces

with moderate poses and expressions. The challenge subset

contains face images with large poses, extreme expressions

and occlusion. During testing, all initial face bounding

boxes used are from those provided along with the datasets.

5.3. Performance Analysis

Results on AFLW The 21 landmarks used for evaluation

are directly selected from the predicted 68 landmarks in

our model. The accuracy of landmark detection on AFLW

faces is computed via averaging visible point-to-point

distance normalized by width of the provided face bounding

boxes [11, 29]. The results are shown in Table 1. We

compare RDR with most recent state-of-the-art methods.

CDM [26], SDM [25], ESR [6] are 2D-based methods;

3DDFA [29] and D3PF [11] are the most recent 3D face

alignment methods based on cascaded CNN regression.

3DDFA+SDM [29] performs SDM refinement on the

results returned with 3DDFA.

From Table 1, one can observe that RDR significantly

outperforms other methods on all categories. RDR

brings around 17.1% relative performance improvement on

average, compared with the second best method. RDR also

significantly outperforms the state-of-the-art 3DDFA+SDM

method [29] on the extreme pose condition, i.e. [60◦, 90◦],
by a large margin of 16.7%. D3PF [11] is evaluated on a

subset of AFLW, i.e, AFLW-PIFA [10]. Our trained model

is thus also evaluated on AFLW-PIFA testing images and

archives NME of 4.11 which is significantly lower than [11]
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Table 2. Landmark detection results on different subsets of 300-W

dataset. Results of [6, 2, 25, 18, 27] are from [29].
Method Common Challenging Full set

ESR [6] 5.28 17.00 –

RCPR [2] 6.18 17.26 8.35

SDM [25] 5.57 15.40 7.50

LBF [18] 4.95 11.98 6.32

CFSS [27] 4.73 9.98 5.76

3DDFA [29] 6.15 10.59 7.01

3DDFA+SDM [29] 5.53 9.56 6.31

RDR (Ours) 5.03 8.95 5.80

which has NME of 4.72. More results on AFLW-PIFA are

provided in the Supplementary Material.

Results on 300W We further evaluate the performance

of our model on the widely used 300-W benchmark.

Some sample results are shown in 4-th row of Fig. 5.

Following [18, 27, 29], we use the average point-to-point

distance error normalized with ground-truth inter-ocular

distance for performance evaluation. Table 2 shows that

the proposed RDR achieves much better performance than

the state-of-the-art deep 3D-face based models, 3DDFA

and 3DFFA+SDM. Our model also performs comparably

with the state-of-the art 2D-based method [27]. RDR

provides the best performance on the challenging subset of

300W, demonstrating superiority on handling challenging

faces under unconstrained conditions with large poses and

extreme expressions. RDR performs slightly worse than

CFSS [27] on the frontal images. This is because after

the 3D model in RDR converges, the fitting error term

∆S in Eqn. (6) becomes fixed. Relying on following 2D

refinement hardly eliminates such inherent error ∆S. The

overall performance for frontal face images is therefore

limited by this error from the 3D model.

Recently, a deep learning based methods with heavy

structure [24, 13] also gives top performance on 300W but

at the cost of high computational resources. Our model

provides comparable performance on the challenge subset

but requires 87% less computational resources as [24].

5.4. Ablation Study

We here investigate the effectiveness of the individual

modules and components of our model, i.e. the

parameter initialization module, 3D face refinement

component and 2D landmark refinement component from

the dual-refinement module. We perform the ablation study

on the 300W testing set with the same evaluation metric

used for 300W in Sec. 5.3. Performance of different

network structures against the number of refinement

iterations is plotted in Fig. 4.

Direct Initialization Compared with “Mean-3D”

which uses mean parameters for initialization, there

is a significant performance enhancement brought by

“Dual-3D” and “PoseExp-3D” which both adopt direct

parameter initialization. This verifies the effectiveness

Figure 4. RDR regression performance for ablation study.

“Mean-” uses mean parameters as initialization and “PoseExp”

only performs refinement on the 3D parameters. “Dual-”

represents our full network structure. Postfix “-3D” and “-2D”

represent the predicted Sp (Eqn. (4)) and S (Eqn. (6)) of a model.

of the 3D parameter initialization module in boosting

landmark detection performance of our RDR model.

Dual refinement for Mutual-boosting Performance

Fig. 4 shows that the 2D refinement can significantly

improve the accuracy of landmark locations inferred from

fitted 3D faces by comparing performance of “-3D”s

and the corresponding “-2D”s. An obvious performance

improvement from “PoseExp-3D” to “Dual-3D” in Fig. 4

shows that 2D refinement can also benefit 3D face fitting.

The mutual-boosting performance validates our motivation

for dual refinement.

Performance of 3D Face Reconstruction 200 face

images of 10 randomly selected subjects from the

FacewareHouse Dataset [5] are used to study the impact

of dual refinement on 3D face reconstruction. The mean

vertex-to-vertex 2D distance normalized by face bounding

box is used for evaluation. With dual refinement, the 3D

reconstruction error drops from 3.33% at the initial stage

to 3.04% at the last iteration. It shows dual refinement

effectively improves the quality of the reconstructed 3D

face, which is also supported by the converging 3D fitting

error shown in Fig. 4.

5.5. Robustness and Accuracy for Large­pose Facial
Landmark Detection

The developed RDR model has demonstrated both

strong robustness and outstanding accuracy in large-pose

facial landmark detection, on [60◦, 90◦] category of AFLW

and Challenging Set of 300W. Obvious performance

improvement over recent state-of-the-art 2D-based

regression approaches, e.g. ESR, RCPR, SDM, LBF

and CFSS, is observed for methods developed with

3D information, i.e. 3DDFA and RDR, from Table 1

and Table 2. This further verifies the effectiveness of

introducing 3D face model for enhanced robustness to large

poses in facial landmark detection. Compared with recent

3D alignment approaches [29, 11] that only have a 3D

refinement component, our novel dual refinement module

shows consistently superior performance on all evaluation

benchmarks used. This is consistent with our earlier finding

in Sec. 5.4 that 2D refinement can effectively improve
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Figure 5. Results of RDR on AFLW (1st to 3th row) and 300W (last row) datasets. From the 1st to 2nd row: 3D-2D overlapped faces and

2D landmark locations. In the last two rows, more face images with large poses and their detected landmarks are shown. Our model can

accurately detect the facial landmarks for faces with large poses, extreme expressions and challenging illuminations.

the final landmark detection performance. RDR offers

a solution that combines both the robustness of 3D face

alignment and the high accuracy for fine-scale landmark

displacement of 2D refinement approaches.

Samples of facial landmark detection are shown in Fig. 5.

Even for profile faces, e.g. 3rd row in Fig. 5, and huge

expressions, e.g. last row in Fig. 5, our model can still

accurately localize the landmarks.

5.6. Time Complexity

One appealing advantage of RDR is that it is much

faster than existing deep learning based 3D face alignment

methods. Table 3 presents the efficiency comparison of

predicting the last step 2D landmark locations. We test

our model on GeForce GTX Titan GPU and Intel i7-4930K

CPU. It is shown that RDR is much faster than 3DDFA and

D3PF. As our current implementation uses CPU to perform

deep shape-indexed feature extraction and 3D face fitting,

the time cost can be further reduced if using GPU for the

computation in these two steps. Overall, RDR offers at least

4.0× speedup over the 3DDFA method on GPU. Since our

primary objective is to detect facial landmarks, 488 among

11k vertices are used in the 3D face reconstruction process.

This also ensures our efficiency in the refinement process.

As indicated by Fig. 4, RDR rapidly converges within

the first two steps. Therefore, we also test the speed of our

model running for two iterations. Under this setting, RDR

runs at around 45.5FPS on the GPU, which demonstrates

great potential for industrial applications.

Table 3. Comparison of time cost (in seconds) for prediction of 2D

landmark locations between our proposed RDR and existing deep

learning based 3D approaches. Time complexities of 3DDFA [29]

and D3PF [11] are cited from their corresponding papers.

RDR (Ours) 3DDFA [29] D3PF [11]

GPU (s) 0.031 0.126 -

CPU (s) 0.142 0.213 0.260

6. Conclusion

In this work we developed a novel recurrent dual

refinement model that provides new state-of-the-art

performance on the challenging AFLW benchmark. It

alternatively refines 3D face model and 2D landmark

locations and effectively utilizes the informative feedback

for achieving mutual boosting. Benefitting from this

novel approach, it shows both robustness to large-pose

face images and accuracy to small landmark displacement.

Moreover, our model economically utilizes deep features

for refinement and shows to be much more efficient than

current deep learning based 3D face alignment methods.
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