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Abstract

In 3D reconstruction, the obtained surface details are

mainly limited to the visual sensor due to sampling and

quantization in the digitalization process. How to get a

fine-grained 3D surface with low-cost is still a challeng-

ing obstacle in terms of experience, equipment and easy-

to-obtain. This work introduces a novel framework for en-

hancing surfaces reconstructed from normal map, where the

assumptions on hardware (e.g., photometric stereo setup)

and reflection model (e.g., Lambertion reflection) are not

necessarily needed. We propose to use a new measure, an-

gle profile, to infer the hidden micro-structure from exist-

ing surfaces. In addition, the inferred results are further

improved in the domain of discrete geometry processing

(DGP) which is able to achieve a stable surface structure

under a selectable enhancement setting. Extensive simu-

lation results show that the proposed method obtains sig-

nificantly improvements over uniform sharpening method

in terms of both subjective visual assessment and objective

quality metric.

1. Introduction

In 3D reconstruction, the surface details are mainly lim-

ited to visual sensors of digital equipment. Specifically,

micro-structure of surface is degraded by sampling and

quantization in the digitalization process. Consequently,

although many dense-based 3D reconstruction techniques

(i.e., photometric stereo [5, 16] and structured light [11]) are

used to perform the reconstruction on a pixel-by-pixel basis,

the reconstructed surface quality is still affected by the input

data, not to mention other sparse-based 3D reconstruction

algorithms (i.e., depth camera [8], stereo/multi-view stereo

vision [12, 14]). However, as the trend of 3D reconstruction

in industry is more inclined to use low-cost technology, how

to improve the surface quality from existing depth data is a

challenging but meaningful research topic.
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Unlike shape information, the texture pattern of 3D ob-

ject cannot be directly represented by the depth values, but

can be reflected by the distribution of the pixel gray-scale

values observed on the object appearance. How to obtain

these gray-scale values from the depth map needs to em-

ploy the reflection model which defines the relationship be-

tween the observed pixel value and the normal vector un-

der a given lighting condition [24]. Reflection model is

the backbone of the most-recent works on the surface en-

hancement, and these works can be divided into two cat-

egories according to their applications: 1) shade rendering

[10, 17, 23] in computer graphics, and 2) photometric stereo

(PS) [21, 22] based surface texture enhancement. In shade

rendering, a complex reflection model is usually employed,

where the captured pixel is rendered by adjusting the light-

ing direction. Note that these methods do not really change

the surface geometry structure, but make varying lighting

conditions such that the observed object appearance seems

to have richer details.

PS-based enhancement methods utilize one camera to

capture a set of images under different lighting conditions,

and the high-resolution normal map can be reconstructed

from the raw data according to the Lambertian reflection

[24]. However, PS-based methods change the surface ge-

ometry structure in a live capture way. Tan et al. [22]

proposed to improve the surface micro-structure by photo-

metric stereo, where the lighting direction within one pixel

is estimated by the Gaussian mixture model (GMM). Li et

al. [15] proposed to refine the surface by multi-view stereo

where triangular meshing of surface is a necessary condi-

tion. Authors in [18, 13, 1, 9] used the normal map to

repair the scanned sparse depth map as well as to recover

the surface details. Significantly, all these methods rely on

the related hardware which will cause two limitations: 1)

it cannot enhance 3D surface from existing depth data; 2)

it is strongly dependent on a reflection model. As a result,

they are not satisfied for general 3D surface enhancement,

which is expected to perform on existing depth or normal

map without taking assumption on any reflection models.

In this paper, we present an efficient surface enhance-
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Figure 1: Enhanced 3D surface results: the left is a 3D surface of the Scolar normal map from Harvard dataset [26]; the right is our directly

enhanced result of the same resolution as inputs.

ment framework which can adaptively select parameters to

amplify the current normal angle based on its texture den-

sity. We summarize our main contributions as three aspects:

1) the proposed method is independent of hardware, reflec-

tion model, or training dataset. Given a normal map as in-

put, our method generates a 3D surface with enhanced ap-

pearance; 2) we propose the concept of angle profile to mea-

sure the local distribution of micro surface structure, and

deformation of the profile can effectively change the qual-

ity of surface details; 3) we introduce the local-global strat-

egy based on discrete geometry processing (DGP) [3, 25]

to solve the difficulty of one-angle-to-many-profiles which

is triggered by simultaneously deforming all angle profiles.

Simulation results show that our method can greatly im-

prove the fine-grained appearance of 3D surface reconstruc-

tion in terms of structural similarity index measure (SSIM).

2. Surface Details in Normal

From a microscopic point of view, surface details pre-

sented as depth relationship within a small appearance patch

is more easily perceived in normal field. We embrace this

observation and propose to convert the input as below if it

is depth data,

N (i, j) =

[

∂ D (i, j)

∂x
,
∂ D (i, j)

∂y
,−1

]T

, (1)

where D and N are depth map and normal map respectively,

and (i, j) is the pixel coordinate.

2.1. Normal Angle

The surface normals can effectively describe the shape

as well as surface details. There is also evidence [7] that

the shape and surface details are determined by the low-

frequency and high-frequency components of N. In general,

N�ሺi, jሻ

Original normal angle Amplified normal angle

N�ሺi, jሻ

Figure 2: Amplification of normal angle.

the low-frequency normal NL can be computed by the low-

pass filtering on N, and the high-frequency normal can be

considered as N itself. It is worth noting that when adjusting

N and fixing NL at the same time, we can change the surface

details without deforming the surface shape.

In this section, we measure the relationship between N

and NL by the angle between them,

Θ (i, j) = arccos (N (i, j) · NL (i, j)) , (2)

where Θ (i, j) is normal angle at 〈i, j〉. It is observed that

when Θ increases, surface structure is more visually ap-

pealing. Hence, a direct way to enhance the surface is to

enlarge Θ with respect to a constant NL. Fig. 2 illustrates

the normal angle amplification in terms of Θ, N, and NL,

where normal angle reflects the contrast of surface structure.

Normal map can be updated as N∗ under a new Θ
∗,

N
∗ (i, j) =N (i, j)+

N (i, j)− NL (i, j)

| N (i, j)− NL (i, j)|

√

2 (1− cos (Θ∗ (i, j)))
. (3)

2.2. Angle Profile

According to Eq. (3), quality of the enhanced surface

depends on the selection of Θ∗. Intuitively, uniform sharp-
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Figure 3: Illustration of angle profiles: the top row is the angle profiles with profile sharpness ϕ; the bottom row is the sharpened angle

profiles highlighted in red. ϕ = arccot
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Figure 4: Illustration of fitting angle profile along four directions,

e.g., i, j, i + j, and i − j, on a 5 × 5 patch centering on (3, 3):
the top row is high-quality normal map N∗ with angle profiles C∗

highlighted in red solid line; the bottom row is the input normal

map N with angle profiles highlighted in blue solid line.

ening is setting Θ
∗ = k×Θ, with the scaling factor satisfy-

ing k > 1. Such an updating method is not an effective way

to improve surface details, especially when the surface has

uneven structure. Simulation results in Section 4 (i.e., Fig.

9, Θ∗ = 1.5×Θ) show the unsatisfying performance in this

case. The main reason is that the updating of Θ∗ should be

adaptive according to the local density of surface structure.

Consequently, we propose to use angle profile to measure

the local surface structure as the normal angle distribution

along certain direction on a small patch. We observe that

sharpening the angle profile appropriately to adjust the ex-

isting normal angle is of use to generate high-quality surface

details. We demonstrate how to extract angle profile from a

given normal map as follows.

Suppose we have computed the normal angle Θ from

the normal map N by Eq. (2). Now considering a m ×
m angle patch centering on (i, j), we reorganize the angle

values along direction d as a m× 1 vector,

θdi,j = {Θ(s, t) |s = tan (d · i) (t− j) + i} , (4)

or,

θdi,j = [θ1, · · · , θm]
T
,

where θdi,j is the angle vector, d is a normalized vector with

four possible directions, i.e., i, j, i + j, or i − j (i and

j are unit vectors parallel to x and y axis), and t ranges

from j− m−1
2 to j + m+1

2 . Since we are interested in the

distribution of θdi,j, we consider θdi,j as a mapping opera-

tion from element index to its value: θk = θdi,j (k) with

k ∈ [1, · · · ,m]. Apparently, such a mapping lacks gener-

alization ability to describe the local distribution of angle

values. Extensive experimental results show that by apply-

ing a linear regression model f on θdi,j, we can well simulate

the mapping curve as one of the nine contours illustrated in

Fig. 3.

Cd

i,j = f
(

θdi,j
)

, (5)

where Cd

i,j is named as angle profile centering on (i, j), and

f is a piecewise linear function with a stationary point on
〈

k, θk
∣

∣k = m+1
2

〉

.

f (θ) = min
{a,b,d}

∑

k

‖ak + bθk − d‖
2
. (6)

Eq. (6) is applied for the left and right half of θdi,j to fit

the target angle profile, respectively. An example of fitting

angle profile along four directions is illustrated in Fig. 4.

Adjusting the normal angle by deforming Cd

i,j will affect

surface details, and we hence propose to quantize the profile

sharpness as the angle ϕ as shown in Fig. 3. For simplicity,

we denote all the angle profiles from N as a set, C (i.e.,

C (i, j |d ) = Cd

i,j), and the associated profile sharpness as

Φ (i.e. Φ (i, j |d ) = ϕd

i,j), respectively.

We observe that, if normal map N has a high-quality up-

date N∗, then on the same pixel coordinate and the same

direction, the fitted angle profiles have similar contours

but different sharpness, where angle profile of N∗ is more

sharper. This is because, the more clearer surface details,

the bigger variance of normal angles. Conversely, if angle

profile appears to be horizontal (Fig. 3 (i)), it means that the

surface is originally smooth and should be preserved after

enhancement. Therefore, we arrive at the conclusion that if

non-horizontal C is appropriately sharpened, the resulting

normals can be used to produce a fine-grained 3D surface,

which is also confirmed by simulation results in Section 4.

2.3. Sharpening Weight

Cd

i,j can be sharpened by decreasing its profile sharpness

ϕd

i,j, and the decreasing measure is defined as sharpening
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Figure 5: Sharpening for angle profile.

weight wd

i,j, i.e. wd

i,j · ϕ
d

i,j 6 ϕd

i,j. Given wd

i,j, the sharpen-

ing operation is required to satisfy the following two con-

straints to avoid over-sharpening on surface: 1) the area of

the right triangle should change slowly (i.e., the shaded tri-

angle in Fig. 5); 2) only translation is allowed on the hori-

zontal angle profile. We implement such a deformation on

C 1 according to its angle profile type as shown in Fig. 3,

which can be divided into four cases:

Case 1: C is type (i). It indicates that there is no vari-

ance on the associated normal angles, and the original sur-

face should be smooth. So sharpening operation is not per-

formed.

Case 2: C is type (a) or type (b) with profile sharpness ϕ

and sharpening weightw. We observe that if the sharpening

operation causes instant change on the triangle area of C,

it may spoil the original surface structure. To avoid this

negative effect, we first initialize C as an equal-area triangle

C̃ with profile sharpness w×ϕ (i.e., blue triangle in Fig.

5 left). Meanwhile, if C is directly changed to C̃, it may

result in over-smoothing on surface. So we build a smooth

transition between vp and ve by introducing a buffer tail

ψ = >vpve (i.e., solid green line in Fig. 5), which is defined

as an arc with one tangent parallel to the k−axis. Notice

that vp is the cross point between C and C̃, thus it is easy

to derive the circle form of ψ. Consequently, the updated C

is,

C∗ (k) =

{

C̃ (k) , k > kp
ψ (k) , k < kp

. (7)

Case 3: C is type (c) or type (d). The updated C∗ is obtained

by performing the sharpening operation on the left half and

right half of C independently.

Case 4: C belongs to type (e) ∼ type (h) in Fig. 3. C∗ is

computed by first performing sharpening operation on the

part with profile sharpness ϕ, and conjoin the rest.

The sharpened angle profiles are illustrated on the bot-

tom row of Fig. 3. An enhanced normal map N∗ requires

1In this section, the sharpening operation is discussed on a local patch

only, and for simplicity, the subscripts of (i, j) and d are ignored without

further statement.

each angle profile being sharpened appropriately, which

means that the selection of wd

i,j is a crucial factor. In Sec-

tion 3, we describe how to obtain an optimal weight map

W : W (i, j |d ) = wd

i,j according to a user-selectable

sharpening scale.

3. Refinement as Discrete Geometry Process-

ing

We propose to refine a 3D surface to a user-selectable

level λ. Different from uniform sharpening, we expect the

enhanced surface should keep similar texture pattern as in-

puts. The problem can be formulated as,

min
{Θ(i,j)}

E ( N) s.t.W (i, j |d ) =
max (Φ)

λ×Φ (i, j |d )
, (8)

where E ( N) is the cost function measuring the variation of

surface structure given a normal map N, Θ is computed by

Eq. (2), and Φ and W are the associated profile sharpness

map and sharpening weight map, respectively. We observe

that the statistical distribution of Φ can effectively describe

a whole surface structure. Given λ, a reasonable W can be

guaranteed by max (Φ)/Φ.

Since Φ is dependent on Θ, we take the iterative strategy

to solve Eq. (8). The current Θ is computed based on the

previous Φ, where the iteration process is terminated until

Φ reaches stable values. In addition, it is easy to fall into a

local minimum to solve Eq. (8) using the traditional opti-

mization method. Thus, we propose to find the optimum Θ
in discrete geometry processing (DGP) domain.

3.1. DGP Setup

For an input N and a user-given setting λ, suppose the

associated angle profile C have been sharpened as C∗ under

an initialized W. Then, we can compute a new Θ
∗ which lo-

cally satisfies each angle profile in C∗. Apparently, a proper

Θ
∗ cannot be obtained by directly mapping the angle val-

ues from C to C∗, because C holds the one-to-many rela-

tionship between angle and angle profile, where a normal

angle is constrained by multiple angle profiles (i.e., from

both neighboring patches and different directions). Fortu-

nately, following the local/global formulation [19, 20], the

non-linear constrained geometry processing problems can

be solved by iteratively applying the local projection and

the global blending step [3]. Our solution is partly inspired

by this local/global strategy, where the normal angle is ad-

justed according to the involved sharpened angle profiles in

Eq. (7), and the profile sharpness map Φ is redistributed

according to a new angle map Θ
∗ based on the global least-

square optimization. Θ
∗ directly affects the constraint in

Eq. (8), and the updated constraint will trigger a new round

of iteration.
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Figure 6: Local projection and global blending under four con-

straints.

3.2. Local/global Solution

We restate our input-output as: input is a 2D normal an-

gle map Θ and a user-selectable scale λ; output is an en-

hanced angle map Θ
∗. To solve this problem, we generate

a five-step DGP solver as:

Step 1 Compute C according to Θ by Eq. (5), and initialize

the sharpening weights as W (i, j |d ) = max(Φ)
λ×Φ(i,j|d ) ,

where Φ is calculated from C in Subsection 2.2.

Step 2 Use W to sharpen the angle profile as C∗ (see Sub-

section 2.3).

Step 3 Obtain a new Θ
∗ according to C∗ by the lo-

cal/global strategy (see Subsection 3.3). For a single

normal angle θ in Θ, the local projection step is per-

formed by mapping values from C to C∗. Suppose

there is a total number of g angle profiles associated

with θ, then θ will have total g different target val-

ues. As illustrated in Fig. 6, if the related C∗ is

considered as a feasible region, the local projection

step actually projects the current θ onto its closest

point. Thereafter, the global blending step is applied

to determine a compromised position of θ according

to all different projected values. All updated θ con-

tributes to a new Θ
∗;

Step 4 Use Θ
∗ to update the normal map as N∗ (see Eq.

(3)), where NL is extracted from the original input

and kept as a constant during each iteration.

Step 5 Set Θ as Θ
∗, and return to Step 1 to conduct the

next round of optimization.

After iteratively performing Step 1 to Step 5, the DGP

solver will converge to an optimal W∗ which determines

a stable surface structure under the enhancement level λ.

Then, the associated output Θ∗ is used to achieve an en-

hanced N∗ according to Eq. (3). The main reason is that the

local/global strategy can obtain an optimal solution for the

problem in Eq. (8), where the local step avoids the prob-

lem of finding a “good” initial guess that is needed by most

optimization methods in solving non-convex problems, but

easily stuck at a local optimum when given a “bad” initial-

ization. Detailed implementation of Step 3 is given in Sub-

section 3.3.

3.3. Formulation in DGP

In the global blending of Step 3 in Subsection 3.2, we

aim to solve an improved Θ
∗ where each angle vector can

be fitted into a curve with the same profile sharpness as C∗.

Specifically, a profile C corresponds to a certain θ. Accord-

ingly, the sharpened C∗ has the counterpart θ∗. For a given

Θ
∗, each pair of θdi,j and θ∗di,j is expected to exhibit the same

sharpness of angle profiles. Consequently, a straightforward

formulation is used to minimize the following cost function,

L
({

θ
l

r,c

})

=
∑

d

∑

i,j

∥

∥

∥
θ
d

i,j − θ
∗d
i,j

∥

∥

∥

2

, (9)

By minimizing the above function, we can obtain a nor-

mal angle map Θ
∗ with the associated angle profiles close

to the target C∗. It is worth noting that directly solving Eq.

(9) will make the DGP solver converge slowly, as θdi,j = θ
∗d
i,j

is a hard constraint condition. The convergence speed can

be improved by translating θdi,j and θ∗di,j into the local co-

ordinate with the origin on their own center. So, the corre-

sponding reformulation of Eq. (9) is,

L
({

θl

r,c

})

=
∑

d

∑

i,j

∥

∥

(

I − 1

m
1
) (

θdi,j − θ∗di,j
)∥

∥

2

, (10)

where m is the length of θ, I is a m×m unit matrix, and 1

is a m×m matrix with all elements equal to 1.

A more efficient way to solve Eq. (10) is de-

veloped by reformulating it into the matrix form,

L
({

θlr,c
})

= ‖Ax− b‖
2
, where A is a matrix de-

rived from
(

I − 1
m
1
)

θdi,j, b is a vector derived from
(

I − 1
m
1
)

θ∗di,j , and x is the vector containing all unknown

angle values of Θ∗.

4. Experimental results

We implement our algorithm in MATLAB R2014a and

evaluate its performance on real depth or normal data from

scanning or photometric stereo. All the simulation results

are obtained on a uniform platform, Intel TM2 CPU with

3.16GHz and 8GB RAM. We compare our approach with

uniform sharpening by setting Θ
∗ = 1.5 × Θ in Eq. (3).

The detailed experiments are discussed as below.

Fig. 7 illustrates the general performance in enhancing

five real examples, and the quantitative results are tabulated

in Table 2. Since SSIM has been generally considered as

a better perceptual quality metric for 2D natural image or

depth image [2, 4] than PSNR, we compute the SSIM score

for comparison based on the depth map (i.e., all compared

pair depths are normalized into the same range). For each

surface patch, we compute the profile sharpness of inputs
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Figure 7: SSIM scores along profile sharpness of 5 models listed

in Table 2. Blue, red and green lines correspond to 1
2
× 1

2
, 1
3
× 1

3
,

1
4
× 1

4
down-sampled inputs, respectively. The lines labelled with

“+” and “•” denote our method and uniform sharpening. Notice

that, our enhancement from 1
3
× 1

3
input achieves the same quality

as from 1
2
× 1

2
, where the associated lines are nearly overlapping.

and the mean SSIM of the results, and plot them into a

“sharpness-SSIM” curve. We use blue, red, and green lines

to denote three downsampling ratios 1
2
× 1

2
, 1

3 × 1
3 , and

1
4 ×

1
4 , respectively. We use symbols “+” and “•” to distin-

guish our results from the uniform sharpening. As shown

in Fig. 7, our method shows great stability in 1
2
× 1

2
and

1
3 × 1

3 downsampling, with high SSIM score for different

profile sharpness. However, for a lower downsampling (i.e.,
1
4×

1
4 ), our method fails to guarantee the quality of enhance-

ment, especially for the patch with high profile sharpness.

Consequently, we conclude that performance of our algo-

rithm is dependent on the variance of the angle profile in-

ferred from the input normal data. To illustrate this relation,

we also plot the sharpness curves of the vase surface under

three different downsampling ratios (i.e., 1
2
× 1

2
, 1
3 ×

1
3 , and

1
4 ×

1
4 ) as shown in Fig. 8. For comparison convenience, all

the downsampled normal maps are interpolated to the same

resolution as the original one. To visually compare contour

of the curves, we re-index the patch in the ascending or-

der based on the profile sharpness from the original normal

map. As illustrated in Fig. 8, the trends of the sharpness

curve of 1
2
× 1

2
and 1

3 × 1
3 downsampling are similar to the

original, although they are more flatter, while the curve of
1
4 × 1

4 downsampling is almost to be a straight line.

We apply our method for 11 real surfaces including 9
scanned depth data downloaded from Aim@Shape (see Fig.

9, Fig. 10, and Fig. 11), and 2 normal data by photometric

stereo (see the Lincoln cent and Cloth in Fig. 11). Since our

algorithm only accepts the normal map as the input, for the

depth data, we use MeshLab [6] to re-mesh it and convert

it into normal. For each example as shown in Fig. 9, we

first downsample the original normal map and enhance it to

the same resolution as the original one. For visualization

Figure 8: Profile sharpness comparisons among the original, 1
2
×

1
2

, 1
3
× 1

3
, and 1

4
× 1

4
downsampled normal maps of the vase model

in Fig. 9.

Table 1: Mean SSIM scores of depth maps in Fig. 9.

1

2
× 1

2

1

3
× 1

3

1

4
× 1

4

uniform’s 0.8384 0.9542 0.5943
Ours 0.9898 0.9914 0.6172

Table 2: Mean SSIM scores of depth maps in Fig. 10†.

Vase Eros Wall 1 Life mask Rame.

uniform’s 0.9542 0.9864 0.9538 0.9816 0.9837
Ours 0.9914 0.9993 0.9884 0.9991 0.9885

† All the compared enhancements are based on 1
3
× 1

3

downsampled inputs.

purpose, we use the reconstruction method [25] to estimate

the 3D surface from normal. We set the normal angle patch

as 5×5 for fitting the angle profile. Larger size of patch (i.e.

> 7 × 7) is not suggested , because some hidden structure

is lost during angle profile fitting. As shown in Fig. 9, for
1
2
× 1

2
downsampling, surface details are recovered (see the

close-up view in the red box in Fig. 9), where the SSIM

score is up to 0.9898 in comparison with the original data

(see Tabel 1). For the case of 1
3 × 1

3 downsampling, the

visual quality of enhancement is almost as good as that of
1
2
× 1

2
, although the input loses more information. For the

case of 1
4 × 1

4 downsampling, our result in terms of SSIM

drops to 0.6172, but still gives better result than uniform

sharpening. This is because under 1
4 × 1

4 downsampling,

the reserved hidden structure information is not enough to

obtain a proper angle profile.

Fig. 10 shows the comparison results of 1
3 × 1

3 down-

sampling for the models of Eros, Wall 1, Life mask, and

Rame. Our method is conducted on each model of the top

row, and the bottom row gives the corresponding enhance-
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Ground truth
 ×   ×   × 

Figure 9: Comparison of the vase surface enhancements under different downsampling ratios. All partial close-up views are in red box. The

most left column is the ground-truth with 298× 298 resolution with side view on its top. The second to the last column are enhancements

on 1
2
× 1

2
, 1

3
× 1

3
, 1

4
× 1

4
down-sampled normals, where the first row is input, the second row is obtained by uniform sharpening, and the

third row is obtained by our method.

Eros Wall_1 RamessesLife_mask

Figure 10: The 3D surface enhancements for 1
3
× 1

3
downsampling of the model Eros, Wall 1, Life mask, and Rame. The top row is the

downsampled inputs with resolution of 100 × 100, 102 × 102, 100 × 100, and 35 × 35, respectively. The bottom row is the enhanced

results by our method.

ments. We can see that substantial hidden structures are visually improved by our method. The related SSIM scores
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Figure 11: Surface enhancement comparisons. There are six original normal maps from the right-most column to the left-most are dragon

scales, hair of Eros, fish tail, part of human lips, Lincoln cent, and cloth, respectively. The first four models are depth data scanned from

plaster models, and the last two models are the normal data obtained by photometric stereo. The first row is the original inputs, the second

row is results by uniform sharpening with Θ∗ = 1.5×Θ, and the third row is our method with λ = 0.3.

Bicubic: 0.9813 Bilinear: 0.9797 Nearest: 0.9788 Ours: 0.9993

Figure 12: Comparison of applying image sharpening on normal map. The normal map is taken as an image and applied three up-sampling

(3×3) methods bicubic, bilinear, nearest followed by image sharpening. The associated depth SSIM values are indicated below the images.

are tabulated in Table. 2.

We also evaluate our method on the original surface

without downsampling. Fig. 1 indicates our enhancement

results on the publicly available normal map of scolar from

Harvard dataset [26]. Fig. 11 shows the visual comparison

between our method and uniform sharpening. There is no

SSIM score for the quantitative analysis, because the related

ground-truth is not available. However, it can be observed

that our enhancements show more high-frequent informa-

tion without over-sharpening. Note that, for Lincoln Cent

and the cloth, their original normal maps are obtained by

photometric stereo.

We conduct the experiemnts by taking the normal map

as an image and applying up-sampling followed by image

sharpening. Fig. 12 shows the comparison of reconstruction

surface on the Eros model under three up-sampling methods

bicubic, bilinear, and nearest, where the upsampling scale

is 3×3. The associated depth SSIM values are about 0.9813,

0.9797, 0.9788 and 0.9993 respectively.

5. Conclusion

This paper presents a new method to enhance 3D sur-

face details for general given normal maps. We address

the fine-grained 3D enhancement by introducing angle pro-

file which makes our method independent of photometric

stereo as well as the reflection model assumption. The hid-

den surface structure is obtained from the raw data based

on its angle profile. Meanwhile, we propose to use the DGP

method to further refine the enhanced surface. Extensive

simulation results show that our method greatly improves

the fine-grained details of the raw depth.
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