
Adversarial Examples for Semantic Segmentation and Object Detection

Cihang Xie1∗, Jianyu Wang2∗, Zhishuai Zhang1∗, Yuyin Zhou1, Lingxi Xie1(�), Alan Yuille1

1Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218 USA
2Baidu Research USA, Sunnyvale, CA 94089 USA

{cihangxie306, wjyouch, zhshuai.zhang, zhouyuyiner, 198808xc, alan.l.yuille}@gmail.com

Abstract

It has been well demonstrated that adversarial examples,

i.e., natural images with visually imperceptible perturba-

tions added, cause deep networks to fail on image classi-

fication. In this paper, we extend adversarial examples to

semantic segmentation and object detection which are much

more difficult. Our observation is that both segmentation

and detection are based on classifying multiple targets on

an image (e.g., the target is a pixel or a receptive field in

segmentation, and an object proposal in detection). This

inspires us to optimize a loss function over a set of targets

for generating adversarial perturbations. Based on this, we

propose a novel algorithm named Dense Adversary Gener-

ation (DAG), which applies to the state-of-the-art networks

for segmentation and detection. We find that the adversar-

ial perturbations can be transferred across networks with

different training data, based on different architectures,

and even for different recognition tasks. In particular, the

transfer ability across networks with the same architecture

is more significant than in other cases. Besides, we show

that summing up heterogeneous perturbations often leads

to better transfer performance, which provides an effective

method of black-box adversarial attack.

1. Introduction

Convolutional Neural Networks (CNN) [14][30][31][13]

have become the state-of-the-art solution for a wide range of

visual recognition problems. Based on a large-scale labeled

dataset such as ImageNet [6] and powerful computational

resources like modern GPUs, it is possible to train a hier-

archical deep network to capture different levels of visual

patterns. A deep network is also capable of generating

transferrable features for different tasks such as image clas-

sification [7] and instance retrieval [28], or being fine-tuned

to deal with a wide range of vision tasks, including object

The first three authors contributed equally to this work. This work was

done when Jianyu Wang was a Ph.D. student at UCLA.

dog : 1.000

dog : 0.986

dog : 0.640

cow : 0.538

person : 0.512

train : 0.954

Figure 1: An adversarial example for semantic segmentation

and object detection. FCN [18] is used for segmentation, and

Faster-RCNN [27] is used for detection. Left column: the original

image (top row) with the normal segmentation (the purple region

is predicted as dog) and detection results. Right column: after

the adversarial perturbation (top row, magnified by 10) is added

to the original image, both segmentation (the light green region

as train and the pink region as person) and detection results are

completely wrong. Note that, though the added perturbation can

confuse both networks, it is visually imperceptible (the maximal

absolute intensity in each channel is less than 10).

detection [11][10], visual concept discovery [34], semantic

segmentation [18][37][3], boundary detection [29][35], etc.

Despite their success in visual recognition and feature

representation, deep networks are often sensitive to small

perturbations to the input image. In [32], it was shown

1369

that adding visually imperceptible perturbations can result

in failures for image classification. These perturbed images,

often called adversarial examples, are considered to fall

on some areas in the large, high-dimensional feature space

which are not explored in the training process. Thus, inves-

tigating this not only helps understand the working mech-

anism of deep networks, but also provides opportunities to

improve the robustness of network training.

In this paper, we go one step further by generating ad-

versarial examples for semantic segmentation and object

detection, and showing the transferability of them. To

the best of our knowledge, this topic has not been sys-

tematically studied (e.g., on a large dataset) before. Note

that these tasks are much more difficult, as we need to

consider orders of magnitude more targets (e.g., pixels or

proposals). Motivated by the fact that each target undergoes

a separate classification process, we propose the Dense

Adversary Generation (DAG) algorithm, which considers

all the targets simultaneously and optimizes the overall

loss function. The implementation of DAG is simple, as

it only involves specifying an adversarial label for each

target and performing iterative gradient back-propagation.

In practice, the algorithm often comes to an end after a

reasonable number of, say, 150 to 200, iterations. Figure 1

shows an adversarial example which can confuse both deep

segmentation and detection networks.

We point out that generating an adversarial example is

more difficult in detection than in segmentation, as the

number of targets is orders of magnitude larger in the former

case, e.g., for an image with K pixels, the number of possi-

ble proposals is O
(
K2

)
while the number of pixels is only

O(K), where O(·) is the big-O notation. In addition, if only

a subset of proposals are considered, the perturbed image

may still be correctly recognized after a new set of proposals

are extracted (note that DAG aims at generating recognition

failures on the original proposals). To increase the robust-

ness of adversarial attack, we change the intersection-over-

union (IOU) rate to preserve an increased but still reason-

able number of proposals in optimization. In experiments,

we verify that when the proposals are dense enough on the

original image, it is highly likely that incorrect recognition

results are also produced on the new proposals generated on

the perturbed image. We also study the effectiveness and

efficiency of the algorithm with respect to the denseness of

the considered proposals.

Following [32], we investigate the transferability of the

generated perturbations. To this end, we use the adversarial

perturbation computed on one network to attack another

network. Three situations are considered: (1) networks

with the same architecture but trained with different data;

(2) networks with different architectures but trained for the

same task; and (3) networks for different tasks. Although

the difficulty increases as the difference goes more signifi-

cant, the perturbations generated by DAG is able to transfer

to some extent. Interestingly, adding two or more heteroge-

neous perturbations significantly increases the transferabil-

ity, which provides an effective way of performing black-

box adversarial attack [25] to some networks with unknown

structures and/or properties.

2. Related Work

2.1. Deep Learning for Detection and Segmentation

Deep convolutional neural networks have been applied to

object detection [11][10][27][5][16] and semantic segmen-

tation [18][3][37] successfully. Currently, one of the most

popular object detection pipeline [27][5][16] involves first

generating a number of proposals of different scales and

positions, classifying each of them, and performing post-

processing such as non-maximal suppression (NMS). On

the other hand, the dominating segmentation pipeline [18]

works by first predicting a class-dependent score map at a

reduced resolution, and performing up-sampling to obtain

high-resolution segmentation. [3] incorporates the “atrous”

algorithm and the conditional random field (CRF) to this

pipeline to improve the segmentation performance further.

2.2. Adversarial Attack and Defense

Generating adversarial examples for classification has

been extensively studied recently. [32] first showed that

adversarial examples, computed by adding visually imper-

ceptible perturbations to the original images, make CNNs

predict a wrong label with high confidence. [12] pro-

posed a simple and fast gradient sign method to generate

adversarial examples based on the linear nature of CNNs.

[23] proposed a simple algorithm to compute the minimal

adversarial perturbation by assuming that the loss function

can be linearized around the current data point at each

iteration. [22] showed the existence of universal (image-

agnostic) adversarial perturbations. [1] trained a feedfor-

ward network to generate adversarial examples for a partic-

ular target model (without using gradients). [17] studied the

transferability of both non-targeted and targeted adversarial

examples, and proposed an ensemble-based approaches to

generate adversarial examples with stronger transferability.

[24] generated images using evolutionary algorithms that

are unrecognizable to humans, but cause CNNs to output

very confident (incorrect) predictions. This can be thought

of as in the opposite direction of above works.

In contrast to generating adversarial examples, there are

some works trying to reduce the effect of adversarial ex-

amples. Defensive distillation [26] was proposed as a de-

fense to against adversarial examples, while [2] developed

stronger attacks which break defensive distillation easily.

[15] trained the network on adversarial examples using

the large-scale dataset, ImageNet, and showed this brings

1370

robustness to adversarial attack. This is improved by [33],

which proposed an ensemble adversarial training method

to increase the network robustness to black-box attacks.

[20] trained a detector on the inner layer of the classifier

to detect adversarial examples. [19] proposed a forveation-

based mechanism to alleviate adversarial examples.

There are two concurrent works [9][21] studying adver-

sarial examples in semantic segmentation on the Cityscapes

dataset [4]. [9] showed the existence of adversarial exam-

ples, and [21] showed the existence of universal perturba-

tions. We refer interested readers to their papers for details.

3. Generating Adversarial Examples

In this section, we introduce DAG algorithm. Given an

image and the recognition targets (proposals and/or pixels),

DAG generates an adversarial perturbation which aims at

confusing as many targets as possible.

3.1. Dense Adversary Generation

Let X be an image which contains N recognition targets

T = {t1, t2, . . . , tN}. Each target tn, n = 1, 2, . . . , N ,

is assigned a ground-truth class label ln ∈ {1, 2, . . . , C},
where C is the number of classes, e.g., C = 21 (including

the background class) in the PascalVOC dataset [8]. Denote

L = {l1, l2, . . . , ln}. The detailed form of T varies among

different tasks. In image classification, T only contains one

element, i.e., the entire image. Conversely, T is composed

of all pixels (or the corresponding receptive fields) in se-

mantic segmentation, and all proposals in object detection.

We will discuss how to construct T in Section 3.2.

Given a deep network for a specific task, we use

f(X, tn) ∈ R
C to denote the classification score vector

(before softmax normalization) on the n-th recognition tar-

get of X. To generate an adversarial example, the goal

is to make the predictions of all targets go wrong, i.e.,

∀n, argmaxc {fc(X+ r, tn)} 6= ln. Here r denotes an

adversarial perturbation added to X. To this end, we

specify an adversarial label l′n for each target, in which

l′n is randomly sampled from other incorrect classes, i.e.,

l′n ∈ {1, 2, . . . , C} \ {ln}. Denote L′ = {l′1, l
′
2, . . . , l

′
n}.

In practice, we define a random permutation function π :
{1, 2, . . . , C} → {1, 2, . . . , C} for every image indepen-

dently, in which π(c) 6= c for c = 1, 2, . . . , C, and generate

L′ by setting l′n = π(ln) for all n. Under this setting, the

loss function covering all targets can be written as:

L(X, T ,L,L′) =

N∑

n=1

[
fln(X, tn)− fl′

n

(X, tn)
]

(1)

Minimizing L can be achieved via making every target to be

incorrectly predicted, i.e., suppressing the confidence of the

original correct class fln(X+ r, tn), while increasing that

of the desired (adversarial) incorrect class fl′
n

(X+ r, tn).

Algorithm 1: Dense Adversary Generation (DAG)

Input : input image X;

the classifier f(·, ·) ∈ R
C ;

the target set T = {t1, t2, . . . , tN};
the original label set L = {l1, l2, . . . , lN};
the adversarial label set L′ = {l′1, l

′
2, . . . , l

′
N};

the maximal iterations M0;

Output: the adversarial perturbation r;

1 X0 ← X, r← 0, m← 0, T0 ← T ;

2 while m < M0 and Tm 6= ∅ do

3 Tm = {tn | argmaxc {fc(Xm, tn)} = ln};
4 rm ←∑

tn∈Tm

[
∇Xm

fl′
n

(Xm, tn)−∇Xm
fln(Xm, tn)

]
;

5 r
′
m ←

γ
‖rm‖

∞

rm;

6 r← r+ r
′
m;

7 Xm+1 ← Xm + r
′
m;

8 m← m+ 1;

9 end

Return: r

We apply a gradient descent algorithm for optimization.

At the m-th iteration, denote the current image (possibly

after adding several perturbations) as Xm. We find the

set of correctly predicted targets, named the active target

set: Tm = {tn | argmaxc {fc(Xm, tn)} = ln}. Then we

compute the gradient with respect to the input data and then

accumulate all these perturbations:

rm =
∑

tn∈Tm

[
∇Xm

fl′
n

(Xm, tn)−∇Xm
fln(Xm, tn)

]
(2)

Note that |Tm| ≪ |T | when m gets large, thus this strategy

considerably reduces the computational overhead. To avoid

numerical instability, we normalize rm as

r
′
m =

γ

‖rm‖∞
· rm (3)

where γ = 0.5 is a fixed hyper-parameter. We then add r
′
m

to the current image Xm and proceed to the next iteration.

The algorithm terminates if either all the targets are pre-

dicted as desired, i.e., Tm = ∅, or it reaches the maximum

iteration number, which is set to be 200 in segmentation and

150 in detection.

The final adversarial perturbation is computed as r =∑
mr

′
m. Note that, in practice, we often obtain the input im-

age X after subtracting the mean image X̂. In this case, the

adversarial image is Trunc
(
X+ r+ X̂

)
, where Trunc(·)

denotes the function that truncates every pixel value by

[0, 255]. Although truncation may harm the adversarial per-

turbation, we observed little effect in experiments, mainly

because the magnitude of perturbation r is very small (see

1371

Section 3.5.3). The overall pipeline of DAG algorithm is

illustrated in Algorithm 1.

3.2. Selecting Input Proposals for Detection

A critical issue in DAG is to select a proper set T of

targets. This is relatively easy in the semantic segmentation

task, because the goal is to produce incorrect classification

on all pixels, and thus we can set each of them as a sep-

arate target, i.e., performing dense sampling on the image

lattice. This is tractable, i.e., the computational complexity

is proportional to the total number of pixels.

In object detection, target selection becomes a lot more

difficult, as the total number of possible targets (bounding

box proposals) is orders of magnitudes larger than that in

semantic segmentation. A straightforward choice is to only

consider the proposals generated by a sideway network,

e.g., the regional proposal network (RPN) [27], but we

find that when the adversarial perturbation r is added to

the original image X, a different set of proposals may be

generated according to the new input X+r, and the network

may still be able to correctly classify these new propos-

als [19]. To overcome this problem, we make the proposals

very dense by increasing the threshold of NMS in RPN. In

practice, when the intersection-over-union (IOU) goes up

from 0.70 to 0.90, the average number of proposals on each

image increases from around 300 to around 3000. Using

this denser target set T , most probable object bounding

boxes are only pixels away from at least one of the selected

input proposals, and we can expect the classification error

transfers among neighboring bounding boxes. As shown

in experiments, this heuristic idea works very well, and the

effect of adversarial perturbations is positively correlated to

the number of proposals considered in DAG.

Technically, given the proposals generated by RPN, we

preserve all positive proposals and discard the remaining.

Here, a positive proposal satisfies the following two con-

ditions: 1) the IOU with the closest ground-truth object

is greater than 0.1, and 2) the confidence score for the

corresponding ground-truth class is greater than 0.1. If both

conditions hold on multiple ground-truth objects, we select

the one with the maximal IOU. The label of the proposal is

defined as the corresponding confident class. This strategy

aims at selecting high-quality targets for Algorithm 1.

3.3. Quantitative Evaluation

Following some previous work [32][23], we evaluate our

approach by measuring the drop in recognition accuracy,

i.e., mean intersection-over-union (mIOU) for semantic seg-

mentation and mean average precision (mAP) for object

detection, using the original test images and the ones after

adding adversarial perturbations1.

1For implementation simplicity, we keep targets with ground-truth class

label background unchanged when generating adversarial examples.

Network ORIG ADVR PERM

FCN-Alex 48.04 3.98 48.04

FCN-Alex* 48.92 3.98 48.91

FCN-VGG 65.49 4.09 65.47

FCN-VGG* 67.09 4.18 67.08

FR-ZF-07 58.70 3.61 58.33

FR-ZF-0712 61.07 1.95 60.94

FR-VGG-07 69.14 5.92 68.68

FR-VGG-0712 72.07 3.36 71.97

Table 1: Semantic segmentation (measured by mIOU, %) and ob-

ject detection (measured by mAP, %) results of different networks.

Here, ORIG is the accuracy obtained on the original image set,

ADVR is obtained on the set after the adversarial perturbations

are added, and PERM is obtained after the randomly permuted

perturbations are added. Please see Section 3.3 for details.

• For semantic segmentation, we study two network ar-

chitectures based on the FCN [18] framework. One

of them is based on the AlexNet [14] and the other

one is based on the 16-layer VGGNet [30]. Both

networks have two variants. We use FCN-Alex and

FCN-VGG, which are publicly available, to denote

the networks that are trained on the original FCN [18]

training set which has 9610 images, and use FCN-

Alex* and FCN-VGG* to denote the networks that

are trained on the DeepLab [3] training set which has

10582 images. We use the validation set in [18] which

has 736 images as our semantic segmentation test set.

• For object detection, based on the Faster-RCNN [27]

framework, we study two network architectures, i.e.,

the ZFNet [36] and the 16-layer VGGNet [30]. Both

networks have two variants, which are either trained

on the PascalVOC-2007 trainval set, or the combined

PascalVOC-2007 and PascalVOC-2012 trainval sets.

These four models are publicly available, and are de-

noted as FR-ZF-07, FR-ZF-0712, FR-VGG-07 and

FR-VGG-0712, respectively. We use the PascalVOC-

2007 test set which has 4952 images as our object

detection test set.

Results are summarized in Table 1. We can observe

that the accuracy (mIOU for segmentation and mAP for

detection) drops significantly after the adversarial pertur-

bations are added, demonstrating the effectiveness of DAG

algorithm. Moreover, for detection, the networks with more

training data are often more sensitive to the adversarial per-

turbation. This is verified by the fact that FR-ZF-07 (from

58.70% to 3.61%) has a smaller performance drop than FR-

ZF-0712 (from 61.07% to 1.95%), and that FR-VGG-07

(from 69.14% to 5.92%) has a smaller performance drop

than FR-VGG-0712 (from 72.04% to 3.36%).

To verify the importance of the spatial structure of ad-

versarial perturbations, we evaluate the accuracy after ran-

1372

Figure 2: Examples generated by DAG for semantic segmen-

tation. The adversarial image is on the left and the fooling

image is on the right. From top to bottom: the original image,

the perturbation (magnified by 10), the adversarial image after

adding perturbation, and the segmentation results. The red, blue

and black regions are predicted as airplane, bus and background.

domly permuting the rows and/or columns of r. In Table 1,

we find that permuted perturbations cause negligible accu-

racy drop, indicating that it is the spatial structure of r, in-

stead of its magnitude, that indeed contributes in generating

adversarial examples. For permutation results, we randomly

permute r for three times and take the average.

3.4. Adversarial Examples

Figure 1 shows an adversarial example that fails in both

detection and segmentation networks. In addition, we show

that DAG is able to control the output of adversarial images

very well. In Figure 2, we apply DAG to generating one

adversarial image (which humans can recognize but deep

networks cannot) and one fooling image [24] (which is

completely unrecognizable to humans but deep networks

produce false positives). This suggests that deep networks

only cover a limited area in the high-dimensional feature

space, and that we can easily find adversarial and/or fooling

examples that fall in the unexplored parts.

3.5. Diagnostics

3.5.1 The Denseness of Proposals

We first observe the impact brought by the denseness of the

proposals for generating adversaries. To this end, we use

different IOU rates in the NMS process after RPN [27],

which directly affects the number of proposals preserved

in Algorithm 1. As we can see in Figure 3, the mAP

value goes down (i.e., stronger adversarial perturbations

are generated) as the IOU rate increases, which means that

fewer proposals are filtered out and thus the set of targets

T becomes larger. This is in line of our expectation, since

DAG only guarantees misclassification on the targets in T .

The denser sampling on proposals allows the recognition

error to propagate to other possible object positions better.

Therefore, we choose a large IOU value (0.90) which pro-

duces good results.

3.5.2 Convergence

We then investigate the convergence of DAG, i.e., how

many iterations are needed to find the desired adversarial

perturbation. Figure 4 shows the number of active targets,

i.e., |Tm|, with respect to the number of iterations m. In

general, the training process goes smoothly in the early

rounds, in which we find that the number of active proposals

is significantly reduced. After the algorithm reaches the

maximal number of iterations, i.e., 200 in segmentation

and 150 in detection, only few (less than 1%) image fail

to converge. Even on these cases, DAG is able to produce

reasonable adversarial perturbations.

Another interesting observation is the difficulty in gen-

erating adversarial examples. In general, the detection

networks are more difficult to attack than the segmentation

networks, which is arguably caused by the much larger

number of potential targets (recall that the total number of

possible bounding boxes is one or two orders of magnitudes

larger). Meanwhile, as the IOU rate increases, i.e., a larger

set T of proposals is considered, convergence also becomes

slower, implying that more iterations are required to gener-

ate stronger adversarial perturbations.

3.5.3 Perceptibility

Following [32][23], we compute the perceptibility of the ad-

versarial perturbation r defined by p =
(

1

K

∑
k ‖rk‖

2

2

)1/2

,

where K is the number of pixels, and rk is the intensity

vector (3-dimensional in the RGB color space, k = 1, 2, 3)

normalized in [0, 1]. We average the perceptibility value

over the entire test set. In semantic segmentation, these val-

ues are 2.6×10−3, 2.5×10−3, 2.9×10−3 and 3.0×10−3 on

1373

0.6 0.65 0.7 0.75 0.8 0.85 0.9

nms ratio of proposal candidates

0

10

20

30

40

m
A

P
 %

FR-ZF-07

FR-ZF-0712

Figure 3: The mAP of using adversarial pertur-

bations on FR-ZF-07 to attack FR-ZF-07 and

FR-ZF-0712, with respect to the IOU rate. A

larger IOU leads to a denser set of proposals.

0 50 100 150 200

Number of iterations

0

1

2

3

4

N
u
m

b
e
r

o
f
A

c
ti
v
e
 P

ix
e
ls

10
4

FCN-VGG

FCN-Alex

0 50 100 150

Number of iterations

0

100

200

300

400

500

N
u
m

b
e
r

o
f
A

c
ti
v
e
 B

o
x
e
s

FR-ZF-07

FR-VGG-07

Figure 4: The convergence of DAG measured by the number of active targets, i.e., |Tm|,
with respect to the number of iterations. Over the entire dataset, the average numbers

of iterations are 31.78 and 54.02 for FCN-Alex and FCN-VGG, and these numbers are

47.05 and 41.42 for FR-ZF-07 and FR-VGG-07, respectively.

FCN-Alex, FCN-Alex*, FCN-VGG and FCN-VGG*, re-

spectively. In object detection, these values are 2.4× 10−3,

2.7× 10−3, 1.5× 10−3 and 1.7× 10−3 on FR-ZF-07, FR-

ZF-0712, FR-VGG-07 and FR-VGG-0712, respectively.

One can see that these numbers are very small, which

guarantees the imperceptibility of the generated adversarial

perturbations. The visualized examples (Figures 1 and 2)

also verify this point.

4. Transferring Adversarial Perturbations

In this section, we investigate the transfer ability of the

generated adversarial perturbations. We use the adversarial

perturbation computed on one model to attack other mod-

els. The attacked model may be trained on a different

network architecture, or even targeted at a different vision

task. Quantitative results are summarized in Tables 2–4. In

the following parts, we analyze these results by organizing

them into three categories, namely cross-training transfer,

cross-network transfer and cross-task transfer.

4.1. CrossTraining Transfer

By cross-training transfer, we mean to apply the per-

turbations learned from one network to another network

with the same architecture but trained on a different dataset.

We observe that the transferability largely exists within the

same network structure2. For example, using the adversarial

perturbations generated by FR-ZF-07 to attack FR-ZF-

0712 obtains a 22.15% mAP. This is a dramatic drop from

the performance (61.07%) reported on the original images,

although the drop is less than that observed in attacking FR-

ZF-07 itself (from 58.70% to 3.61%). Meanwhile, using

the adversarial perturbations generated by FR-ZF-0712 to

attack FR-ZF-07 causes the mAP drop from 58.70% to

2We also studied training on strictly non-overlapping datasets, e.g., the

model FR-ZF-07 trained on PascalVOC-2007 trainval set and the model

FR-ZF-12val trained on PascalVOC-2012 val set. The experiments de-

liver similar conclusions. For example, using FR-ZF-07 to attack FR-ZF-

12val results in a mAP drop from 56.03% to 25.40%, and using FR-ZF-

12val to attack FR-ZF-07 results in a mAP drop from 58.70% to 30.41%.

13.14%, We observe similar phenomena when FR-VGG-

07 and FR-VGG-0712, or FCN-Alex and FCN-Alex*, or

FCN-VGG and FCN-VGG* are used to attack each other.

Detailed results are shown in Tables 2 and 3.

4.2. CrossNetwork Transfer

We extend the previous case to consider the transfer-

ability through different network structures. We introduce

two models which are more powerful than what we used to

generate adversarial perturbations, namely DeepLab [3] for

semantic segmentation and R-FCN [5] for object detection.

For DeepLab [3], we use DL-VGG to denote the net-

work based on 16-layer VGGNet[30], and use DL-RN101

to denote the network based on 101-layer ResNet[13].

Both networks are trained on original DeepLab [3] training

set which has 10582 images. For R-FCN [5], we use

R-FCN-RN50 to denote the network based on 50-layer

ResNet[13], and use R-FCN-RN101 to denote the network

based on 101-layer ResNet[13]. Both networks are trained

on the combined trainval sets of PascalVOC-2007 and

PascalVOC-2012. The perturbations applied to these four

models are considered as black-box attacks [25], since DAG

does not know the structure of these networks beforehand.

Detailed results are shown in Tables 2 and 3. Experi-

ments reveal that transferability between different network

structures becomes weaker. For example, applying the per-

turbations generated by FR-ZF-07 leads to slight accuracy

drop on FR-VGG-07 (from 69.14% to 66.01%), FR-VGG-

0712 (from 72.07% to 69.74%), R-FCN-RN50 (from

76.40% to 74.01%) and R-FCN-RN101 (from 78.06% to

75.87%), respectively. Similar phenomena are observed in

using different segmentation models to attack each other.

One exception is using FCN-VGG or FCN-VGG* to attack

DL-VGG (from 70.72% to 45.16% for FCN-VGG attack,

or from 70.72% to 46.33% by FCN-VGG* attack), which

results in a significant accuracy drop of DL-VGG. Con-

sidering the cues obtained from previous experiments, we

conclude that adversarial perturbations are closely related

to the architecture of the network.

1374

Adversarial

Perturbations from
FR-ZF-07 FR-ZF-0712 FR-VGG-07

FR-VGG-

0712

R-FCN-

RN50

R-FCN-

RN101

None 58.70 61.07 69.14 72.07 76.40 78.06

FR-ZF-07 (r1) 3.61 22.15 66.01 69.47 74.01 75.87

FR-ZF-0712 (r2) 13.14 1.95 64.61 68.17 72.29 74.68

FR-VGG-07 (r3) 56.41 59.31 5.92 48.05 72.84 74.79

FR-VGG-0712 (r4) 56.09 58.58 31.84 3.36 70.55 72.78

r1 + r3 3.98 21.63 7.00 44.14 68.89 71.56

r1 + r3 (permuted) 58.30 61.08 68.63 71.82 76.34 77.71

r2 + r4 13.15 2.13 28.92 4.28 63.93 67.25

r2 + r4 (permuted) 58.51 61.09 68.68 71.78 76.23 77.71

Table 2: Transfer results for detection networks. FR-ZF-07, FR-ZF-0712, FR-VGG-07 and FR-VGG-0712 are used as four basic models

to generate adversarial perturbations, and R-FCN-RN50 and R-FCN-RN101 are used as black-box models. All models are evaluated on

the PascalVOC-2007 test set and its adversarial version, which both has 4952 images.

Adversarial

Perturbations from
FCN-Alex FCN-Alex* FCN-VGG FCN-VGG* DL-VGG DL-RN101

None 48.04 48.92 65.49 67.09 70.72 76.11

FCN-Alex (r5) 3.98 7.94 64.82 66.54 70.18 75.45

FCN-Alex* (r6) 5.10 3.98 64.60 66.36 69.98 75.52

FCN-VGG (r7) 46.21 47.38 4.09 16.36 45.16 73.98

FCN-VGG* (r8) 46.10 47.21 12.72 4.18 46.33 73.76

r5 + r7 4.83 8.55 4.23 17.59 43.95 73.26

r5 + r7 (permuted) 48.03 48.90 65.47 67.09 70.69 76.04
r6 + r8 5.52 4.23 13.89 4.98 44.18 73.01

r6 + r8 (permuted) 48.03 48.90 65.47 67.05 70.69 76.05

Table 3: Transfer results for segmentation networks. FCN-Alex, FCN-Alex*, FCN-VGG and FCN-VGG* are used as four basic models

to generate adversarial perturbations, and DL-VGG and DL-RN101 are used as black-box models. All models are evaluated on validation

set in [18] and its adversarial version, which both has 736 images.

Adversarial

Perturbations from
FR-ZF-07 FR-VGG-07 FCN-Alex FCN-VGG R-FCN-RN101

None 56.83 68.88 35.73 54.87 80.20

FR-ZF-07 (r1) 5.14 66.63 31.74 51.94 76.00

FR-VGG-07 (r3) 54.96 7.17 34.53 43.06 74.50

FCN-Alex (r5) 55.61 68.62 4.04 54.08 77.09

FCN-VGG (r7) 55.24 56.33 33.99 4.10 73.86

r1 + r3 + r5 5.02 8.75 4.32 37.90 69.07

r1 + r3 + r7 5.15 5.63 28.48 4.81 65.23

r1 + r5 + r7 5.14 47.52 4.37 5.20 68.51

r3 + r5 + r7 53.34 5.94 4.41 4.68 67.57

r1 + r3 + r5 + r7 5.05 5.89 4.51 5.09 64.52

Table 4: Transfer results between detection networks and segmentation networks. FR-ZF-07, FR-VGG-07, FCN-Alex and FCN-VGG

are used as four basic models to generate adversarial perturbations, and R-FCN-RN101 are used as black-box model. When attacking the

first four basic networks, we use a subset of the PascalVOC-2012 segmentation validation set which contains 687 images. In the black-box

attack, we evaluate our method on the non-intersecting subset of 110 images.

4.3. CrossTask Transfer

Finally, we investigate cross-task transfer, i.e., using the

perturbations generated by a detection network to attack a

segmentation network or in the opposite direction. We use

a subset of PascalVOC-2012 segmentation validation set

as our test set. Note that there are training images of FR-

ZF-07, FR-VGG-07, FCN-Alex and FCN-VGG included

in the PascalVOC-2012 segmentation validation set, so we

evaluate on the non-intersecting set of 687 images. Results

are summarized in Table 4. We note that if the same network

structure is used, e.g., using FCN-VGG (segmentation) and

FR-VGG-07 (detection) to attack each other, the accuracy

drop is significant (the mIOU of FCN-VGG drops from

1375

54.87% to 43.06%, and the mAP of FR-VGG-07 drops

from 68.88% to 56.33%). Note that this drop is even

more significant than cross-network transfer on the same

task, which verifies our hypothesis again that the adversarial

perturbations are related to the network architecture.

4.4. Combining Heterogeneous Perturbations

From the above experiments, we assume that dif-

ferent network structures generate roughly orthogonal

perturbations, which means that if rA is generated by

one structure A, then adding it to another structure B

merely changes the recognition results, i.e., fB(X, tn) ≈
f
B(X+ rA, tn). This motivates us to combine hetero-

geneous perturbations towards better adversarial perfor-

mance. For example, if both rA and rB are added,

we have f
A(X+ rA + rB, tn) ≈ f

A(X+ rA, tn) and

f
B(X+ rA + rB, tn) ≈ f

B(X+ rB, tn). Thus, the com-

bined perturbation rA + rB is able to confuse both network

structures.

In Tables 2–4, we list some results by adding multiple

adversarial perturbations. Also, in order to verify that the

spatial structure of combined adversarial perturbations is

the key point that leads to statistically significant accuracy

drop, we randomly generate three permutations of the com-

bined adversarial perturbations and report the average accu-

racy. From the results listed in Tables 2–4, we can observe

that adding multiple adversarial perturbations often works

better than adding a single source of perturbations. Indeed,

the accuracy drop caused by the combined perturbation

approximately equals to the sum of drops by each pertur-

bation. For example, the adversarial perturbation r2 + r4

(combining FR-ZF-0712 and FR-VGG-0712) causes sig-

nificant mAP drop on all ZFNet-based and VGGNet-based

detection networks, and the adversarial perturbation r5+r7

(combining FCN-Alex* and FCN-VGG*) causes signifi-

cant mIOU drop on all AlexNet-based and VGGNet-based

segmentation networks. However, permutation destroys the

spatial structure of the adversarial perturbations, leading to

negligible accuracy drops. The same conclusion holds when

the perturbations from different tasks are combined. Table 4

shows some quantitative results of such combination and

Figure 5 shows an example. Note that, the perceptibility

value defined in Section 3.5.3 remains very small even

when multiple adversarial perturbations are combine (e.g.,

4.0× 10−3 by r1 + r3 + r5 + r7).

4.5. BlackBox Attack

Combining heterogeneous perturbations allows us to

perform better on the so-called black-box attack [25], in

which we do not need to know the detailed properties

(architecture, purpose, etc.) about the defender network.

According to the above experiments, a simple and effective

way is to compute the sum of perturbations from several

boat : 0.809
boat : 0.857

pottedplant : 0.373

Figure 5: Adding the fused adversarial perturbation (r1 + r3 +

r5 + r7, see Table 4) confuses four different networks. The

top row shows FR-VGG-07 and FR-ZF-07 detection results, and

the bottom row shows FCN-Alex and FCN-VGG segmentation

results. The blue in segmentation results corresponds to boat.

of known networks, such as FR-ZF-07, FR-VGG-07 and

FCN-Alex, and use it to attack an unknown network. This

strategy even works well when the structure of the defender

is not investigated before. As an example shown in Table 4,

the perturbation r1 + r3 + r5 + r7 leads to significant accu-

racy drop (from 80.20% to 64.52%) on R-FCN-RN101[5],

a powerful network based on the deep ResNet [13].

5. Conclusions

In this paper, we investigate the problem of generating

adversarial examples for semantic segmentation and object

detection. We propose DAG algorithm, which is able to

effectively generate visually imperceptible perturbation, so

that we can confuse the originally correct recognition re-

sults in a well controllable manner. An intriguing property

of the perturbation generated by DAG is the transfer ability.

We show that the perturbation can be transferred across

different training sets, different network architectures and

even different tasks. Combining heterogeneous perturba-

tions often leads to more effective adversarial perturbations

in black-box attacks.

The transfer ability also suggests that deep networks,

though started with different initialization and trained in

different ways, share some intrinsic structure, which make

them sensitive to a similar source of perturbations. This

reveals an interesting topic for future research.

Acknowledgements

This work is supported by the Intelligence Advanced

Research Projects Activity (IARPA) via DoI/IBC contract

number D16PC00007, and also by the grant ONR–N00014-

15-1-2356. We thank Dr. Vittal Premachandran, Weichao

Qiu, Chenxi Liu, Zhuotun Zhu, Chenxu Luo and Siyuan

Qiao for instructive discussions.

1376

References

[1] S. Baluja and I. Fischer. Adversarial transformation net-

works: Learning to generate adversarial examples. arXiv

preprint arXiv:1703.09387, 2017.

[2] N. Carlini and D. Wagner. Towards evaluating the robustness

of neural networks. In IEEE Symposium on Security and

Privacy. IEEE, 2017.

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2017.

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Computer Vision and Pattern Recognition. IEEE, 2016.

[5] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via

region-based fully convolutional networks. In Advances in

Neural Information Processing Systems, 2016.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

Computer Vision and Pattern Recognition. IEEE, 2009.

[7] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-

vation feature for generic visual recognition. In International

Conference on Machine Learning, 2014.

[8] M. Everingham, A. Zisserman, C. K. Williams, L. Van Gool,

M. Allan, C. M. Bishop, O. Chapelle, N. Dalal, T. Deselaers,

G. Dorkó, et al. The pascal visual object classes challenge

2007 (voc2007) results. 2007.

[9] V. Fischer, M. C. Kumar, J. H. Metzen, and T. Brox. Ad-

versarial examples for semantic image segmentation. In In-

ternational Conference on Learning Representations Work-

shop, 2017.

[10] R. Girshick. Fast r-cnn. In International Conference on

Computer Vision. IEEE, 2015.

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In Computer Vision and Pattern Recognition.

IEEE, 2014.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and

harnessing adversarial examples. In International Confer-

ence on Learning Representations, 2015.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Computer Vision and Pattern

Recognition. IEEE, 2016.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, 2012.

[15] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial

machine learning at scale. In International Conference on

Learning Representations, 2017.

[16] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

In Computer Vision and Pattern Recognition. IEEE, 2017.

[17] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transfer-

able adversarial examples and black-box attacks. In Interna-

tional Conference on Learning Representations, 2017.

[18] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Computer Vision

and Pattern Recognition. IEEE, 2015.

[19] Y. Luo, X. Boix, G. Roig, T. Poggio, and Q. Zhao. Foveation-

based mechanisms alleviate adversarial examples. arXiv

preprint arXiv:1511.06292, 2015.

[20] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff. On

detecting adversarial perturbations. In International Confer-

ence on Learning Representations, 2017.

[21] J. H. Metzen, M. C. Kumar, T. Brox, and V. Fischer. Uni-

versal adversarial perturbations against semantic image seg-

mentation. arXiv preprint arXiv:1704.05712, 2017.

[22] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and

P. Frossard. Universal adversarial perturbations. In Com-

puter Vision and Pattern Recognition. IEEE, 2017.

[23] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deep-

fool: a simple and accurate method to fool deep neural

networks. In Computer Vision and Pattern Recognition.

IEEE, 2016.

[24] A. Nguyen, J. Yosinski, and J. Clune. Deep neural net-

works are easily fooled: High confidence predictions for

unrecognizable images. In Computer Vision and Pattern

Recognition. IEEE, 2015.

[25] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,

and A. Swami. Practical black-box attacks against machine

learning. In ACM on Asia Conference on Computer and

Communications Security. ACM, 2017.

[26] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami.

Distillation as a defense to adversarial perturbations against

deep neural networks. In IEEE Symposium on Security and

Privacy. IEEE, 2016.

[27] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in Neural Information Processing Systems, 2015.

[28] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carls-

son. Cnn features off-the-shelf: an astounding baseline for

recognition. In CVPR Workshops. IEEE, 2014.

[29] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deep-

contour: A deep convolutional feature learned by positive-

sharing loss for contour detection. In Computer Vision and

Pattern Recognition. IEEE, 2015.

[30] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, 2015.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Computer Vision and

Pattern Recognition. IEEE, 2015.

[32] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. Goodfellow, and R. Fergus. Intriguing properties of neural

networks. In International Conference on Learning Repre-

sentations, 2014.

[33] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. Mc-

Daniel. Ensemble adversarial training: Attacks and defenses.

arXiv preprint arXiv:1705.07204, 2017.

1377

[34] J. Wang, Z. Zhang, C. Xie, V. Premachandran, and A. Yuille.

Unsupervised learning of object semantic parts from inter-

nal states of cnns by population encoding. arXiv preprint

arXiv:1511.06855, 2015.

[35] S. Xie and Z. Tu. Holistically-nested edge detection. In

International Conference on Computer Vision. IEEE, 2015.

[36] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In European Conference on Com-

puter Vision. Springer, 2014.

[37] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional ran-

dom fields as recurrent neural networks. In International

Conference on Computer Vision. IEEE, 2015.

1378

