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Abstract

The deep convolutional neural network (CNN) is the
state-of-the-art solution for large-scale visual recognition.
Following some basic principles such as increasing network
depth and constructing highway connections, researchers
have manually designed a lot of fixed network architectures
and verified their effectiveness.

In this paper, we discuss the possibility of learning deep
network structures automatically. Note that the number
of possible network structures increases exponentially with
the number of layers in the network, which motivates us to
adopt the genetic algorithm to efficiently explore this large
search space. The core idea is to propose an encoding
method to represent each network structure in a fixed-length
binary string. The genetic algorithm is initialized by gen-
erating a set of randomized individuals. In each genera-
tion, we define standard genetic operations, e.g., selection,
mutation and crossover, to generate competitive individuals
and eliminate weak ones. The competitiveness of each
individual is defined as its recognition accuracy, which is
obtained via a standalone training process on a reference
dataset. We run the genetic process on CIFARIO, a small-
scale dataset, demonstrating its ability to find high-quality
structures which are little studied before. The learned pow-
erful structures are also transferrable to the ILSVRC2012
dataset for large-scale visual recognition.

1. Introduction

Visual recognition is a fundamental task in computer
vision, implying a wide range of applications. Recently, the
state-of-the-art algorithms on visual recognition are mostly
based on the deep Convolutional Neural Network (CNN).
Starting from the fundamental chain-styled network model-
s [19], researchers have been increasing the depth of the
network [32], as well as designing novel network mod-
ules [36[][13] to improve recognition accuracy. Although
these modern networks have been shown to be efficient, we
note that their structures are manually designed, not learned,
which limits the flexibility of the approach.

alan.l.yuille@gmail.com

In this paper, we reveal the possibility of automatically
learning the structure of deep neural networks. We consider
a constrained case, in which the network has a limited
number of stages, and each stage is defined as a set of pre-
defined building blocks such as convolution and pooling
layers. Even under these limitations, the total number of
possible network structures grows exponentially with the
number of layers, making it impractical to enumerate all the
candidates and find the best one. Instead, we formulate this
problem as optimization in a large search space, and apply
the genetic algorithm to exploring the space efficiently.

The genetic algorithm involves constructing an initial
population of individuals, and performing genetic opera-
tions to allow them to evolve in an iterative process. We
propose a novel encoding scheme to represent each network
structure as a fixed-length binary string, and define several
standard genetic operations, i.e., selection, mutation and
crossover, so that new competitive individuals are generated
from the previous generation and weak ones are eliminated.
The quality (fitness function) of each individual is deter-
mined by its recognition accuracy on a reference dataset.
To this end, we perform a complete training process for
each individual (i.e., network structure) which is inde-
pendent to the genetic algorithm. The genetic process
comes to an end after a fixed number of generations.

It is worth emphasizing that the genetic algorithm is
computationally expensive, as we need to undergo a com-
plete network training process for each generated individ-
ual. We adopt the strategy to run the genetic process on a
small dataset (CIFAR10), in which we observe the ability
of the genetic algorithm to find effective network struc-
tures, and then transfer the learned top-ranked structures
to perform large-scale visual recognition. The learned
structures, most of which have been less studied before,
often perform better than the manually designed ones in
either small-scale or large-scale experiments.

The remainder of this paper is organized as follows.
Section [2] briefly introduces related work. Section [3] il-
lustrates the way of using the genetic algorithm to design
network structures. Experiments are shown in Section [
and conclusions are drawn in Section[3
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2. Related Work
2.1. Convolutional Neural Networks

Recent years have witnessed a revolution in visual recog-
nition. Conventional classification tasks [20][8] are extend-
ed into large-scale environments [5][44]. With the avail-
ability of powerful computational resources (e.g., GPU),
the Convolutional Neural Networks (CNNs) [19]][32]] have
shown superior performance over the conventional Bag-of-
Visual-Words [3]][38]][29] and compositional models [9].

CNN is a hierarchical model for large-scale visual recog-
nition. It is based on the observation that a network with
enough neurons is able to fit any complicated data distribu-
tion. In past years, neural networks were shown effective
for simple recognition tasks [22]]. More recently, the avail-
ability of large-scale training data (e.g., ImageNet [5]) and
powerful GPUs make it possible to train deep CNNs [19]
which significantly outperform BoVW models. A CNN
is composed of several stacked layers. In each of them,
responses from the previous layer are convoluted with a
filter bank and activated by a differentiable non-linearity.
Hence, a CNN can be considered as a composite function,
which is trained by back-propagating error signals defined
by the difference between the supervision and prediction
at the top layer. Recently, several efficient methods were
proposed to help CNNs converge faster and prevent over-
fitting, such as ReLU activation [19]], batch normaliza-
tion [[17], Dropout [34] and DisturbLabel [40].

Designing powerful CNN structures is an intriguing
problem. It is believed that deeper networks produce better
recognition results [32]][36]. But also, adding highway
information has been verified to be useful [[13]][42]. We also
find some work which uses stochastic [16] or dense [15]
structures. All these network structures are deterministic
(although a stochastic strategy is used in [16] to accelerate
training and prevent over-fitting), which limits the flexibility
of the models and thus inspires us to automatically learn
network structures.

2.2. Genetic Algorithm

The genetic algorithm is a metaheuristic inspired by the
natural selection process. It is commonly used to generate
high-quality solutions to optimization and search problem-
s [14][30][2](4]] by performing bio-inspired operators such
as mutation, crossover and selection.

A standard genetic algorithm requires two prerequisites,
i.e., a genetic representation of the solution domain, and a
fitness function to evaluate each individual. A typical exam-
ple is the travelling-salesman problem (TSP) [L1]], a famous
NP-complete problem which aims at finding the optimal
Hamiltonian path in a graph of N nodes. In this situation,
each feasible solution is represented as a permutation of
{1,2,..., N}, and the fitness function is the total distance

of the path. We will show in Section [3.1] that deep neural
networks can be encoded into a binary string.

The core idea of the genetic algorithm is to allow in-
dividuals to evolve via some genetic operations. Popular
operations include selection, mutation, crossover, etc. The
selection process allows us to preserve strong individuals
while eliminating weak ones. The ways of performing
mutation and crossover are often based on the properties of
the specific problem. For example, in the TSP problem with
the permutation-based representation, a possible mutation
operation is to change the order of two visited nodes.

Researches are conducted to improve the performance of
genetic algorithms, including performing local search [37]]
and generating random keys [33]]. In our work, we show that
the vanilla genetic algorithm works well enough without
these tricks. We also note that some previous work applied
the genetic algorithm to learning the structure [35[][1] or
weights [41][l6] of artificial neural networks, but our work
aims at learning the architecture of modern CNNs, which is
not studied in prior researches.

3. Our Approach

This section presents the genetic algorithm for learning
competitive network structures. First, we propose a way
of encoding a network structure into a fixed-length binary
string. Next, genetic operations are defined, including se-
lection, mutation and crossover, so that we can explore the
search space efficiently and find high-quality solutions.

Throughout this work, the genetic algorithm is only
used to propose new network structures, the param-
eters and recognition accuracy of each individual are
obtained via a standalone training-from-scratch.

3.1. Binary Network Representation

We provide a binary string representation for a network
structure in a constrained case. We consider those net-
work structures [32][13] which can be organized in several
stages. In each stage, the geometric dimensions (width,
height and depth) of the data cube remain unchanged.
Neighboring stages are connected via a spatial pooling op-
eration, which may change the spatial resolution. All the
convolutional operations within one stage have the same
number of filters, a.k.a. data channels.

We follow this idea to define a family of networks which
can be encoded into fixed-length binary strings. A network
is composed of S stages, and the s-th stage, s = 1,2,..., 5,
contains K, nodes, denoted by v, ., ks = 1,2,..., K,.
The nodes within each stage are ordered, and we only
allow connections from a lower-numbered node to a higher-
numbered node. Each node corresponds to a convolutional
operation, which takes place after element-wise summing
up all its input nodes (lower-numbered nodes that are con-
nected to it). After convolution, batch normalization [[17]]
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Figure 1. A two-stage network (S = 2, (K1, K2) = (4,5)) and the encoded binary string (best viewed in color). The default input and
output nodes (see Section[3.1.1)) and the connections related to these nodes are marked in red and green, respectively. We only encode the
connections between the ordinary codes (regions with light blue background). Within each stage, the number of convolutional filters is
a constant (32 in Stage 1, 64 in Stage 2), and the spatial resolution remains unchanged (32 x 32 in Stage 1, 16 x 16 in Stage 2). Each
pooling layer down-samples the data by a factor of 2. ReLU and batch normalization are added after each convolution.

and ReLLU [[19] are followed, which are verified efficient in
training very deep neural networks [[13]. We do not encode
the fully-connected layers of a network.

In each stage, we use 1+2+4...+(K;,—1) =
1K, (K, — 1) bits to encode the inter-node connections.
The first bit represents the connection between (vs,l, 11572),
then the following two bits represent the connection be-
tween (vs,1,vs3) and (vs2,vs,3), efc. This process con-
tinues until the last Ky — 1 bits are used to represent the
connection between v 1, Vg2, - - ., Vs, k,—1 and v, g, . For
1 <i < j < K, if the bit corresponding to (vs ;, vs ;) is 1,
there is an edge connecting v, ; and vs j, i.e., v ; takes the
output of v, ; as a part of the element-wise summation, and
vice versa. In summary, an S-stage network with K nodes
at the s-th stage is encoded into a binary string of length
L=1iy K, (K,—1). Figureillustrates an example of
encoding a 2-stage network.

We note that the number of possible network structures
(2%) may be very large. In the CIFAR10 experiments (see
Section, we have S = 3 and (K1, K, K3) = (3,4,5),
therefore L = 19 and 2% = 524,288. It is computationally
intractable to enumerate all these structures and find the
optimal one(s). To this end, we use the genetic algorithm
to efficiently explore good candidates in this large space.

3.1.1 Technical Details

To make every binary string valid, we define two default
nodes in each stage. The default input node, denoted as v; g,
receives data from the previous stage, performs convolution,

and sends its output to every node without a predecessor,
e.g., Us,1. The default output node, denoted as v, g 11,
receives data from all nodes without a successor, e.g., v, K,
sums up them, performs convolution, and sends its output
to the pooling layer. Note that the connections between the
ordinary nodes and the default nodes are not encoded.

There are two special cases. First, if an ordinary node
Vs,; 18 isolated (i.e., it is not connected to any other ordinary
nodes v j, © # j), then it is simply ignored, i.e., it is not
connected to the default input node nor the default output
node (see the B2 node in Figure [I). This is to guarantee
that a stage with more nodes can simulate all structures
represented by a stage with fewer nodes. Second, if there
are no connections at a stage, i.e., all bits in the binary string
are 0, then the convolutional operation is performed only
once, not twice (one performed by the default input node
and the other by the default output node).

3.1.2 Examples and Limitations

Many popular network structures can be represented us-
ing the proposed encoding scheme. Examples include
VGGNet [32], ResNet [13]], and a modified variant of
DenseNet [15], which are illustrated in Figure

Currently, the encoded structures only involve convolu-
tional and pooling operations, which makes it impossible
to generate some tricky network modules such as Max-
out [10]. Also, the convolutional kernel size and the number
of channels are fixed within each stage, which limits the
network from incorporating multi-scale information as in
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Figure 2. The basic building blocks of VGGNet [32], ResNet [13]
and a variant of DenseNet [15] can be encoded as binary strings
defined in Section[3.1]

the inception module [36]]. We note that all automatically
learned network structures have such limitations [45]]. Our
approach can be easily modified to include more types of
layers and more flexible inter-layer connections. As shown
in experiments, we can achieve competitive recognition
performance using merely these basic building blocks.

As shown in a recent published work using reinforce-
ment learning to explore neural architecture [45]], this type
of methods often require heavy computation to traverse the
huge solution space. We apply a strategy to learn network
architectures on a small dataset, and transfer the top-ranked
structures to large-scale visual recognition tasks.

3.2. Genetic Operations

The flowchart of the genetic process is shown in Al-
gorithm [I] It starts with an initialized population of N
randomized individuals. Then, we perform 7' rounds, or
T generations, each of which consists of three operations,
i.e., selection, mutation and crossover. The fitness function
of each individual is evaluated via training-from-scratch on
the reference dataset.

3.2.1 Initialization

We initialize a set of randomized models {Mo,n}le- Each

model is a binary string with L bits, i.e., Mg, : bg, €
{0,1}". Each bit in each individual is independently sam-
pled from a Bernoulli distribution: bf,,, ~ B(0.5), | =
1,2,...,L. After this, we evaluate each individual (see
Section [3.2.4) to obtain their fitness function values.

As we shall see in Section [d.1.2] different strategies of
initialization do not impact the genetic performance too
much. Even starting with a naive initialization (all individ-

uals are all-zero strings), the genetic process can discover
quite competitive structures via crossover and mutation.

3.2.2 Selection

The selection process is performed at the beginning of every
generation. Before the ¢-th generation, the n-th individual
M1, is assigned a fitness function, which is defined as
the recognition rate 7,1 ,, obtained in the previous genera-
tion or initialization. 7;_1 ,, directly impacts the probability
that M;_; ,, survives the selection process.

We perform a Russian roulette process to determine
which individuals survive. Each individual in the next gen-
eration M ,, is determined independently by a non-uniform
sampling over the set {Mt_lﬂ}ivzl. The probability of
sampling M;_; ,, is proportional to r;_1 ,, — 7¢_1,0, Where
Ti_10 = minﬁ)’:1 {rt—1,n} is the minimal fitness function
value in the previous generation. This means that the best
individual has the largest probability of being selected, and
the worst one is always eliminated. As the number of
individuals N remains unchanged, each individual in the
previous generation may be selected multiple times.

3.2.3 Mutation and Crossover

The mutation process of an individual M, ,, involves flip-
ping each bit independently with a probability ¢y In
practice, gy is often small, e.g., 0.05, so that mutation is
not likely to change one individual too much. This is to
preserve the good properties of a survived individual while
providing an opportunity of trying out new possibilities.

The crossover process involves changing two individuals
simultaneously. Instead of considering each bit individual-
ly, the basic unit in crossover is a stage, which is motivated
by the need to retain the local structures within each stage.
Similar to mutation, each pair of corresponding stages are
exchanged with a small probability gc.

Both mutation and crossover are performed in an overall
flowchart (see Algorithm[T). The probabilities of mutation
and crossover for each individual (or pair) are py; and pc,
respectively. Of course, there are many different ways of
performing mutation and crossover. In experiments, our
simple choice leads to competitive performance.

3.2.4 Evaluation

After the above processes, each individual M ,, is evaluated
to obtain the fitness function value. A reference dataset D
is pre-defined, and we individually train each model M, ,,
from scratch. If M, is previously evaluated, we simply
evaluate it once again and compute the average accuracy
over all its occurrences. This strategy, at least to some
extent, alleviates the instability caused by the randomness
in the training process.
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Algorithm 1 The Genetic Process for Network Design

1: Input: the reference dataset D, the number of generations 7°, the number of individuals in each generation N, the
mutation and crossover probabilities py; and pc, the mutation parameter gy, and the crossover parameter gc.

: Initialization: generating a set of randomized individuals {M ,, }

cfort=1,2,...,T do

. . . N . .
Selection: producing a new generation {Mgm}n: , with a Russian roulette process on {M;_1,,}

Mutation: for each non-crossover individual {M , }

Evaluation: computing the recognition accuracy for each new individual {M, , }

: end for

N

2

3

4

5: Crossover: for each pair {(M 2,1, an)}gi/lzj’ performing crossover with probability pc and parameter gc;
6 n=1’
;

8

9

N

n—1-> and computing their recognition accuracies;

N
n=1’

doing mutation with probability py; and parameter gy
N
n=1’

: Output: a set of individuals in the final generation {MT,n}f:]:l with their recognition accuracies.

4. Experiments

Like other methods to learn network structures [45]], our
genetic algorithm requires a very large amount of compu-
tational resources, which makes it intractable to be directly
evaluated a large-scale dataset such as ILSVRC2012 [31].
Our strategy is to explore promising network structures on
a small dataset, namely CIFAR10 [18]), then transfer these
structures to the large-scale environment.

4.1. CIFAR10 Experiments

The CIFAR10 dataset [[18] contains 10 basic categories
of 32 x 32 RGB images. There are 50,000 images for
training, and 10,000 images for testing. To avoid seeing
the testing data in the genetic process, we leave out 10,000
images from the training set for validation.

4.1.1 Settings and Results

The basic configuration follows a revised version of
LeNet [21], and the network structure abbreviated as:
C3(P1)R@8-MP3(S2)-C3(P1)@8-MP3(S2) -
C3(P1)R16-MP3(S2)-FC32-D0.5-FC10.
Here, C3 (P1) @8 is a convolutional layer with a kernel size
of 3 x 3, a default spatial stride of 1, a padding width of 1
and the number of kernels of 8. MP3 (S2) is a max-pooling
layer with a kernel size of 3 and a spatial stride of 2, FC32
is a fully-connected layer with 32 outputs, and D0 .5 is a
Dropout layer with a drop ratio of 0.5. Please note that
we significantly reduce the number of filters at each stage
to accelerate the training process. We apply 120 training
epochs with a learning rate of 10~2, followed by 60 epochs
with a learning rate of 1073, 40 epochs with a learning rate
of 10~* and another 20 epochs with a learning rate of 1075,
We keep the fully-connected part of the above network
unchanged, and set S = 3 and (K, K2, K3) = (3,4,5).
Within each stage, the first convolutional layer remains the
same as in the original LeNet, and other convolutional
layers take the kernel size 3 x 3 and the same channel

number. The length L of each binary string is 19, which
means that there are 219 = 524,288 possible individuals.

We create an initial population with N = 20 individuals,
and run the genetic process for 7' = 50 rounds. Other
parameters are set to be py = 0.8, gv = 0.05, pc = 0.2
and gc = 0.2. The mutation and crossover parameters gy
and gc are set to be smaller because the strings become
longer. The maximal number of explored individuals is
20 x (50+1) = 1,020 <« 524,288. Training each indi-
vidual takes an average of 0.4 hour, and the entire genetic
process takes about 17 GPU-days. 10 GPUs are used, and
each of them trains 2 networks in each generation. As a
result, we can finish the entire genetic process in 2 days.
We note that [45] trained 10x more networks and each one
is much more complicated, resulting in at least 100x more
computational overheads than our work.

We perform two individual genetic processes. The re-
sults of one of them are summarized in Table[I] With the ge-
netic operations, we can find competitive network structures
with improved recognition performance. Although over a
short period the best individual may not be updated, the
average and medium accuracies generally get higher from
generation to generation. This is very important, because
it guarantees the genetic algorithm improves the overall
quality of the individuals. According to our diagnosis in
Section [4.1.3] this facilitates strong individuals to be creat-
ed, since the quality of a new individual is positively cor-
related to the quality of its parent(s). After 50 generations,
the recognition error rate of the best individual drops from
24.04% to 22.81%. We also visualize the best structures
found by these two processes in Figure 3]

4.1.2 Initialization Issues

We observe the impact of different initializations. For this,
we start a naive population with N = 20 all-zero individ-
uals, and use the same parameters for a complete genetic
process. Results are shown in Figure 3] We find that,
although the all-zero string corresponds to a very simple and
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Gen || Max % | Min % | Avg % | Med % | Std-D Best Network Structure

00 75.96 71.81 74.39 74.53 091 | 0-0110-01-11110-11-010-0111
01 75.96 73.93 75.01 75.17 0.57 | 0-0110-01-11110-11-010-0111
02 75.96 73.95 | 75.32 75.48 0.57 | 0-0110-01-11110-11-010-0111
03 76.06 73.47 75.37 75.62 0.70 | 1-01/0-01-11110-11-010-0111
05 76.24 72.60 | 75.32 75.65 0.89 | 1-0110-01-11110-11-010-0011
08 76.59 74.75 75.77 75.86 053 | 1-0110-01-11110-11-010-1011
10 76.72 73.92 | 75.68 75.80 0.88 | 1-0110-01-110/0-11-111-0001
20 76.83 74.91 76.45 76.79 061 | 1-01]11-01-110|0-11-111-0001
30 76.95 74.38 | 76.42 76.53 0.46 | 1-0110-01-10010-11-111-0001
50 7719 | 75.34 | 76.58 76.81 0.55 | 1-0110-01-10010-11-101-0001

Table 1.

Recognition accuracy (%) on the CIFAR10 testing set. The zeroth generation is the initial population. We set S = 3 and

(K1, K2, K3) = (3,4,5). The best individual in each generation is also shown in binary codes.
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Figure 3. The average recognition accuracy over all individuals
with respect to the generation number. The bars indicate the
highest and lowest accuracies in the corresponding generation.

less competitive network structure, the genetic algorithm
is able to find strong individuals after several generations.
This naive initialization achieves the initial performance of
randomized individuals with about 5 generations. After
about 30 generations, there is almost no difference, by
statistics, between these two populations.

4.1.3 Reasonability and Efficiency

We perform diagnostic experiments to verify the hypothe-
sis, that a better individual is more likely to generate a good
individual via mutation or crossover. For this, we randomly
select several occurrences of mutation and crossover in the
genetic process, and observe the relationship between an
individual and its parent(s). Figure f] shows the results.
We argue that the genetic operations tend to preserve the
excellent “genes” from the parent(s), making it possible for
the population to evolve after some generations.

We also investigate the efficiency of the genetic algorith-
m. To this respect, we randomly generate 20 x (50 + 1) =
1020 network architectures and evaluate each of them. The
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Figure 4. The relationship in accuracy between the parent(s) and
the child(ren) (best viewed in color). A dot is bigger and close
to red if the recognition rate is higher, otherwise it is smaller and
close to blue. The dots on the horizontal axis are from mutation
operations, while others are from crossover operations.

best individual in these 1020 candidates reports 76.94%
accuracy, which is lower than the number (77.19%) ob-
tained after the entire genetic process. From Table |1} we
find that after 30 rounds, the genetic process is able to find
an individual generating 76.95% accuracy, which suggests
that the genetic process is much more efficient than random
search in the large solution space.

4.1.4 Parameters and Complexity

We note that the number of learnable weights of a network
is related to the number of non-isolated nodes, since each of
them contributes the same number of weights regardless of
the number of lower-numbered nodes that are connected to
it. In experiments, isolation rarely happens, and thus all the
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individuals have a very similar number of parameters.

The number of 1-bits in network encoding (inter-layer
connections) is the main factor of network complexity.
However, we point out that a network with more 1-bits does
not mean to dominate another with fewer 1-bits. As a direct
evidence, we investigate the individual with all bits set to
be 1. which leads to a network in which any two layers
within the same stage are connected. This network produces
a 76.84% recognition rate, which is significantly lower than
the number (77.19%) reported in Table [I} Considering that
the densely-connected network requires heavier computa-
tional overheads, we conclude that the structures learned by
the genetic algorithm are more effective and efficient than
using dense connections.

4.1.5 Visualization

In Figure 5] we visualize the the network structures learned
from two individual genetic processes. The structures
learned by the genetic algorithm are somewhat different
from the manually designed ones, although some manual-
ly designed local structures are observed, like the chain-
shaped networks, multi-path networks and highway net-
works. We emphasize that these two networks, though
obtained by independent genetic processes, are somewhat
similar, which demonstrates that the genetic process gener-
ally converges to similar network structures.

4.2. Small-Scale Transfer Experiments

We apply the networks learned from the CIFAR10 ex-
periments to more small-scale datasets. We test three
datasets, i.e., CIFAR10, CIFAR100 and SVHN. CI-
FAR100 is an extension to CIFAR10 which contains 100
categories at a finer level. It has the same numbers of
training and testing images as CIFAR10, and these images
are also uniformly distributed over 100 categories.

SVHN (Street View House Numbers) [28] is a large
collection of 32 x 32 RGB images, i.e., 73,257 training
samples, 26,032 testing samples, and 531,131 extra train-
ing samples. We preprocess the data as in the previous
work [28], i.e., selecting 400 samples per category from the
training set as well as 200 samples per category from the
extra set, using these 6,000 images for validation, and the
remaining 598,388 images as training samples. We also use
local contrast normalization (LCN) for preprocessing [[10].

We evaluate the best network structure in each genera-
tion of the genetic process. We resume using a large number
of filters at each stage, i.e., the three stages and the first
fully-connected layer are equipped with 64, 128, 256 and
1024 filters, respectively. The training strategy, include the
numbers of epochs and learning rates, remains the same as
in the previous experiments.

We compare our results with some state-of-the-art meth-
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Figure 5. Two network structures learned from the two inde-
pendent genetic processes on the CIFAR10 dataset (best viewed
in color). These are three-stage networks (S = 3) with
(K1, K2, K3) = (3,4,5).

ods in Table [2] First we note that the recognition accu-
racy goes up through the genetic process, which verifies
the transfer ability of the learned network structures. Al-
though these accuracies are lower than some state-of-the-
art candidates [42]|[[16][[15], we note that these networks are
much deeper (e.g., 40-100 layers, compared to the 17-layer
GeNet #1 and #2). For fair comparison, we start from the
40-layer wide residual network [42]. We create a population
of 10 identical individuals, and perform genetic operation
for 5 rounds. Each of the initialized individuals is a variant
of the 40-layer network with a few bits randomly reversed.
Using 10 GPUs to train these networks simultaneously, this
process takes around 10 days. As a result, we find a better
individual different from the original network structure, and
the error rates on CIFAR10, CIFAR100 and SVHN are
5.39%, 25.12% and 1.71%, respectively. This provides
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H SVHN | CF10 | CF100
Zeiler et.al [43]] 2.80 15.13 42.51
Goodfellow et.al [[10] 2.47 9.38 38.57
Lin et.al [26] 2.35 8.81 35.68
Lee et.al [24] 1.92 7.97 34.57
Liang et.al [23]] 1.77 7.09 31.75
Lee et.al [23] 1.69 6.05 32.37
Zagoruyko et.al [42] 1.77 5.54 25.52
Xie et.al [39] 1.67 5.31 25.01
Huang et.al [16]] 1.75 5.25 24.98
Huang et.al [15]] 1.59 3.74 | 19.25
GeNet after G-00 2.25 8.18 31.46
GeNet after G-05 2.15 7.67 30.17
GeNet after G-20 2.05 7.36 29.63
GeNet #1 (G-50) 1.99 7.19 | 29.03
GeNet #2 (G-50) 1.97 7.10 29.05

| GeNet from WRN [42] | 1.71 | 539 ] 2512 |

Table 2. Comparison of the recognition error rate (%) with the
state-of-the-arts. We apply data augmentation on all these datasets.
GeNet #1 and GeNet #2 are the structures shown in Figure 5]

an alternative strategy to generate better architectures from
existing manually designed ones.

4.3. Large-Scale Transfer Experiments

We evaluate the learned network structures on the
ILSVRC2012 classification task [31]. This is a subset of
the ImageNet database [5] which contains 1,000 object
categories. The training set, validation set and testing set
contain 1.3M, 50K and 150K images, respectively. The
input images are of 224 x 224 x 3 pixels. We first apply
the first two stages in the VGGNet (4 convolutional layers
and two pooling layers) to change the data dimension to
56 x 56 x 128. Then, we apply the two networks shown in
Figure[5] and adjust the numbers of filters at three stages to
256, 512 and 512 (following VGGNet), respectively. After
these stages, we obtain a 7 x 7 x 512 data cube. We preserve
the fully-connected layers in VGGNet with the dropout rate
0.5. We apply the training strategy as in VGGNet. Training
each network takes around 20 GPU-days.

Results are summarized in Table We can see that,
in general, structures learned from a small dataset (CI-
FAR10) can be transferred to large-scale visual recogni-
tion (ILSVRC2012). Our model achieves better perfor-
mance than VGGNet-16 and VGGNet-19, because the o-
riginal chain-styled stages are replaced by the automatically
learned structures which are verified more effective.

Finally, we evaluate the transfer ability of the GeNets
on the Caltech256 dataset [[12]. We use VGGNet-16,
VGGNet-19 and GeNets to extract 4,096-dimensional fea-
tures on the first fully-connected layer, perform ReLU ac-

Top-1 | Top-5 | # Paras
AlexNet [19] 42.6 19.6 62M
GoogleNet [36] 34.2 12.9 13M

VGGNet-16 [32] 28.5 9.9 138M
VGGNet-19 [32] 28.7 9.9 144M
GeNet #1 28.12 9.95 156M
GeNet #2 27.87 | 9.74 156M
Table 3. Top-1 and top-5 recognition error rates (%) on

the ILSVRC2012 dataset. For all competitors, we report the
single-model performance without using any complicated data
augmentation in festing. These numbers are copied from this page:
http://www.vlfeat.org/matconvnet/pretrained/.
GeNet #1 and GeNet #2 are the structures shown in Figure 5]

tivation [27]] followed by square-root normalization and /5
normalization, and feed the feature vectors to a linear SVM
classifier [7]. With 60 training samples per category, the
classification accuracy with VGGNet-16 and VGGNet-19
features are 82.69% and 83.51%, respectively. The GeNets
#1 and #2 produce 83.59% and 83.78% accuracies, which
is slightly higher. This verifies that the benefits of GeNets
are generally transferrable to other visual recognition tasks.

5. Conclusions

This paper applies the genetic algorithm to automatically
learning the structure of deep convolutional neural network-
s. Our main idea is to use an encoding scheme to represent
each network structure as a fixed-length binary string, and
evaluate each generated individual via a standalone training
process on a reference dataset. Based on this framework,
we design some genetic operations, such as mutation and
crossover, to explore the search space efficiently. We per-
form the genetic algorithm on a small reference dataset
(CIFAR10), and find that the generated structures are able
to transfer to the ILSVRC2012 dataset and extracting deep
features for other visual recognition tasks.

Despite the interesting results we have obtained, our
algorithm suffers from several drawbacks. First, a large
fraction of network structures are still unexplored, including
some novel modules like Maxout [10], channel concatena-
tion [36][13]], and introducing multi-scale into convolution-
s [36]. In addition, the recurrent structure is also worth
exploring [45]. Second, in the current work, the genetic
algorithm is only used to explore the network structure,
whereas the network training process is performed separate-
ly. It would be very interesting to incorporate the genetic
algorithm to training the network structure and weights
simultaneously. These directions are left for future work.
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