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(a) Input (b) SR [18] (c) SR [18]+Deblur [33] (d) Deblur [33] (e) Deblur [33]+SR [18] (f) Ours (g) GT

Figure 1. Low-resolution blurry images (a) are challenging for the state-of-the-art super-resolution and deblurring methods ((b) and (d)).

Sequentially applying super-resolution and deblurring methods further exacerbates the artifacts ((c) and (e)). Our method (f) learns to

reconstruct realistic results with clear structures and fine details. The low-resolution images ((a) and (d)) are resized for visualization.

Abstract

We present an algorithm to directly restore a clear high-

resolution image from a blurry low-resolution input. This

problem is highly ill-posed and the basic assumptions for

existing super-resolution methods (requiring clear input)

and deblurring methods (requiring high-resolution input)

no longer hold. We focus on face and text images and

adopt a generative adversarial network (GAN) to learn a

category-specific prior to solve this problem. However, the

basic GAN formulation does not generate realistic high-

resolution images. In this work, we introduce novel train-

ing losses that help recover fine details. We also present a

multi-class GAN that can process multi-class image restora-

tion tasks, i.e., face and text images, using a single gen-

erator network. Extensive experiments demonstrate that

our method performs favorably against the state-of-the-art

methods on both synthetic and real-world images at a lower

computational cost.

1. Introduction

We address the problem of jointly super-resolving and

deblurring low-resolution blurry images. Such images often

arise when the objects of interest are far away from cameras

and under fast motion, e.g. in surveillance and sports videos.

Reconstructing high-resolution clear images from the de-

graded input not only generates visually pleasing images

but also helps other vision tasks, such as recognition [51].

This problem is highly ill-posed and causes significant

challenges for state-of-the-art super-resolution and deblur-

ring methods by breaking the basic assumptions on the in-

put. On one hand, super-resolution methods usually assume

the blur kernel is known or of simple form, such as Gaus-

sian. When the low-resolution input undergoes complex

motion blur, existing super-resolution methods often gener-

ate results with large structural distortions, as shown in Fig-

ure 1(b). On the other hand, blind deblurring methods of-

ten assume that the input is of high resolution and contains

salient edges that can be extracted to recover the unknown

blur kernel. When the input lacks clear details, the recov-

ered blur kernel and image are not accurate (Figure 1(d)). If

we apply super-resolution and deblurring methods sequen-

tially, the artifacts are exacerbated, as shown in Figures 1(c)

and (e). A successful solution to this problem should simul-

taneously deblur and super-resolve the low-quality input.

Toward this end, we propose to focus on two impor-

tant classes of images, i.e., faces and text, and learn strong

category-specific priors to solve this problem. Specifically,

we adopt a generative adversarial network (GAN) [13],

which consists of generator and discriminator sub-networks

that compete with each other. We find that the discrimina-

tive network is trained to distinguish fake and real images,

thereby learning a semantic prior. This is in sharp contrast

to empirical priors [9, 20, 23, 32, 33, 45] that are developed

using the statistics of natural images. These statistical pri-
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ors become less discriminative when the structures of the

degraded images are similar to those of the clear images.

Although the basic GAN formulation is effective at cap-

turing semantic information, the recovered images usually

contain content and structure errors. To address this issue,

we introduce a novel feature matching loss that enforces

the output of the generative network to have similar inter-

mediate feature representations with the ground truth train-

ing data. Our feature matching loss helps recover realistic

details. Furthermore, we develop a multi-class GAN for-

mulation that can learn to super-resolve blurry face and text

images using one single generator network.

In this paper, we make the following contributions.

First, we propose a new method to simultaneously recon-

struct a clear high-resolution image from a blurry low-

resolution input. Second, we develop a discriminative im-

age prior based on GAN that semantically favors clear high-

resolution images over blurry low-resolution ones. Further-

more, we present a new feature matching method to further

retain both the fidelity and sharpness of the reconstructed

high-resolution images. Finally, we design a multi-class

GAN method that handles both text and face images us-

ing one single generator network. We demonstrate that

our method performs favorably against the state-of-the-art

super-resolution and deblurring methods on both synthetic

and real face and text images.

2. Related Work

Image deblurring. Most existing deblurring methods rely

heavily on prior models to solve the ill-posed problem.

A widely-used prior assumes that gradients of natural im-

ages have a heavy-tailed distribution [9, 23, 38]. However,

Levin et al. [24] show that these priors tend to favor blurry

images over the original ones when the blur kernel and

clear image are jointly solved using the maximum a poste-

rior (MAP) framework. Therefore, heuristic edge selection

steps are often adopted [5, 44] for MAP estimation.

Several recent methods introduce new image priors that

favor clear images over blurred ones in the MAP frame-

work [20, 45, 30, 33, 46]. These methods either explicitly or

implicitly recover salient edges to estimate the blur kernel,

which is complex and time-consuming. More importantly,

existing methods do not perform well when low-resolution

blurry images do not contain salient edges.

Deep learning achieves promising performance on many

applications [21, 52, 1, 14]. Recently, neural networks have

also been used for blind image deblurring [39, 3, 37]. How-

ever, these deblurring methods still involve explicit ker-

nel estimation. If the estimated kernels are inaccurate, the

deblurred images often have significant ringing artifacts.

Hradiš et al. [15] develop a deep convolutional neural net-

work (CNN) model for text image reconstruction, which

does not involve blur kernel estimation. However, their net-

work has been designed for deblurring and cannot be easily

extended for joint super-resolution and deblurring.

Super-resolution. Existing super-resolution methods can

be broadly categorized as exemplar-based [10, 4, 49, 41,

47] or regression-based [48, 40]. One typical exemplar-

based method uses sparse coding [49], which tends to

introduce unrealistic details in the reconstructed images.

Regression-based methods typically learn the priors from

patches [48, 40]. However, the reconstructed results may be

over-smoothed. Recently, CNNs have also been applied to

super-resolution [7, 43, 8, 18] and obtain promising results

when the downsampling kernel is known.

Joint super-resolution and deblurring. This problem

has received considerably less attention in the literature

although real-world images are often low-resolution with

significant blur. Michaeli and Irani [29] propose a blind

super-resolution framework that can simultaneously esti-

mate the downsampling blur kernels. Liu and Sun [25]

develop a video super-resolution method that jointly esti-

mates the high-resolution image, blur kernel, noise level,

and motion. However, these methods do not perform well

on low-resolution images with complex motion blurs. Blur

kernel estimation becomes extremely challenging and small

errors in the estimated kernels are exacerbated by super-

resolution. By focusing on images of a certain class (i.e.,

faces and text) and learning category-specific priors, we can

bypass the kernel estimation and obtain superior results.

Generative adversarial networks. Goodfellow et al. [13]

introduce the GAN framework for training generative mod-

els that can generate realistic-looking images from random

noise. GANs simultaneously train generator and discrim-

inator sub-networks that compete with each other, making

the training process quite challenging. Radford et al. [34]

use CNNs for both the generator and discriminator to facil-

itate training. Because strong image priors can be learned,

GANs have been applied to image enhancement tasks such

as face hallucination [50] and super-resolution [22]. In this

work, we extend GANs to the more challenging task of

super-resolving low-resolution, severely blurred face and

text images.

3. Proposed Algorithm

We first review the basic formulation of GAN, and then

introduce the proposed algorithm.

3.1. Overview of GAN

The GAN learns a generative model via an adversarial

process. It simultaneously trains a generator network, G,

and a discriminator network, D. The training process al-

ternates optimizing the generator and discriminator, which

compete with each other. Given D, the generator learns to
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Table 1. Architecture of the generator and discriminator. “conv” denotes a convolutional layer, “fc” denotes a fully connected layer,

“uconv” denotes a fractionally-strided convolutional layer, and 2× denotes upsampling by a factor of 2.

Generator Discriminator

Layer uconv conv uconv conv conv conv conv conv conv conv conv conv conv conv conv conv fc

Kernel Number 64 64 64 64 64 64 64 64 64 64 64 3 64 64 64 64 1

Kernel Size 6 5 6 5 5 5 5 5 5 5 5 5 4 4 4 4 -

Stride 2× 1 2× 1 1 1 1 1 1 1 1 1 2 2 2 2 -

generate samples that can fool the discriminator; given G,

the discriminator learns to distinguish real data and samples

from the generator. Mathematically, the loss function is:

max
θ

min
ω

Ex∼pdata(x)
[logDθ(x)]+Ez∼pz(z)[log(1−Dθ(Gω(z)))], (1)

where z is random noise; x denotes the real data; ω and θ
are parameters of G and D respectively. The discriminator

is trained to assign a large probability to real data (first term)

but a small one to generated samples by the generator.

The discriminator can be regarded as a semantic prior

that can classify clear images (data) from blurry images

(samples). Note that the priors used in the MAP-based

image deblurring methods, such as dark channel [33],

text image [32], and normalized sparsity [20], all exploit

some hand-crafted features to distinguish clear images from

blurry ones. This observation motivates us to use GAN to

learn the discriminator and the features using the following

model.

3.2. Network Architecture

Our generator takes low-resolution blurry images as in-

puts, instead of random noise, and generates high-resolution

clear images. The discriminator distinguishes images syn-

thesized by the generator from ground truth clear images.

Generator network. As shown in Table 1, we use a deep

CNN architecture that has been shown effective for image

deblurring by Hradiš et al. [15]. In contrast to their network,

our generator contains upsampling layers, i.e., uconv in Ta-

ble 1. These two upsampling layers are fractionally-strided

convolutional layers [34], which are also called deconvolu-

tion layers. Each deconvolution layer consists of learned

kernels that perform jointly to upsample images better than

a single bicubic kernel [8]. Our generator first upsamples

low-resolution blurry images by the deconvolution layers

and then performs convolutions to generate clear images.

Similar to the method by Radford et al. [34], we use batch

normalization [16] and Rectified Linear Unit (ReLU) ac-

tivations after each layer. The exception is the last layer,

which is followed by a hyper-tangent function.

Discriminator network. Our discriminator is a 5-layer

CNN network, as shown in Table 1. The input is an image

and the output is the probability of the input being a clear

image. We use LeakyReLU [27] as the activation function,

except for the last layer which uses a sigmoid function [34].

We also use batch normalization [16] after each convolution

layer except for the first one.

3.3. Loss Function

A straightforward way for training is to use the original

GAN formulation in (1). Let {xi, i = 1, 2, ..., N} denote

the high-resolution clear images, and {yi, i = 1, 2, ..., N}
represent the corresponding low-resolution blurry images.

The training loss for the generator is

min
ω

1

N

N∑

i=1

log(1−Dθ(Gω(y
i))). (2)

The generated images based on this training loss appear

realistic at first glance, e.g., the face image in Figure 2(b).

However, upon close inspection the generated images are of

low quality, especially around the face contours and eyes.

As these details are not important features for the discrim-

inator, the generator can still fool the discriminator when

making mistakes in these regions. To encourage the genera-

tor to construct high-quality results, we propose adding the

following terms to the loss function.

Pixel-wise loss. A natural solution is to enforce the output

of the generator to be close to the ground truth,

Lc(ω) =
1

N

N∑

i=1

‖Gω(y
i)− xi‖2, (3)

which penalizes the difference in pixel values between the

generated output and ground truth. The loss function in (3)

leads to visually more pleasing images, as shown in Fig-

ure 2(c). However, the restored images are less sharp.

We can combine semantic (2) and pixel-wise (3) losses

min
ω

1

N

N∑

i=1

‖Gω(y
i)−xi‖2+λ log(1−Dθ(Gω(y

i))), (4)

where the scalar λ is a trade-off weight. The restored im-

ages look more realistic but still contain some artifacts in

smooth regions (Figure 2(d)). In addition, the restored im-

ages have lower PSNR values than those using only the

pixel-wise loss (3).

Feature matching. To achieve more realistic results, we

adopt a feature matching loss term [35], defined as

1

N

N∑

i=1

‖φl
θ(Gω(y

i))− φl
θ(x

i)‖2, (5)

where φl
θ(x) represents the feature response to input x at

the l-th layer of the discriminator. This term forces the re-
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stored images and the real images to have similar feature re-

sponses at the intermediate layers of the discriminator net-

work. These features tend to capture the structural infor-

mation of the images. Different from the perceptual loss

in [17] which uses the features of a fixed VGG network, our

features are dynamically extracted from the discriminator

network, which are most discriminative of real data versus

generated data of specific class. Thus, with the help of the

feature matching term, the reconstructed results will have

more realistic features.

Based on above considerations, we incorporate the pixel-

wise loss (3) and feature matching loss (5) into the original

GAN formulation (1). The generator and discriminator can

be trained by

max
θ

min
ω

1

N

N∑

i=1

‖Gω(y
i)− xi‖2 + λ1‖φ

l
θ(Gω(y

i)) (6)

− φl
θ(x

i)‖2 + λ2(logDθ(x
i) + log(1−Dθ(Gω(y

i)))),

where λ1 and λ2 are trade-off weights.

Directly optimizing (6) with respect to θ for updating

D makes θ diverge to infinity rapidly, as a large θ always

makes the second term ‖φl
θ(Gω(y

i))−φl
θ(x

i)‖2 larger than

a small θ. Instead of updating D to increase the abso-

lute distance between a generated pair (real, generated), we

want to make sure the distance between a generated pair

is relatively larger than that between a real pair (real, real).
Therefore, we modify the loss function of D and optimize

G and D by

min
ω

1

N

N∑

i=1

‖Gω(y
i)− xi‖2 + λ1‖φ

l
θ(Gω(y

i))− φl
θ(x

i)‖2

+ λ2 log(1−Dθ(Gω(y
i))), (7)

and

min
θ

1

N

N∑

i=1

−(logDθ(x
i) + log(1−Dθ(Gω(y

i))))+ (8)

λ3[‖φ
l
θ(x̂

i)− φl
θ(x

i)‖2 − ‖φl
θ(Gω(y

i))− φl
θ(x

i)‖2 + α]+,

where α is a margin that is enforced between real and gener-

ated pairs and [·]+ is the ReLU function. The loss function

for G in (7) is composed of (3), (5) and (2), which enforce

the output of the generator to be similar to the real data on

pixel, structure, and semantic levels, respectively. The loss

function for D in (8) introduces the triplet loss [36] into the

standard formulation of GAN to ensure that a real sample

x is closer to another real sample x̂ than the generated one

Gω(y). By introducing the triplet loss, the trivial solution of

θ in (6) is naturally avoided since increasing θ will enlarge

both the distances between real and generated pairs. Note

that the layer l for updating G in (7) and D in (8) can be dif-

ferent. By default, we use the second convolutional layer of

D in (7) which maintains the main structure features of the

(a) Input (b) Loss (2) (c) Loss (3) (d) Loss (4) (e) Loss (7) (f) GT

Figure 2. Effect of different loss functions. The low-resolution in-

put is resized for visualization. The feature matching loss leads to

more realistic images with competitive PSNR. PSNR (dB) values

are respectively (b)18.68, (c) 24.31, (d)22.65 and (e) 24.16.

input while using the third layer in (8) which better repre-

sents higher level semantic embeddings. As shown in Fig-

ure 2(e), this new loss function leads to visually sharp re-

sults with higher image quality. Further detailed analysis of

the different loss functions is presented in Section 5.

3.4. Multi­Class GAN

The original GAN formulation is designed for images

of a single class (SCGAN). Each application or image cat-

egory requires a new network. It is therefore desirable to

train a single network model for multiple categories. To

this end, we develop a multi-class GAN (MCGAN) using a

single model. Our MCGAN has one generator but K dis-

criminators {Dθj , j = 1, 2, ...,K}. These discriminators

are trained to classify real and generated images for each of

the K different classes, e.g., text and face images.
Let Dθj (x) denotes the probability of x being classified

as a real image in the j-th class. The loss functions in equa-
tions (2) and (5) respectively become

Lp,M (ω)=
1

N

N∑

i=1

log(1−
K∑

j=1

Dθj (Gω(y
i))✶(yi∈Cj)), (9)

Ll
f,M (ω)=

1

N

N∑

i=1

K∑

j=1

‖φl
θj
(Gω(y

i))−φl
θj
(xi)‖2✶(yi∈Cj), (10)

where φl
θj
(x) denotes the feature map at the l-th layer of

the discriminator Dθj , and Cj denotes the j-th image class.

The indicator function ✶(x) is 1 if the expression x is true,

and 0 otherwise.

The training process for MCGAN alternates between up-

dating the generator and the discriminator, where the train-

ing loss for the generator is

min
ω

Lc(ω) + λ1L
l
f,M (ω) + λ2Lp,M (ω). (11)

Given a fixed generator, the discriminators {DθK} are up-

dated simultaneously by (8). After training, the learned gen-

erator can be used to restore images in any of the K classes.

4. Experimental Results

We evaluate the proposed method on both text and face

images. Since there is no prior work designed for such

input data, we compare our method with the state-of-the-

art super-resolution and deblurring methods. We show the

main results in this section and present more evaluations in

the supplementary material.
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(a) Input (b) [45]+[43] (c) [33]+[18] (d) [43]+[32] (e) [18]+[33] (f) [29] (g) Fine-tune (h) MCGAN (i) SCGAN (j) GT

Figure 3. Results on text images. (a) The low-resolution input images are resized for visualization. (b)-(f) sequentially applying super-

resolution and deblurring methods. (g) obtained by combining [18] and [15] and fine-tuning on the text image training dataset. MCGAN

(h) and SCGAN (i) generate text images with much clearer characters.

(a) Input (b) [32]+[43] (c) [33]+[18] (d) [43]+[45] (e) [18]+[33] (f) [43]+[15] (g) Fine-tune (h) MCGAN (i) SCGAN (j) GT

Figure 4. Results on face images. (a) The low-resolution input images are resized for visualization. (b)-(f) sequentially applying super-

resolution and deblurring methods. (g) obtained by combining [18] and [15] and fine-tuning on the face image training dataset. MCGAN

(h) and SCGAN (i) generate face images with fewer artifacts.

Datasets. For text images, we use the training dataset of

Hradiš et al. [15], which consists of images with both de-

focus blur generated by anti-aliased disc and motion blur

generated by random walk. We randomly crop one million

64 × 64 blurred image patches from the dataset and down-

sample the patches using bicubic interpolation by a factor

of 4. For face images, we randomly collect clear face im-

ages from the CelebA training dataset [26]. We obtain one

million degraded face images by convolving the clear faces

with the blur kernels from Hradiš et al. [15] and downsam-

pling them by a factor of 4. We also add Gaussian noise to

the blurred patches, with the standard deviation uniformly

sampled from [0, 7/255]. We train the SCGAN models

on the text and face datasets separately, and the MCGAN

model using both datasets.

To evaluate text image restoration, we use the test set of

Hradiš et al. [15], which has 100 blurry images. To eval-

uate face image restoration, we randomly sample 100 im-

ages from the CelebA test dataset and convolve them with

blur kernels generated by Hradiš et al. [15]. Both test sets

are downsampled using bicubic interpolation. In addition

to these synthetic data, we also capture real text and face

images obtained by camera shake or downloaded from the

Internet.

Parameter settings. We set the trade-off weights in equa-

tion (7) and (8) to be λ1 = 1, λ2 = 10−3, and λ3 = 0.1,

and set the margin α = 1. Similar to Radford et al. [34]

we train the models using the Adam optimizer [19] with

momentum terms β1 = 0.5, β2 = 0.999, and a learning

rate lr = 0.0002. The batch size is 16. Similar to Glorot

and Bengio [12], the weights of filters in each layer are ini-

tialized using a Gaussian distribution with zero mean and

variance of 2/nin, where nin is the size of the respective

convolutional filter. The slope of the LeakyReLU is 0.2.

Similar to Goodfellow et al. [13], in practice we train G to

maximize log(Dθ(Gω(y))) which provides more sufficient

gradients and leads to more stable solution than minimizing

log(1 − Dθ(Gω(y))) in (2). To evaluate real text images,

we pre-process the input by gamma correction and contrast

transformation to decrease the effect of illumination.

Splitting batches in training the discriminator. Wang and

Gupta [42] observe that batch normalization in D causes

convergence issues in training GAN. We find that this issue

can be resolved by splitting the batches into real and gen-

erated ones when training D, as shown in Figure 5. Due to

the page limit, we present our analysis and the details of our

proposed solution in the supplemental material.

Baseline methods.

We compare our method with all possible combinations

of state-of-the-art deblurring [45, 15, 32, 33] and super-

resolution [8, 43, 18] methods. Since [15] is specifically

designed for text images, we fine-tune the model on face
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Table 2. Quantitative comparison with state-of-the-art methods on the text dataset. ”fine-tune” represents the model obtained by combining

[18] and [15] and fine-tuning on the text training data.

Methods [45]+[43] [45]+[8] [45]+[18] [32]+[43] [32]+[8] [32]+[18] [33]+[43] [33]+[8] [33]+[18]

PSNR (dB) 14.58 14.41 14.21 14.13 13.90 13.56 14.46 14.22 13.87

SSIM 0.5775 0.5774 0.6002 0.5534 0.5504 0.5603 0.5742 0.5700 0.5783

Methods [15]+[43] [15]+[8] [15]+[18] [43]+[45] [8]+[45] [18]+[45] [43]+[32] [8]+[32] [18]+[32]

PSNR (dB) 13.85 13.66 13.64 15.49 15.49 15.57 15.39 15.35 15.27

SSIM 0.4895 0.4737 0.4766 0.6341 0.6205 0.6584 0.6408 0.6499 0.6512

Methods [43]+[33] [8]+[33] [18]+[33] [43]+[15] [8]+[15] [29] Fine-tune MCGAN SCGAN

PSNR (dB) 15.44 15.54 15.54 16.40 16.45 14.43 17.84 20.12 20.65

SSIM 0.6396 0.6545 0.6651 0.7171 0.7233 0.5367 0.8142 0.8970 0.9069

Table 3. Quantitative comparison with state-of-the-art methods on the face dataset. ”fine-tune” represents the model obtained by combining

[18] and [15] and fine-tuning on the face training data. The results of [29] are omitted (-) since it is problematic to run this algorithm on

the face dataset with small image sizes.

Methods [45]+[43] [45]+[8] [45]+[18] [32]+[43] [32]+[8] [32]+[18] [33]+[43] [33]+[8] [33]+[18]

PSNR (dB) 14.97 14.29 13.62 16.43 15.75 15.22 17.19 16.58 16.16

SSIM 0.3488 0.3240 0.3046 0.4168 0.3870 0.3723 0.4487 0.4218 0.4140

Methods [15]+[43] [15]+[8] [15]+[18] [43]+[45] [8]+[45] [18]+[45] [43]+[32] [8]+[32] [18]+[32]

PSNR (dB) 18.01 17.97 17.91 18.38 18.02 18.12 17.24 16.66 16.79

SSIM 0.4399 0.4375 0.4348 0.5060 0.4708 0.5216 0.4677 0.4314 0.4592

Methods [43]+[33] [8]+[33] [18]+[33] [43]+[15] [8]+[15] [29] Fine-tune MCGAN SCGAN

PSNR (dB) 21.00 20.77 20.61 22.17 22.04 - 22.60 23.95 24.57

SSIM 0.6201 0.6138 0.6214 0.6453 0.6453 - 0.7137 0.7479 0.7656

(a) Input (b) w/o (c) w (d) GT

Figure 5. Effect of splitting batches. (b) batch normalization with-

out splitting has convergence issues and does not perform prop-

erly; (c) splitting batches leads to more clear results.

images. In addition, we combine and fine-tune the models

in [18] and [15] with both the face and text images in an

end-to-end manner. We also compare our method with the

blind super-resolution algorithm [29]1.

Results on synthetic datasets. We quantitatively evalu-

ate our method using the text and face image datasets de-

scribed above. Tables 2 and 3 show that the proposed al-

gorithm performs well in terms of PSNR and structural

similarity (SSIM). Note that the MCGAN algorithm per-

forms only slightly worse than the SCGAN method, sug-

gesting the feasibility of using a single network for dif-

ferent image categories. Figures 3 and 4 show some re-

stored images on the text and face datasets. Baseline meth-

ods based on straightforward combination of state-of-the-

art super-resolution and deblurring schemes do not generate

clear images from low-resolution blurry inputs. To analyze

the reasons, we show intermediate results in Figure 1. As

no salient edges can be extracted from the low-resolution

blurry input, it is difficult to estimate blur kernels accu-

rately. The deblurred images contain artifacts (Figure 1(d)),

which are exacerbated by the following super-resolution

method (Figure 1(e)). Directly applying super-resolution

1The results have been kindly provided by the authors using [29] for

kernel estimation and [11] for super-resolution.

methods to the blurred low-resolution images does not gen-

erate reliable results either (Figure 1(b)), as most super-

resolution algorithms are developed based on parametric

kernels that cannot account for complex motion blurs. Sim-

ilarly, the artifacts caused by super-resolution are exacer-

bated by the deblurring methods, as shown in Figure 1(c).

Figure 3(f) shows that the blind super-resolution

method [29] does not generate text images well. This

method cannot accurately estimate complex motion kernels,

and small errors in the estimated kernels are exacerbated by

super-resolution. In contrast, our method obtains plausible

results without the kernel estimation step. Moreover, differ-

ent from most methods based on GAN [13, 34, 6] that gen-

erate images from random noise, the input of our network is

degraded images which contain substantial information for

reconstruction. Thus the proposed GAN can restore image

details of specific object classes from low-resolution blurry

inputs. Note that the fine-tuned model of [18] and [15] is a

deep CNN model with 35 layers that has been trained with

a mean squared error (MSE) loss function. Since super-

resolution based on MSE usually generates over-smoothed

results and training a deep network is likely to result in a lo-

cal minimal solution, this method with the fine-tuned model

does not perform well as shown in Figure 3(g) and 4(g).

Subjective study. We conduct subjective user study on im-

age quality, which uses 20 images randomly selected from

the text and face test datasets. Each low-quality input is

restored by 4 different methods: bicubic, [18]+[15] (fine-

tuned), MCGAN, and SCGAN. 21 subjects are asked to as-

sign an integer score from 1 (poor) to 5 (excellent) to the re-

constructed images by each method, with the original high-

resolution image as a reference. The average scores for the

4 methods are respectively 1.14, 2.16, 3.49, and 4.04 on
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Input [18] +[15] (fine-tuned) MCGAN SCGAN Input SR[18]+Deblur[33] MCGAN SCGAN

Figure 6. Results on real text images. Our method generates images with much clearer characters.

Input [18] +[15] (fine-tuned) MCGAN SCGAN Input SR[18]+Deblur[33] MCGAN SCGAN

Figure 7. Results on real face images. Our method generates more realistic-looking faces, especially around the eye and mouth regions.

face images, and 1.10, 2.31, 3.49, and 3.68 on text ones,

suggesting that the proposed methods can produce results

with high perceptual image quality. Due to the page limit,

more study on face and text recognition is presented in the

supplemental material.

Results on real images. Our method generates visually bet-

ter results with clearer characters and more realistic faces

than other methods, as shown in Figure 6 and 7.

5. Analysis and Discussion

Priors learned by the proposed method. The success of a

blind image deblurring method usually depends on a good

image prior that favors clear images over blurred ones. In-

stead of using hand-crafted features, our method learns a

discriminator that can distinguish clear and blurred images.

To analyze this property, we apply horizontal blurs with size

2 to 10 pixels to clear images from the CelebA dataset [26]

and compute the average energies of the blurred images.

Figure 8 shows that the learned prior achieves similar ef-

fects as the empirical dark channel prior [33], where both

priors give higher energies to blurred images.

In addition, the discriminator network also learns to dis-

tinguish clear images from generally degraded ones, e.g.,

images with severe ringing artifacts. As a result, the gener-

ator network needs to generate more realistic images with

fewer ringing artifacts to fool the discriminator. We com-

pute the values of the learned prior, the normalized sparsity

prior [20], and the dark channel prior [33] on clear images

and images with severe non-blur artifacts. We use the re-

constructed results by the combinations of existing meth-

ods [32, 33, 43, 18] as the images with artifacts (examples

shown in Figure 4). Table 4 shows the learned prior favors

clear images over images with artifacts, while the normal-

ized sparsity prior and the dark channel prior do not.

Effectiveness of the feature matching loss. To understand

the effect of each loss term proposed in Section 3.3, we de-

fine a dark channel ratio (DCR) to measure sharpness,
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Figure 8. The learned discriminator favors clear images over

blurred ones, similar to the empirical dark channel prior. We blur

clear images from CelebA [26] using horizontal motion blur ker-

nels ranging from 2 to 10 pixels and evaluate the learned discrim-

inator −
∑

logD(Ii). The left y-axis represents the energy of the

learned prior. The right y-axis shows the energy of the dark chan-

nel prior on blurry images relative to that on clear images.

Table 4. The learned prior favors clear images over images

with artifacts and gives lower energy values to clear images (the

first row), while the empirical priors give higher energy values

to clear images (the second and third rows). Artifact1 and Arti-

fact2 represent the images with artifacts generated by [33]+[18]

and [32]+[43], respectively. The energies of the empirical priors

on images with artifacts are relative to those on clear images.

Priors Clear Artifact1 Artifact2

Learned Prior 0.0832 4.3659 10.0623

Normalized Sparsity Prior [20] 1 0.7277 0.8513

Dark Channel Prior [33] 1 0.3947 0.3759

DCR(x, xgt) =
fL(ϕ(x))

fL(ϕ(xgt)) + ε
, (12)

where x is the input image, xgt is its corresponding

ground truth image, ϕ(x) represents the dark channel of

x, ε = 10−8 is used to avoid division by zero. fL(z) =∑
i,j ✶(zij < th) approximates the ℓ0 norm, where zij de-

notes the pixel in image z, and th is the threshold, which we

set to be 0.1. As demonstrated in [33], the dark channel of

a clear image is sparser than that of a blurred image. Thus,

smaller DCR values indicate sharper results.

As shown in Table 5, the result with (3) has the highest

PSNR value but is over-smoothed (Figure 2(c)). The result

with (4) has the lowest DCR value but has corrupted struc-

tures (Figure 2(b)). Results using the feature matching loss
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(a) Input (b) 1st (c) 2nd (d) 3rd

Figure 9. Visualization of the features from different layers of dis-

criminator D using [28]. (a) is the original image. (b), (c), and

(d) are the reconstructed results from the first, second, and third

convolution layer of D, respectively.

Table 5. Effect of loss terms. “pixel” and “basic” denote mod-

els trained using the pixel-wise (3) and the basic GAN (4) losses.

“GnDm” denotes the model trained using the feature loss (5) with

l=n to update G by (7) and l=m to update D by (8) respectively.

Methods pixel basic G2D3 G3D3 G2D2

PSNR (dB) 25.12 22.82 24.57 23.17 22.95

DCR 1.1331 0.9606 1.0687 1.0477 0.9962

Table 6. Average running time (in seconds) of different methods.

Image resolution [18]+[33] [33]+[18] [18]+[15] Ours

16 × 16 20.1621 1.7717 0.2596 0.0080

50 × 50 116.5380 4.8499 0.4396 0.1278

(GnDm) have competitive PSNR and DCR values, suggest-

ing that the feature matching term is effective at achieving

a compromise between fidelity and sharpness. Note that

G2D2 leads to worse results than G2D3. This is because the

triplet loss introduced in (8) is more effective with higher

level features which represent semantic embeddings of real

and generated samples.

To better understand features at different layers, we vi-

sualize the feature maps of the discriminator network us-

ing [28]. Figure 9 shows that shallow layers retain most of

the original information while deep layers only retain the

basic structures. Therefore, the features from deeper layers

tend to guide the generator to generate more semantically

realistic results, while the features from shallower layers put

emphasis on the pixel-wise similarity with the real images.

All features help improve the results as shown in Table 5.

Running time. Our method restores images by a feed-

forward network and is therefore more efficient than other

state-of-the-art methods. Table 6 summarizes the running

time of representative methods on the same PC with an Intel

i7 CPU, GTX Titan GPU, and 32GB memory. Our method

is 30+ times faster than methods based on empirical priors

and 3+ times faster than the deep network ([18]+[15]).

Limitations. Although visually realistic, the reconstructed

faces may contain checkerboard artifacts [31]. To analyze

their cause, we initialize the generator with random weights,

as shown in Figure 10(a) and (b). Using the deconvolutional

layer already results in some artifacts for a randomly initial-

ized generator and is likely to be the cause. However, us-

ing bicubic interpolation decreases the average PSNR from

24.57 dB to 23.45 dB on the synthetic face dataset. Fig-

ure 10(c) and (d) show one example. Future work will ad-

(a) Bicubic (b) Deconv (c) Bicubic/22.00 (d) Deconv/22.78

Figure 10. Analyzing the checkerboard artifacts. (a) and (b) are

the output of randomly initialized generators with bicubic and de-

convolution layers respectively. Using bicubic interpolation for

upsampling (c) reduces the artifacts but has lower PSNR than de-

convolutional (d). See Figure 1 for the input and ground truth.

(a) Input (b) Our result

Figure 11. A failure example. The model is trained by using the

aforementioned method on the BSDS500 dataset [2].

dress this issue using techniques proposed in [31].

Furthermore, we note that the generator of GAN learns

to model the distribution of real images with guidance from

the discriminator. When trained on multi-class images, the

proposed model is designed to approximate the mixture dis-

tribution of the multi-class images. When this mixture dis-

tribution becomes too complex, it is difficult to learn a uni-

fied model for the diversity of all image classes. Thus our

method is less effective for generic images (Figure 11). Our

observation is consistent with the findings for generative

models that it is more difficult to generate realistic samples

for generic images [35].

6. Conclusions

Our algorithm reconstructs high-resolution clear images

from low-resolution blurry inputs. This problem is highly

ill-posed and breaks the underlying assumptions of exist-

ing super-resolution and deblurring methods. By focusing

on images of certain categories (i.e. face and text), we learn

strong priors using the GAN framework with new loss func-

tions and obtain promising results. Our method performs

favorably against state-of-the-art methods on both synthetic

and real-world datasets. In addition, our approach is more

efficient since the image restoration process involves only a

feedforward network.
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