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Abstract

Precise search of visually-similar vehicles poses a great
challenge in computer vision, which needs to find exactly
the same vehicle among a massive vehicles with visually
similar appearances for a given query image. In this pa-
per, we model the relationship of vehicle images as mul-
tiple grains. Following this, we propose two approaches
to alleviate the precise vehicle search problem by exploit-
ing multi-grain ranking constraints. One is Generalized
Pairwise Ranking, which generalizes the conventional pair-
wise from considering only binary similar/dissimilar rela-
tions to multiple relations. The other is Multi-Grain based
List Ranking, which introduces permutation probability to
score a permutation of a multi-grain list, and further opti-
mizes the ranking by the likelihood loss function. We im-
plement the two approaches with multi-attribute classifi-
cation in a multi-task deep learning framework. To fur-
ther facilitate the research on precise vehicle search, we
also contribute two high-quality and well-annotated vehicle
datasets, named VDI and VD2, which are collected from
two different cities with diverse annotated attributes. As
two of the largest publicly available precise vehicle search
datasets, they contain 1,097,649 and 807,260 vehicle im-
ages respectively. Experimental results show that our ap-
proaches achieve the state-of-the-art performance on both
datasets.

1. Introduction

With the rapid development and popularization of secu-
rity systems, there is a growing need for precise vehicle
search from a huge number of images captured by various
surveillance cameras. Given a query vehicle image, precise
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Figure 1. Some vehicle images. The first two rows exhibit vehicle
images of different cars while the last two rows show some images
of the same car.

vehicle search aims at finding out all instances of that ve-
hicle. Intuitively, license plate recognition can be used to
solve this problem under the assumption that license plate
number is unique and recognisable for each vehicle. Unfor-
tunately, such an assumption does not hold in some practi-
cal situations as the license plate can be easily removed, oc-
cluded or faked [[1]]. Precise vehicle search based on visual
features can thus serve as a significant alternative approach
to steadily identify a vehicle by taking vehicle’s visual ap-
pearances into consideration. However, different cars may
have similar visual appearances, such as the same color and
the same vehicle model (product year and type). An illus-
tration of such a phenomenon is displayed in Fig[I] where
the four vehicles in the second row have nearly the same ap-
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pearance except for some minor differences at windscreens.
These differences can only be discovered through carefully
observations even for humans. Although some existing
works attempt to address this problem, their performances
in practical applications are still limited. Lack of large la-
beled training set is an obvious reason. Collecting a large-
scale vehicle search dataset containing all popular vehicle
models from real scenes with meticulously annotated con-
tents is a notoriously difficult task. As far as we know,
most published vehicle datasets [2, 3| /4] are constructed
for vehicle attribute recognition, with annotations on sev-
eral attributes such as type, make and color. There exist two
small datasets related with vehicle search, VeRi [|5] and Ve-
hicleID [1]]. VeRi dataset contains only 50,000 images from
776 vehicles. The scale of this dataset is small, thus only
a few visually-similar vehicles are included. Relatively,
VehicleID dataset [[1] is more suitable for precise vehicle
search, in which each vehicle is assigned with a unique ID.
However, limitations also exist in VehicleID as it 1) collects
only about 221,763 images from 26,267 vehicles and 2) an-
notates only 10,319 vehicles (90,196 images) with vehicle
model information. Totally, 250 vehicle models appear in
this dataset, which is far from enough since thousands of
popular vehicle models could appear in a real world search-
ing task. In this paper, we contribute two large-scale vehicle
datasets (VD1 and VD2) captured from real world surveil-
lance cameras and videos in two cities. With 1,097,649 and
807,260 images being collected and carefully annotated, the
datasets contain almost all popular vehicle models and col-
ors. To our knowledge, VD1 and VD2 are the largest high-
quality annotated vehicle datasets published so far.

Apart from lacking sufficient training data, model design
also limits the searching performance. Some researchers
consider that person re-identification (Re-ID) related ap-
proaches [[6] can be directly used to solve precise vehicle
search problem [1]. Specifically, the color and model an-
notations in these methods are used as supervised labels for
classification whilst the ID information is used to generate
pairwise or triplet (including some variation) training sam-
ples only. The performance of these Re-ID methods are
still not good enough because of two reasons. First, they
use ID information just to form image pairs/triplets, without
considering the fact that ID is also a natural and strong at-
tribute. Second, they only consider binary relationship (i.e.,
’similar’ and ’dissimilar’) between vehicle images. We ar-
gue that in order to perform the accurate search on vehi-
cle data, image annotations and relationships must be fully
explored and utilised. To verify this claim, we propose a
multi-task deep learning framework that can be trained in
attribute classification task and multi-grain based ranking
task simultaneously. Different from existing models, we
treat ID as an attribute of vehicle images and perform classi-
fication task on both ID and conventional vehicle attributes

such as model and color. Instead of using binary relation-
ship only, we summarize the relationship of vehicle images
as multiple grains. Specifically, in the first grain two vehicle
images belong to the same vehicle. The second grain is that
they belong to different vehicles but having the same model
and color. The rest can be defined in the same manner. The
most farthest grain is that they belong to different models
and colors. By introducing multi-grain relationships, we
force the deep model to learn the more discriminative fea-
ture between different grains over a great deal of images.
As the result, multi-grain relations are embedded in feature
space so as to improve the searching performance.

Based on the multi-grain relations, we propose two rank-
ing approaches. The first approach is generalized pairwise
ranking (GPR). Conventional pairwise ranking methods di-
rectly transform ranking problem to binary classification
problem after fusing the feature of anchor images and ref-
erence images. Similarly, we generalize the formulation
from binary (0/1) to multiple relations (0/1/2/3...n) by em-
bedding the multi-grain constraints. Experimental results
show that our approach outperforms the conventional pair-
wise approaches.

Considering the hierarchical structure of multi-grain
constraints, we also propose a multi-grain based list rank-
ing (MGLR) approach. In this model, a list of multi-grain
images is maintained during training, in which the rank-
ing is explicitly corresponding to the multi-grain relation-
ship. We assume that any permutation for a list of images
is possible after using the ranking function, but different
permutations may have different likelihood values. To sat-
isfy those requirements, we introduce the permutation prob-
ability [[7, 8], which is an important model in document re-
trieval. It has desirable properties for representing the like-
lihood of a permutation. To this end, ranking of a list of im-
ages including different grains can be evaluated by the like-
lihood value. The likelihood loss is adopted as loss function
for the multi-grain list ranking approach. Experimental re-
sults demonstrate this approach achieves the state-of-the-art
performance in precise vehicle search.

The rest of this paper is organized as follows. Related
works are presented at section 2} In section[3] we introduce
our proposed two multi-grain based ranking approaches in
detail. Section[d]gives the description of the two large-scale
vehicle datasets including data collection, annotation and
evaluation. Experiments are shown in section 3]

2. Related Works

Image search Traditional image search methods espe-
cially for object search focus on both feature representa-
tion and similarity learning. Generally, after representing
an image with hand-crafted features (e.g., [9} [10]), a dis-
tance metric learning method (e.g., [11} [12]]) is adopted to
learn an optimal metric which minimizes the distance be-
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ID Classification

ID Classification + Pairwise/Triplet Ranking

ID Classification + Multi-grain Ranking

Figure 2. The distribution of vehicles with different constraints in feature space. Each marker represents the feature of a vehicle image.
For example, images of ID1 and ID2 come from different vehicles, but they have the same model and color; Images of ID1 and ID4 have

different colors and the same model.

tween similar images and maximizes the distance between
dissimilar images simultaneously. For a long time, the per-
formance is limited as they are optimized in separate steps
[13].

Recent advances in image understanding [14} [15] [16]
have been driven by the success of deep convolutional neu-
ral networks (CNNs). With proper network architecture,
feature representation and similarity learning can be incor-
porated in a unified deep framework [[17]. Several similarity
constraints have been proposed for feature representation in
deep networks. For instance, Siamese networks [18]] orga-
nize input images as similar and dissimilar pairs, after that, a
two branch network with shared parameters across branches
are trained to minimize a pairwise contrastive loss. Such a
pairwise ranking method and its variants have achieved im-
pressing performances for various tasks, such as face veri-
fication [[19]] and person Re-ID [20, 21]. Additionally, Sun
et.al [22] and Yi et.al 23] propose the improved method that
utilizes multi-task learning to jointly optimize classification
and pairwise ranking losses. The multi-task strategy is also
adopted in our methods to augment feature representation.

Apart from the pairwise related works, some researchers
utilize triplet constraints to learn the similarity ranking in
a CNN framework [24} 25| 26]]. Triplet ranking methods
can be used to address face recognition [24]], cross-domain
image retrieval [25] and person Re-ID [26]]. They have
achieved promising performances since triplet can preserve
the intra-class variation well.

Vehicle search Precise vehicle search aims to search out
all instances for a given object image. Its main challenge is
that the inter-class variance may be as small as the intra-
class variance since there are many vehicles having the
same model and color. Although there are some existing
works on vehicle model classification [2, 127,28, [29] and ve-
hicle model verification [3]], only a few published works are
related to vehicle search [30, 15, [1]]. Zhang et.al [30] propose
to model the label structures of vehicles and seamlessly em-

bed it into a deep framework by minimizing a generalized
multi-level triplet loss. Different from other triplet based
methods, they manually assign different margins for each
level to build triplet samples. Although this method can
achieve good performance for vehicle search, it only con-
sider the model level retrieval rather than the much harder
instance level retrieval addressed in this paper. Recently
Liu et.al [5] propose an approach to alleviate the vehicle
re-identification problem. They focus on filtering negative
images by license plate verification and spatiotemporal re-
lations. As a result, the method works well only when these
information is available. Liu et.al [1]] also aims to address
precise vehicle search in images from surveillance cameras.
Considering that the distribution of positive samples maybe
disperse, it proposes a ranking loss named coupled cluster
loss to make positive samples clustered so as to improve the
retrieval performance. However, it only considers binary re-
lationship of vehicle images like most methods mentioned
above. In addition, it does not take into account the impor-
tance of vehicle attributes especially the ID label.

From above related works, we find that many intrinsic
and special information about vehicle is not be fully ex-
ploited. In this paper we summarize the relationship of ve-
hicle images as multiple grains and propose two multi-grain
based ranking approaches integrated with multi-attribute
classification in a multi-task CNN framework.

3. Methodology
3.1. Multi-grain Relationship

Given multiple attributes, the relationship between ve-
hicle images is abstracted to multiple grains. To model
the multi-grain labels, we first introduce the concept
of a multi-grain list (MGL). Specifically, each MGL
(a, R', R? --- | R") consists of one anchor image a and N
reference images from n grain levels corresponding to the
anchor image a, where R¥ = {r¥ ... .r£},C > 0 rep-
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Figure 3. The framework of a multi-task learning integrating GPR with multi-attribute classification. We only draw up four grains to
illustrate the main flow path of our method. All the images of a multi-grain list are extracted features in a shared CNN architecture. After
fusing the anchor feature with each reference feature, the fused feature is fed into a softmax classifier to conduct grain classification.

resents the reference image set from k-th grain level. For
example, 7! corresponds to the c-th reference image that
has the closest relationship to a (i.e., belonging to the same
vehicle with a) in the list. To constrain distinct distances
for different grains, we formulate multi-grain based ranking

problem as:

D(a, R*) + my, < D(a, R**1),

(L
m1>0,mo>0,--- ., mp >0

where D(a, R*) represents the distance between the anchor
image and any reference image from grain k. There are
k hyper-parameters to control the distance margins across
multiple grains. It is worth noting that the distance con-
straints across multiple grains can be transmitted in Eq[I]
Triplet [24} 261 25]] and quadruplet [30] are special cases of
this formulation corresponding to n = 2 and n = 3 respec-
tively. Evidently, it properly reflects multi-grain constraints
of distances in feature space.

Treating image relationship as multi-grain is more rea-
sonable when multiple attributes are available for each
training image. A toy example is illustrated in Fig]2] The
distance of images belonging to the same vehicle maybe
close to the distance of images belonging to different ve-
hicles under ID constrained classification, as shown in the
left image of Fig2] Cooperating with conventional rank-
ing methods (i.e., pairwise or triplet ranking) can alleviate
the problem and achieve some gains. However, the pair-
wise and triplet ranking only distinguish whether the images
come from the same vehicle as illustrated in the middle im-
age of Fig[2] With multi-grain constraints, we can suitably
reflect more accurate relationships in feature space as illus-
trated in the right image of Fig[2]

Although Eq/[I] reveals the objective of multi-grain con-
straints based ranking and shows the generalized property
on some ranking models, it is difficult to directly optimize
it under so strong constraints. To optimize the objective, we
propose two approaches, generalized pairwise ranking and
multi-grain based list ranking.

3.2. Generalized Pairwise Ranking

Conventional pairwise ranking method splits training
data into positive (similar) pair set and negative (dissimilar)
pair set. Suppose that {(x;,z;,y;;)} is a pair of training
data, where x;,x; are two images and y;; € {0,1} indi-
cates their relationship. Generally, image pair x;, x; are first
fed into CNNs to extract high-level features, and then their
features are fused through some strategies (e.g., concatena-
tion or element-wise substraction), followed by some fully-
connected layers. Finally, contrastive loss or softmax loss
can be adopt to minimize the distance between a positive
pair and penalize the negative pair distance. It has achieved
promising performances in some tasks especially for per-
son Re-ID [21} [20]. However, it is not the best choice for
precise vehicle search as it only takes similar and dissimilar
relations of images into account.

Given these limitations, we propose the generalized pair-
wise ranking approach. Fig[3]illustrates its overall frame-
work. Specifically, input images are organised as a MGL.
After extracting deep features for each image in the MGL,
the feature of each reference image is fused with the anchor
feature respectively. Finally, a softmax classifier is used to
estimate which grain level each pair of input images be-
longs to. The loss function of the GPR for a MGL can be
formulated as

ep(z 9(0))

Lopr = Z 08 S~ )

ep(l k)’

where p(i, k) represents the grain prediction value of i-th
image pair on k-th grain level and g(¢) is the ground truth
grain of this pair. N is the number of image pairs in a
MGL. Despite the generalized pairwise ranking loss, we
also integrate multi-attribute classification to form a multi-
task learning framework.

In the whole, our method can be regarded as a joint opti-
mization problem. The overall loss function for a MGL can
be formulated by
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Figure 4. The framework of a multi-task learning integrating MGLR with multi-attribute classification. All images are extracted features
in a shared CNN architecture supervised by multi-attribute labels. After calculating the similarity score by inner product for each pair, they

are fed into the final layer to conduct list ranking learning.

N+1

Larp, =— Z/\ Zlog

where py (z, j ) represents the attribute prediction value of
z-th image in a MGL on j-th category of y-th attribute and
a(x) is the ground truth attribute of this image. ¢, is the
number of categories of y-th attribute. Here, we use three
types of attributes, namely vehicle ID, model and color. In
addition, A is a hyper parameter to control the balance be-
tween similarity learning and attributes learning and A, is
used to assign weights to different attributes. As the num-
ber of image pairs in a MGL is NV in Eq[2] the total number
of images in a MGL is N + 1 by adding the anchor image.

Generalized pairwise ranking adequately exploits multi-
grain information and transforms the rank learning problem
to a multi-class classification problem. Moreover, it is ef-
fective and easy to implement. Implementation details are
described in the experimental section.

3.3. Multi-grain based List Ranking

emm a())

+MLgpr, (3)
epy (:C,_])

Except for generalized pairwise ranking, we also find
that the multi-grain constraints based ranking problem can
be formulated as a listwise learning-to-rank problem [[7, 18],
which is an effective ranking method in document retrieval.
In this paper, we design a multi-task learning framework to
integrate list ranking with multi-attribute classification.

FigH] shows the pipeline of processing a list of multi-
grain images. After extracting features for all images, the
similarity for each image pair consisting of an anchor image
and a reference image can be computed as

— 1 .fa T fTi 4
s(fa, fri) = [ +<||fa”2) i 2]7 4)
where $(fo, fr;) €

[0, 1] abbreviated as s; is the similarity
score based on the feature of anchor image f, and the fea-
ture of reference image f,,, which are extracted from the

CNN framework.

As for listwise ranking problem, we first introduce the
formal definition of a permutation. Suppose that the set of
reference images to be ranked are identified with the num-
bers 1,2,--- | N. A permutation 7 of reference images is
defined as a bijection from {1,2,--- , N} to itself. We de-
note the permutation as 7 =< (1), 7(2), - ,7(N) > in
which 7 () represents the reference image at ranking po-
sition ¢. The number of all possible permutations for N
reference images is NV!. We assume that any permutation
is possible after sorting as the similarity scores between the
anchor image and each reference image in descending or-
der. However, different permutations should have differ-
ent likelihood values according to its consistence with the
ranking result of similarity scores. To quantitatively eval-
uate the likelihood of a permutation, we utilize the permu-
tation probability [[7] as its nice properties for representing
the likelihood of a ranking list, which can be calculated as

N .
Py(m) = H M7 (5)

where ¢(-) is an increasing and strictly positive function and
sx(;) denotes the similarity score between the anchor image
and the reference image ranking at position j in permutation
m. Based on the similarity scores of a MGL, each permuta-
tion has a probability value and the permutation can obtain
the highest likelihood value only if it is the descent sorting
sequence as similarity scores. More properties and theorem
proving are demonstrated in [[7].

Based on the likelihood value of a permutation, a key
problem is to learn better features that can derive the ground
truth permutation based on similarity scores. Inspired by
the analysis of different listwise approaches in [8], we adopt
the listMLE method which is an effective method and easy
to implement. It employs the negative log likelihood of the
ground truth permutation as the loss function (i.e., the likeli-
hood loss). ListMLE is suitable to optimize the multi-grain
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constraints based list ranking since the multi-grain relation-
ship is fixed for a MGL and can generate ground truth per-
mutation easily. We formulate the loss function of a list of
images as

exp(sx,.(j))
Liist(mg1) = —logH = (©)
=1 ZEXP( Srge(i))
i=j

where 7y, is the ground truth permutation and we adopt the
exp form for function ¢(-) in Eq Stochastic gradient de-
scent is used to conduct the minimization. Figf]illustrates
the multi-grain based list ranking method in a multi-task
deep learning framework. Similar to generalized pairwise
ranking method, multi-attribute classification also plays an
important role here.

4. Large-scale Vehicle Datasets
4.1. Overall Description

In this paper, we construct two large-scale vehicle
datasetsEl (i.e., VD1 and VD2) based on real-world uncon-
strained scenes from two cities respectively. The images in
VD1 are obtained from high resolution traffic cameras, and
images in VD2 are captured from surveillance videos. We
perform vehicle detection on the raw data to make sure that
each image only contains one vehicle. The region of plate
number has been covered by black color due to privacy pro-
tection. All vehicle images are captured from the front view.
Some example images are shown in Fig[3]

We provide diverse attribute annotations for each im-
age in both two datasets, including identity number, pre-
cise vehicle model and vehicle color. Specifically, iden-
tity number (ID) is unique and all images belong to the
same vehicle have the same ID (we make sure that there
are at least two images in the dataset for each vehicle
ID). We provide the most precise model type with detailed
vehicle type and different produced years. For example,
Audi-A6L-2012_2015, Audi-A6-2004, Audi-A4-2006_2008
and Audi-A4-2004_2005 are four different vehicle models
in our datasets. As for color information, 11 common col-
ors are annotated in our datasets. We carefully check all
annotations to ensure the consistency of labels so that all
the images belonging to the same vehicle ID are annotated
with the same vehicle model and color. To keep the datasets
generalized for fine-grained classification tasks, we also en-
sure that at least two vehicles exist for each precise vehicle
model.

4.2. Data Statistics and Split

VD1: There are total 1,097,649 images in the dataset.
We label 1,232 vehicle models and 11 colors. After

! Available at http://pkuml.org/resources/pku-vds.html

Figure 5. VD1 and VD2 datasets. Left images come from VD1,
and right images come from VD2. Images in the same row belong
to the same vehicle.

subtracting those improper images (e.g., models contain-
ing only one vehicle or images captured from the back),
846,358 images of 141,756 vehicles are remained in VDI.

To generalize to other vehicle related tasks, we split
dataset into training set and testing set. Specifically, we
randomly choose nearly half of vehicles from each vehicle
model to construct the training set. The remaining vehicles
constitute the testing set for classification task. The detail
information is shown in Table[T] For the vehicle search task,
we randomly select 2,000 vehicle IDs in the testing set, then
randomly select one image from each vehicle to form the
query list. Similar to VehicleID dataset, we form ref-
erence sets in three scales (i.e., small, medium and large)
as shown in Tableg However, the number of images for
each scale is significantly increasing compared with Vehi-
cleID. For the largest reference set, both improper images
and images of training set are included in order to augment
the search scale. Note that all the query vehicles have no
overlapping with training set.

VD2: There are total 807,260 images in the dataset. We
label 1,112 vehicle models and 11 colors. The split strategy
for this dataset is the same as VD1’s. The split for training
set and testing set are shown in Table[T] and the split for
different scale reference sets are shown in Table2l

Table 1. Data split for training set and testing set.
Training | Testing
No. of vehicle | 70,591 71,165
No. of model 1,232 1,232
No. of color 11 11
No. of image | 422,326 | 424,032
No. of vehicle | 39,619 40,144
No. of model 1,112 1,112
No. of color 11 11
No. of image | 342,608 | 347,910

VD1

VD2
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Table 2. Reference sets in different scales.

dataset | Small | Medium Large
VD1 | 106,887 | 604,032 | 1,097,649
VD2 | 105,550 | 457,910 | 807,260

5. Experiments

We conduct two parts of experiments. The first part is
to validate the effectiveness of multi-attribute classification
for precise vehicle search. Then, we conduct experiments
to prove the effectiveness of the proposed two multi-grain
constraints based ranking methods.

5.1. Multi-attribute Classification

Multi-attribute of a vehicle can naturally provide strong
constraints to learn discriminative feature for vehicle
search. However, they, especially the ID information, are
ignored for a long time. To validate the the efficiency of
multi-attribute classification, we train several deep models
with the softmax classifier.

Experiment settings: Experiments are conducted based
on the widely-used Caffe [31] deep learning framework. We
add a softmax classification layer after fc7 layer to train at-
tributes classification in VGG_CNN_M_1024 network [32].
Note that the network is fine-tuned on the weights pre-
trained with the ImageNet [33] dataset rather than trained
from scratch. All the settings are same with [[1]]. In addition,
we also follow the data split strategy in VehicleID. The loss
weights of ID, model and color are set to 1.0, 1.0, 1.0 re-
spectively. In test phase, we extract the features in fc7 layer
of test images, then directly utilize L2 distance to measure
the similarity between a query image and a reference im-
age. Mean average precision(mAP) is used to evaluate the
performance of different strategies.

Table 3. Attributes classification on VehicleID dataset.

Mehotd Small | Medium | Large
CCL (CVPR16 [1]) | 0.546 | 0.481 0.455
ID(VGG) 0.597 0.598 0.552

ATTs(VGG) 0.625 0.623 0.575
ATTs(GoogLeNet) | 0.628 0.623 0.586

Results and analysis: Experimental results are shown
in Table 3] ATTs in Table [3|represents multi-attribute clas-
sification. In all scale test sets, the performance of ID super-
vised classification significantly outperforms CCL which
is the state-of-the-art method in VehicleID. Note that at-
tributes classification including only vehicle model is also
used in [1]] to corporate with the ranking method. Unfor-
tunately, ID label, which can also be treated as a special
attribute, is ignored. The result in second row demonstrates
its effectiveness for vehicle search.

To learn the more robust feature representation, model
and color information are added to constitute a multi-

attribute classification task. The experimental result in the
third row of Table[3] shows that multi-attribute supervised
classification further boosts the performance in all scales.
Benefited from the model and color information, ID can
better separate different vehicles especially for the case that
vehicles have similar appearances but different models or
colors. The results prove that multi-task learning is an au-
thentically effective strategy to strengthen the feature rep-
resentation with multiple constraints compared with single
task learning.

In order to validate the performance of different network
architectures, we also conduct the experiment of multi-
attribute classification on GoogLeNet [14] which has more
layers. The result in the fourth row of Table[3] shows
that GoogLeNet achieves the comparable performance with
VGG in small and medium sets, but outperforms VGG in
the large set. Considering that the deeper network can learn
better representation in a large-scale training set, we adopt
GoogLeNet as our basic network in the rest of experiments.

5.2. Multi-grain Constraints based Ranking

Based on the diverse attributes of a vehicle, we leverage
four grains to represent relations between an anchor image
and reference images. Specifically, a reference image must
belong to one of the following categories: 1) being the same
vehicle with the anchor image (i.e., having the same ID). 2)
being the same model and color with the anchor image, but
belonging to different vehicles. 3) being the same model
but the different color with the anchor image. 4) others.

We first utilize multi-attribute to train initial weights for
GoogLeNet, which is prepared to conduct ranking learning.
As our target is to learn the discriminative feature to facili-
tate precise vehicle search with abundant training data, we
attempt to train the GoogLeNet from scratch instead of us-
ing weights pre-trained in ImageNet. The vehicle model
label is used to constrain the two auxiliary classification
losses in GoogLeNet. After the initial weights are trained,
all the experiments about ranking learning are fine-tuned on
those weights.

Experiment settings: For the proposed two methods,
the smallest input unit is a MGL containing five images in-
cluding one anchor image and four reference images from
four grains respectively. For GPR, we adopt feature con-
catenation as the fusion strategy. The batch size of the net-
work is set to 75. The initial learning rate is set to 0.01 for
new layers of ranking learning and 0.001 for others. The
learning rate decay factor is 0.96 for every 4,000 iterations.
The weight decay factor is set to 0.0002. As for MGLR, all
settings are the same with GPR except for the batch size,
which is set to 90.

To compare with existing methods, we implement two
ranking methods in our learning framework, including gen-
eral pairwise ranking and triplet ranking. We also attempt
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to implement the method [30] which embeds hierarchical
relations on feature learning, but it is not converged as the
strong constraints are hard to optimize directly. Note that
all the procedures are the same with our methods except for
the ranking method. In the test phase, we extract features
from the pool5_7x7_s1 layer. We evaluate the performance
with mAP in all experiments.

Results and analysis: The performances of all methods
on VDI and VD2 are shown in Table[dand Table[5] respec-
tively. Several conclusions can be drawn from the results.
First, considering the first and second rows in the two ta-
bles which are results of multi-attribute classification, the
performance of the model trained from scratch significantly
outperforms the model pre-trained in ImageNet. The results
conflict with conventional experience as we have a mass of
training data (422,326 images in VD1 and 342,608 images
in VD2) enough to learn vast parameters from zero. On
the contrary, the initial parameters learned from a large uni-
versal dataset may influence the performance since a large
domain gap exists between ImageNet and vehicle dataset.

Table 4. The performance of precise vehicle search on VD1
dataset.

Methods Small | Medium | Large
Fine-tune for ATTs 0.492 0.285 0.239
New model for ATTs | 0.734 0.532 0.461
ATTs + Pairwise [22]] | 0.747 0.546 0.474
ATTs + Triplet [26] | 0.759 0.556 0.482
ATTs + GPR 0.776 0.575 0.501
ATTs + MGLR 0.791 0.583 0.511

Table 5. The performance of precise vehicle search on VD2
dataset.

Methods Small | Medium | Large
Fine-tune for ATTs | 0.553 0.379 0.317
New model for ATTs | 0.685 0.544 0.492
ATTs + Pairwise [22] | 0.692 0.567 0.517
ATTs + Triplet [26] | 0.710 0.575 0.523
ATTs + GPR 0.717 0.588 0.537
ATTs + MGLR 0.747 0.606 0.553

Second, on the basis of powerful representation from
multi-attribute classification, pairwise and triplet ranking
methods can achieve some improvements (e.g., 0.01 for
pairwise and 0.02 for triplet in terms of mAP) in precise
vehicle search, which indicates the effectiveness of multi-
task learning integrating attributes classification and rank-
ing learning. The results also demonstrate that ranking
methods indeed facilitate feature representation in CNNs.
Additionally, triplet ranking achieves slightly better perfor-
mance compared to pairwise ranking.

Third, our proposed two methods achieve promising per-
formances. From the third and fifth rows in the two ta-

bles, the GPR method surpasses standard pairwise ranking
method by about 0.03 in VD1 and 0.02 in VD2 in terms
of mAP. It also outperforms the triplet ranking method in
all scales of reference sets. These results strongly suggest
that multi-grain constraints can effectively facilitate sim-
ilarity learning for vehicle search. Furthermore, MGLR
method achieves the state-of-the-art performance in both
two datasets. It shows that the permutation probability
model based ranking method is more effective for precise
vehicle search. The reason may be that it can directly opti-
mize the permutation of a multi-grain list images well.

6. Conclusion

In this paper, we focus on the problem of precise vehicle
search, which aims at finding out the images belonging to
exactly the same vehicle with the query image. To address
the problem, we first summarize the relationship between
different vehicle images as multiple grains by using diverse
attributes of vehicles. Based on the multi-grain constraints,
we further propose two ranking methods, generalized pair-
wise ranking and multi-grain based list ranking, which are
incorporated with multi-attribute classification in a unified
deep learning framework. To further facilitate the research
on this problem, we contribute two high-quality and well-
annotated vehicle datasets, which are the largest vehicle
datasets so far. Experimental results show that our meth-
ods achieve promising performances on the new datasets.
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