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Abstract

Precise search of visually-similar vehicles poses a great

challenge in computer vision, which needs to find exactly

the same vehicle among a massive vehicles with visually

similar appearances for a given query image. In this pa-

per, we model the relationship of vehicle images as mul-

tiple grains. Following this, we propose two approaches

to alleviate the precise vehicle search problem by exploit-

ing multi-grain ranking constraints. One is Generalized

Pairwise Ranking, which generalizes the conventional pair-

wise from considering only binary similar/dissimilar rela-

tions to multiple relations. The other is Multi-Grain based

List Ranking, which introduces permutation probability to

score a permutation of a multi-grain list, and further opti-

mizes the ranking by the likelihood loss function. We im-

plement the two approaches with multi-attribute classifi-

cation in a multi-task deep learning framework. To fur-

ther facilitate the research on precise vehicle search, we

also contribute two high-quality and well-annotated vehicle

datasets, named VD1 and VD2, which are collected from

two different cities with diverse annotated attributes. As

two of the largest publicly available precise vehicle search

datasets, they contain 1,097,649 and 807,260 vehicle im-

ages respectively. Experimental results show that our ap-

proaches achieve the state-of-the-art performance on both

datasets.

1. Introduction

With the rapid development and popularization of secu-

rity systems, there is a growing need for precise vehicle

search from a huge number of images captured by various

surveillance cameras. Given a query vehicle image, precise

∗Corresponding author: Yonghong Tian

Figure 1. Some vehicle images. The first two rows exhibit vehicle

images of different cars while the last two rows show some images

of the same car.

vehicle search aims at finding out all instances of that ve-

hicle. Intuitively, license plate recognition can be used to

solve this problem under the assumption that license plate

number is unique and recognisable for each vehicle. Unfor-

tunately, such an assumption does not hold in some practi-

cal situations as the license plate can be easily removed, oc-

cluded or faked [1]. Precise vehicle search based on visual

features can thus serve as a significant alternative approach

to steadily identify a vehicle by taking vehicle’s visual ap-

pearances into consideration. However, different cars may

have similar visual appearances, such as the same color and

the same vehicle model (product year and type). An illus-

tration of such a phenomenon is displayed in Fig.1, where

the four vehicles in the second row have nearly the same ap-
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pearance except for some minor differences at windscreens.

These differences can only be discovered through carefully

observations even for humans. Although some existing

works attempt to address this problem, their performances

in practical applications are still limited. Lack of large la-

beled training set is an obvious reason. Collecting a large-

scale vehicle search dataset containing all popular vehicle

models from real scenes with meticulously annotated con-

tents is a notoriously difficult task. As far as we know,

most published vehicle datasets [2, 3, 4] are constructed

for vehicle attribute recognition, with annotations on sev-

eral attributes such as type, make and color. There exist two

small datasets related with vehicle search, VeRi [5] and Ve-

hicleID [1]. VeRi dataset contains only 50,000 images from

776 vehicles. The scale of this dataset is small, thus only

a few visually-similar vehicles are included. Relatively,

VehicleID dataset [1] is more suitable for precise vehicle

search, in which each vehicle is assigned with a unique ID.

However, limitations also exist in VehicleID as it 1) collects

only about 221,763 images from 26,267 vehicles and 2) an-

notates only 10,319 vehicles (90,196 images) with vehicle

model information. Totally, 250 vehicle models appear in

this dataset, which is far from enough since thousands of

popular vehicle models could appear in a real world search-

ing task. In this paper, we contribute two large-scale vehicle

datasets (VD1 and VD2) captured from real world surveil-

lance cameras and videos in two cities. With 1,097,649 and

807,260 images being collected and carefully annotated, the

datasets contain almost all popular vehicle models and col-

ors. To our knowledge, VD1 and VD2 are the largest high-

quality annotated vehicle datasets published so far.

Apart from lacking sufficient training data, model design

also limits the searching performance. Some researchers

consider that person re-identification (Re-ID) related ap-

proaches [6] can be directly used to solve precise vehicle

search problem [1]. Specifically, the color and model an-

notations in these methods are used as supervised labels for

classification whilst the ID information is used to generate

pairwise or triplet (including some variation) training sam-

ples only. The performance of these Re-ID methods are

still not good enough because of two reasons. First, they

use ID information just to form image pairs/triplets, without

considering the fact that ID is also a natural and strong at-

tribute. Second, they only consider binary relationship (i.e.,

’similar’ and ’dissimilar’) between vehicle images. We ar-

gue that in order to perform the accurate search on vehi-

cle data, image annotations and relationships must be fully

explored and utilised. To verify this claim, we propose a

multi-task deep learning framework that can be trained in

attribute classification task and multi-grain based ranking

task simultaneously. Different from existing models, we

treat ID as an attribute of vehicle images and perform classi-

fication task on both ID and conventional vehicle attributes

such as model and color. Instead of using binary relation-

ship only, we summarize the relationship of vehicle images

as multiple grains. Specifically, in the first grain two vehicle

images belong to the same vehicle. The second grain is that

they belong to different vehicles but having the same model

and color. The rest can be defined in the same manner. The

most farthest grain is that they belong to different models

and colors. By introducing multi-grain relationships, we

force the deep model to learn the more discriminative fea-

ture between different grains over a great deal of images.

As the result, multi-grain relations are embedded in feature

space so as to improve the searching performance.

Based on the multi-grain relations, we propose two rank-

ing approaches. The first approach is generalized pairwise

ranking (GPR). Conventional pairwise ranking methods di-

rectly transform ranking problem to binary classification

problem after fusing the feature of anchor images and ref-

erence images. Similarly, we generalize the formulation

from binary (0/1) to multiple relations (0/1/2/3...n) by em-

bedding the multi-grain constraints. Experimental results

show that our approach outperforms the conventional pair-

wise approaches.

Considering the hierarchical structure of multi-grain

constraints, we also propose a multi-grain based list rank-

ing (MGLR) approach. In this model, a list of multi-grain

images is maintained during training, in which the rank-

ing is explicitly corresponding to the multi-grain relation-

ship. We assume that any permutation for a list of images

is possible after using the ranking function, but different

permutations may have different likelihood values. To sat-

isfy those requirements, we introduce the permutation prob-

ability [7, 8], which is an important model in document re-

trieval. It has desirable properties for representing the like-

lihood of a permutation. To this end, ranking of a list of im-

ages including different grains can be evaluated by the like-

lihood value. The likelihood loss is adopted as loss function

for the multi-grain list ranking approach. Experimental re-

sults demonstrate this approach achieves the state-of-the-art

performance in precise vehicle search.

The rest of this paper is organized as follows. Related

works are presented at section 2. In section 3, we introduce

our proposed two multi-grain based ranking approaches in

detail. Section 4 gives the description of the two large-scale

vehicle datasets including data collection, annotation and

evaluation. Experiments are shown in section 5.

2. Related Works

Image search Traditional image search methods espe-

cially for object search focus on both feature representa-

tion and similarity learning. Generally, after representing

an image with hand-crafted features (e.g., [9, 10]), a dis-

tance metric learning method (e.g., [11, 12]) is adopted to

learn an optimal metric which minimizes the distance be-
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Figure 2. The distribution of vehicles with different constraints in feature space. Each marker represents the feature of a vehicle image.

For example, images of ID1 and ID2 come from different vehicles, but they have the same model and color; Images of ID1 and ID4 have

different colors and the same model.

tween similar images and maximizes the distance between

dissimilar images simultaneously. For a long time, the per-

formance is limited as they are optimized in separate steps

[13].

Recent advances in image understanding [14, 15, 16]

have been driven by the success of deep convolutional neu-

ral networks (CNNs). With proper network architecture,

feature representation and similarity learning can be incor-

porated in a unified deep framework [17]. Several similarity

constraints have been proposed for feature representation in

deep networks. For instance, Siamese networks [18] orga-

nize input images as similar and dissimilar pairs, after that, a

two branch network with shared parameters across branches

are trained to minimize a pairwise contrastive loss. Such a

pairwise ranking method and its variants have achieved im-

pressing performances for various tasks, such as face veri-

fication [19] and person Re-ID [20, 21]. Additionally, Sun

et.al [22] and Yi et.al [23] propose the improved method that

utilizes multi-task learning to jointly optimize classification

and pairwise ranking losses. The multi-task strategy is also

adopted in our methods to augment feature representation.

Apart from the pairwise related works, some researchers

utilize triplet constraints to learn the similarity ranking in

a CNN framework [24, 25, 26]. Triplet ranking methods

can be used to address face recognition [24], cross-domain

image retrieval [25] and person Re-ID [26]. They have

achieved promising performances since triplet can preserve

the intra-class variation well.

Vehicle search Precise vehicle search aims to search out

all instances for a given object image. Its main challenge is

that the inter-class variance may be as small as the intra-

class variance since there are many vehicles having the

same model and color. Although there are some existing

works on vehicle model classification [2, 27, 28, 29] and ve-

hicle model verification [3], only a few published works are

related to vehicle search [30, 5, 1]. Zhang et.al [30] propose

to model the label structures of vehicles and seamlessly em-

bed it into a deep framework by minimizing a generalized

multi-level triplet loss. Different from other triplet based

methods, they manually assign different margins for each

level to build triplet samples. Although this method can

achieve good performance for vehicle search, it only con-

sider the model level retrieval rather than the much harder

instance level retrieval addressed in this paper. Recently

Liu et.al [5] propose an approach to alleviate the vehicle

re-identification problem. They focus on filtering negative

images by license plate verification and spatiotemporal re-

lations. As a result, the method works well only when these

information is available. Liu et.al [1] also aims to address

precise vehicle search in images from surveillance cameras.

Considering that the distribution of positive samples maybe

disperse, it proposes a ranking loss named coupled cluster

loss to make positive samples clustered so as to improve the

retrieval performance. However, it only considers binary re-

lationship of vehicle images like most methods mentioned

above. In addition, it does not take into account the impor-

tance of vehicle attributes especially the ID label.

From above related works, we find that many intrinsic

and special information about vehicle is not be fully ex-

ploited. In this paper we summarize the relationship of ve-

hicle images as multiple grains and propose two multi-grain

based ranking approaches integrated with multi-attribute

classification in a multi-task CNN framework.

3. Methodology

3.1. Multi­grain Relationship

Given multiple attributes, the relationship between ve-

hicle images is abstracted to multiple grains. To model

the multi-grain labels, we first introduce the concept

of a multi-grain list (MGL). Specifically, each MGL

(a,R1, R2, · · · , Rn) consists of one anchor image a and N

reference images from n grain levels corresponding to the

anchor image a, where Rk = {rk1 , · · · , r
k
C}, C > 0 rep-
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Figure 3. The framework of a multi-task learning integrating GPR with multi-attribute classification. We only draw up four grains to

illustrate the main flow path of our method. All the images of a multi-grain list are extracted features in a shared CNN architecture. After

fusing the anchor feature with each reference feature, the fused feature is fed into a softmax classifier to conduct grain classification.

resents the reference image set from k-th grain level. For

example, r1c corresponds to the c-th reference image that

has the closest relationship to a (i.e., belonging to the same

vehicle with a) in the list. To constrain distinct distances

for different grains, we formulate multi-grain based ranking

problem as:

D(a,Rk) +mk < D(a,Rk+1),

m1 > 0,m2 > 0, · · · ,mk > 0
(1)

where D(a,Rk) represents the distance between the anchor

image and any reference image from grain k. There are

k hyper-parameters to control the distance margins across

multiple grains. It is worth noting that the distance con-

straints across multiple grains can be transmitted in Eq.1.

Triplet [24, 26, 25] and quadruplet [30] are special cases of

this formulation corresponding to n = 2 and n = 3 respec-

tively. Evidently, it properly reflects multi-grain constraints

of distances in feature space.

Treating image relationship as multi-grain is more rea-

sonable when multiple attributes are available for each

training image. A toy example is illustrated in Fig.2. The

distance of images belonging to the same vehicle maybe

close to the distance of images belonging to different ve-

hicles under ID constrained classification, as shown in the

left image of Fig.2. Cooperating with conventional rank-

ing methods (i.e., pairwise or triplet ranking) can alleviate

the problem and achieve some gains. However, the pair-

wise and triplet ranking only distinguish whether the images

come from the same vehicle as illustrated in the middle im-

age of Fig.2. With multi-grain constraints, we can suitably

reflect more accurate relationships in feature space as illus-

trated in the right image of Fig.2.

Although Eq.1 reveals the objective of multi-grain con-

straints based ranking and shows the generalized property

on some ranking models, it is difficult to directly optimize

it under so strong constraints. To optimize the objective, we

propose two approaches, generalized pairwise ranking and

multi-grain based list ranking.

3.2. Generalized Pairwise Ranking

Conventional pairwise ranking method splits training

data into positive (similar) pair set and negative (dissimilar)

pair set. Suppose that {(xi, xj , yij)} is a pair of training

data, where xi, xj are two images and yij ∈ {0, 1} indi-

cates their relationship. Generally, image pair xi, xj are first

fed into CNNs to extract high-level features, and then their

features are fused through some strategies (e.g., concatena-

tion or element-wise substraction), followed by some fully-

connected layers. Finally, contrastive loss or softmax loss

can be adopt to minimize the distance between a positive

pair and penalize the negative pair distance. It has achieved

promising performances in some tasks especially for per-

son Re-ID [21, 20]. However, it is not the best choice for

precise vehicle search as it only takes similar and dissimilar

relations of images into account.

Given these limitations, we propose the generalized pair-

wise ranking approach. Fig.3 illustrates its overall frame-

work. Specifically, input images are organised as a MGL.

After extracting deep features for each image in the MGL,

the feature of each reference image is fused with the anchor

feature respectively. Finally, a softmax classifier is used to

estimate which grain level each pair of input images be-

longs to. The loss function of the GPR for a MGL can be

formulated as

LGPR = −

N∑

i=1

log
ep(i,g(i))∑n

k=1 e
p(i,k)

, (2)

where p(i, k) represents the grain prediction value of i-th

image pair on k-th grain level and g(i) is the ground truth

grain of this pair. N is the number of image pairs in a

MGL. Despite the generalized pairwise ranking loss, we

also integrate multi-attribute classification to form a multi-

task learning framework.

In the whole, our method can be regarded as a joint opti-

mization problem. The overall loss function for a MGL can

be formulated by
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Figure 4. The framework of a multi-task learning integrating MGLR with multi-attribute classification. All images are extracted features

in a shared CNN architecture supervised by multi-attribute labels. After calculating the similarity score by inner product for each pair, they

are fed into the final layer to conduct list ranking learning.

LALL = −

h∑

y=1

λy

N+1∑

x=1

log
epy(x,a(x))

∑ty
j=1 e

py(x,j)
+ λLGPR, (3)

where py(x, j) represents the attribute prediction value of

x-th image in a MGL on j-th category of y-th attribute and

a(x) is the ground truth attribute of this image. ty is the

number of categories of y-th attribute. Here, we use three

types of attributes, namely vehicle ID, model and color. In

addition, λ is a hyper parameter to control the balance be-

tween similarity learning and attributes learning and λy is

used to assign weights to different attributes. As the num-

ber of image pairs in a MGL is N in Eq.2, the total number

of images in a MGL is N + 1 by adding the anchor image.

Generalized pairwise ranking adequately exploits multi-

grain information and transforms the rank learning problem

to a multi-class classification problem. Moreover, it is ef-

fective and easy to implement. Implementation details are

described in the experimental section.

3.3. Multi­grain based List Ranking

Except for generalized pairwise ranking, we also find

that the multi-grain constraints based ranking problem can

be formulated as a listwise learning-to-rank problem [7, 8],

which is an effective ranking method in document retrieval.

In this paper, we design a multi-task learning framework to

integrate list ranking with multi-attribute classification.

Fig.4 shows the pipeline of processing a list of multi-

grain images. After extracting features for all images, the

similarity for each image pair consisting of an anchor image

and a reference image can be computed as

s(fa, fri) =
1

2
[1 + (

fa

‖fa‖2
)T

fri
‖fri‖2

], (4)

where s(fa, fri) ∈ [0, 1] abbreviated as si is the similarity

score based on the feature of anchor image fa and the fea-

ture of reference image fri , which are extracted from the

CNN framework.

As for listwise ranking problem, we first introduce the

formal definition of a permutation. Suppose that the set of

reference images to be ranked are identified with the num-

bers 1, 2, · · · , N . A permutation π of reference images is

defined as a bijection from {1, 2, · · · , N} to itself. We de-

note the permutation as π =< π(1), π(2), · · · , π(N) > in

which π(i) represents the reference image at ranking po-

sition i. The number of all possible permutations for N

reference images is N !. We assume that any permutation

is possible after sorting as the similarity scores between the

anchor image and each reference image in descending or-

der. However, different permutations should have differ-

ent likelihood values according to its consistence with the

ranking result of similarity scores. To quantitatively eval-

uate the likelihood of a permutation, we utilize the permu-

tation probability [7] as its nice properties for representing

the likelihood of a ranking list, which can be calculated as

Ps(π) =

N∏

j=1

φ(sπ(j))
N∑
i=j

φ(sπ(i))

, (5)

where φ(·) is an increasing and strictly positive function and

sπ(j) denotes the similarity score between the anchor image

and the reference image ranking at position j in permutation

π. Based on the similarity scores of a MGL, each permuta-

tion has a probability value and the permutation can obtain

the highest likelihood value only if it is the descent sorting

sequence as similarity scores. More properties and theorem

proving are demonstrated in [7].

Based on the likelihood value of a permutation, a key

problem is to learn better features that can derive the ground

truth permutation based on similarity scores. Inspired by

the analysis of different listwise approaches in [8], we adopt

the listMLE method which is an effective method and easy

to implement. It employs the negative log likelihood of the

ground truth permutation as the loss function (i.e., the likeli-

hood loss). ListMLE is suitable to optimize the multi-grain
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constraints based list ranking since the multi-grain relation-

ship is fixed for a MGL and can generate ground truth per-

mutation easily. We formulate the loss function of a list of

images as

Llist(πgt) = − log

N∏

j=1

exp(sπgt(j))
N∑
i=j

exp(sπgt(i))

, (6)

where πgt is the ground truth permutation and we adopt the

exp form for function φ(·) in Eq.5. Stochastic gradient de-

scent is used to conduct the minimization. Fig.4 illustrates

the multi-grain based list ranking method in a multi-task

deep learning framework. Similar to generalized pairwise

ranking method, multi-attribute classification also plays an

important role here.

4. Large-scale Vehicle Datasets

4.1. Overall Description

In this paper, we construct two large-scale vehicle

datasets1 (i.e., VD1 and VD2) based on real-world uncon-

strained scenes from two cities respectively. The images in

VD1 are obtained from high resolution traffic cameras, and

images in VD2 are captured from surveillance videos. We

perform vehicle detection on the raw data to make sure that

each image only contains one vehicle. The region of plate

number has been covered by black color due to privacy pro-

tection. All vehicle images are captured from the front view.

Some example images are shown in Fig.5.

We provide diverse attribute annotations for each im-

age in both two datasets, including identity number, pre-

cise vehicle model and vehicle color. Specifically, iden-

tity number (ID) is unique and all images belong to the

same vehicle have the same ID (we make sure that there

are at least two images in the dataset for each vehicle

ID). We provide the most precise model type with detailed

vehicle type and different produced years. For example,

Audi-A6L-2012 2015, Audi-A6-2004, Audi-A4-2006 2008

and Audi-A4-2004 2005 are four different vehicle models

in our datasets. As for color information, 11 common col-

ors are annotated in our datasets. We carefully check all

annotations to ensure the consistency of labels so that all

the images belonging to the same vehicle ID are annotated

with the same vehicle model and color. To keep the datasets

generalized for fine-grained classification tasks, we also en-

sure that at least two vehicles exist for each precise vehicle

model.

4.2. Data Statistics and Split

VD1: There are total 1,097,649 images in the dataset.

We label 1,232 vehicle models and 11 colors. After

1Available at http://pkuml.org/resources/pku-vds.html

Figure 5. VD1 and VD2 datasets. Left images come from VD1,

and right images come from VD2. Images in the same row belong

to the same vehicle.

subtracting those improper images (e.g., models contain-

ing only one vehicle or images captured from the back),

846,358 images of 141,756 vehicles are remained in VD1.

To generalize to other vehicle related tasks, we split

dataset into training set and testing set. Specifically, we

randomly choose nearly half of vehicles from each vehicle

model to construct the training set. The remaining vehicles

constitute the testing set for classification task. The detail

information is shown in Table.1. For the vehicle search task,

we randomly select 2,000 vehicle IDs in the testing set, then

randomly select one image from each vehicle to form the

query list. Similar to VehicleID [1] dataset, we form ref-

erence sets in three scales (i.e., small, medium and large)

as shown in Table.2. However, the number of images for

each scale is significantly increasing compared with Vehi-

cleID. For the largest reference set, both improper images

and images of training set are included in order to augment

the search scale. Note that all the query vehicles have no

overlapping with training set.

VD2: There are total 807,260 images in the dataset. We

label 1,112 vehicle models and 11 colors. The split strategy

for this dataset is the same as VD1’s. The split for training

set and testing set are shown in Table.1 and the split for

different scale reference sets are shown in Table.2.

Table 1. Data split for training set and testing set.

Training Testing

VD1

No. of vehicle 70,591 71,165

No. of model 1,232 1,232

No. of color 11 11

No. of image 422,326 424,032

VD2

No. of vehicle 39,619 40,144

No. of model 1,112 1,112

No. of color 11 11

No. of image 342,608 347,910
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Table 2. Reference sets in different scales.
dataset Small Medium Large

VD1 106,887 604,032 1,097,649

VD2 105,550 457,910 807,260

5. Experiments

We conduct two parts of experiments. The first part is

to validate the effectiveness of multi-attribute classification

for precise vehicle search. Then, we conduct experiments

to prove the effectiveness of the proposed two multi-grain

constraints based ranking methods.

5.1. Multi­attribute Classification

Multi-attribute of a vehicle can naturally provide strong

constraints to learn discriminative feature for vehicle

search. However, they, especially the ID information, are

ignored for a long time. To validate the the efficiency of

multi-attribute classification, we train several deep models

with the softmax classifier.

Experiment settings: Experiments are conducted based

on the widely-used Caffe [31] deep learning framework. We

add a softmax classification layer after fc7 layer to train at-

tributes classification in VGG CNN M 1024 network [32].

Note that the network is fine-tuned on the weights pre-

trained with the ImageNet [33] dataset rather than trained

from scratch. All the settings are same with [1]. In addition,

we also follow the data split strategy in VehicleID. The loss

weights of ID, model and color are set to 1.0, 1.0, 1.0 re-

spectively. In test phase, we extract the features in fc7 layer

of test images, then directly utilize L2 distance to measure

the similarity between a query image and a reference im-

age. Mean average precision(mAP) is used to evaluate the

performance of different strategies.

Table 3. Attributes classification on VehicleID dataset.
Mehotd Small Medium Large

CCL (CVPR16 [1]) 0.546 0.481 0.455

ID(VGG) 0.597 0.598 0.552

ATTs(VGG) 0.625 0.623 0.575

ATTs(GoogLeNet) 0.628 0.623 0.586

Results and analysis: Experimental results are shown

in Table 3. ATTs in Table 3 represents multi-attribute clas-

sification. In all scale test sets, the performance of ID super-

vised classification significantly outperforms CCL which

is the state-of-the-art method in VehicleID. Note that at-

tributes classification including only vehicle model is also

used in [1] to corporate with the ranking method. Unfor-

tunately, ID label, which can also be treated as a special

attribute, is ignored. The result in second row demonstrates

its effectiveness for vehicle search.

To learn the more robust feature representation, model

and color information are added to constitute a multi-

attribute classification task. The experimental result in the

third row of Table.3 shows that multi-attribute supervised

classification further boosts the performance in all scales.

Benefited from the model and color information, ID can

better separate different vehicles especially for the case that

vehicles have similar appearances but different models or

colors. The results prove that multi-task learning is an au-

thentically effective strategy to strengthen the feature rep-

resentation with multiple constraints compared with single

task learning.

In order to validate the performance of different network

architectures, we also conduct the experiment of multi-

attribute classification on GoogLeNet [14] which has more

layers. The result in the fourth row of Table.3 shows

that GoogLeNet achieves the comparable performance with

VGG in small and medium sets, but outperforms VGG in

the large set. Considering that the deeper network can learn

better representation in a large-scale training set, we adopt

GoogLeNet as our basic network in the rest of experiments.

5.2. Multi­grain Constraints based Ranking

Based on the diverse attributes of a vehicle, we leverage

four grains to represent relations between an anchor image

and reference images. Specifically, a reference image must

belong to one of the following categories: 1) being the same

vehicle with the anchor image (i.e., having the same ID). 2)

being the same model and color with the anchor image, but

belonging to different vehicles. 3) being the same model

but the different color with the anchor image. 4) others.

We first utilize multi-attribute to train initial weights for

GoogLeNet, which is prepared to conduct ranking learning.

As our target is to learn the discriminative feature to facili-

tate precise vehicle search with abundant training data, we

attempt to train the GoogLeNet from scratch instead of us-

ing weights pre-trained in ImageNet. The vehicle model

label is used to constrain the two auxiliary classification

losses in GoogLeNet. After the initial weights are trained,

all the experiments about ranking learning are fine-tuned on

those weights.

Experiment settings: For the proposed two methods,

the smallest input unit is a MGL containing five images in-

cluding one anchor image and four reference images from

four grains respectively. For GPR, we adopt feature con-

catenation as the fusion strategy. The batch size of the net-

work is set to 75. The initial learning rate is set to 0.01 for

new layers of ranking learning and 0.001 for others. The

learning rate decay factor is 0.96 for every 4,000 iterations.

The weight decay factor is set to 0.0002. As for MGLR, all

settings are the same with GPR except for the batch size,

which is set to 90.

To compare with existing methods, we implement two

ranking methods in our learning framework, including gen-

eral pairwise ranking and triplet ranking. We also attempt
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to implement the method [30] which embeds hierarchical

relations on feature learning, but it is not converged as the

strong constraints are hard to optimize directly. Note that

all the procedures are the same with our methods except for

the ranking method. In the test phase, we extract features

from the pool5 7x7 s1 layer. We evaluate the performance

with mAP in all experiments.

Results and analysis: The performances of all methods

on VD1 and VD2 are shown in Table.4 and Table.5, respec-

tively. Several conclusions can be drawn from the results.

First, considering the first and second rows in the two ta-

bles which are results of multi-attribute classification, the

performance of the model trained from scratch significantly

outperforms the model pre-trained in ImageNet. The results

conflict with conventional experience as we have a mass of

training data (422,326 images in VD1 and 342,608 images

in VD2) enough to learn vast parameters from zero. On

the contrary, the initial parameters learned from a large uni-

versal dataset may influence the performance since a large

domain gap exists between ImageNet and vehicle dataset.

Table 4. The performance of precise vehicle search on VD1

dataset.
Methods Small Medium Large

Fine-tune for ATTs 0.492 0.285 0.239

New model for ATTs 0.734 0.532 0.461

ATTs + Pairwise [22] 0.747 0.546 0.474

ATTs + Triplet [26] 0.759 0.556 0.482

ATTs + GPR 0.776 0.575 0.501

ATTs + MGLR 0.791 0.583 0.511

Table 5. The performance of precise vehicle search on VD2

dataset.
Methods Small Medium Large

Fine-tune for ATTs 0.553 0.379 0.317

New model for ATTs 0.685 0.544 0.492

ATTs + Pairwise [22] 0.692 0.567 0.517

ATTs + Triplet [26] 0.710 0.575 0.523

ATTs + GPR 0.717 0.588 0.537

ATTs + MGLR 0.747 0.606 0.553

Second, on the basis of powerful representation from

multi-attribute classification, pairwise and triplet ranking

methods can achieve some improvements (e.g., 0.01 for

pairwise and 0.02 for triplet in terms of mAP) in precise

vehicle search, which indicates the effectiveness of multi-

task learning integrating attributes classification and rank-

ing learning. The results also demonstrate that ranking

methods indeed facilitate feature representation in CNNs.

Additionally, triplet ranking achieves slightly better perfor-

mance compared to pairwise ranking.

Third, our proposed two methods achieve promising per-

formances. From the third and fifth rows in the two ta-

bles, the GPR method surpasses standard pairwise ranking

method by about 0.03 in VD1 and 0.02 in VD2 in terms

of mAP. It also outperforms the triplet ranking method in

all scales of reference sets. These results strongly suggest

that multi-grain constraints can effectively facilitate sim-

ilarity learning for vehicle search. Furthermore, MGLR

method achieves the state-of-the-art performance in both

two datasets. It shows that the permutation probability

model based ranking method is more effective for precise

vehicle search. The reason may be that it can directly opti-

mize the permutation of a multi-grain list images well.

6. Conclusion

In this paper, we focus on the problem of precise vehicle

search, which aims at finding out the images belonging to

exactly the same vehicle with the query image. To address

the problem, we first summarize the relationship between

different vehicle images as multiple grains by using diverse

attributes of vehicles. Based on the multi-grain constraints,

we further propose two ranking methods, generalized pair-

wise ranking and multi-grain based list ranking, which are

incorporated with multi-attribute classification in a unified

deep learning framework. To further facilitate the research

on this problem, we contribute two high-quality and well-

annotated vehicle datasets, which are the largest vehicle

datasets so far. Experimental results show that our meth-

ods achieve promising performances on the new datasets.
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