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Abstract

This paper presents the DeepCD framework which

learns a pair of complementary descriptors jointly for im-

age patch representation by employing deep learning tech-

niques. It can be achieved by taking any descriptor learn-

ing architecture for learning a leading descriptor and aug-

menting the architecture with an additional network stream

for learning a complementary descriptor. To enforce the

complementary property, a new network layer, called data-

dependent modulation (DDM) layer, is introduced for adap-

tively learning the augmented network stream with the em-

phasis on the training data that are not well handled by

the leading stream. By optimizing the proposed joint loss

function with late fusion, the obtained descriptors are com-

plementary to each other and their fusion improves perfor-

mance. Experiments on several problems and datasets show

that the proposed method1 is simple yet effective, outper-

forming state-of-the-art methods.

1. Introduction

Representing a local image patch by a descriptor is a

fundamental computer vision task with a variety of appli-

cations such as image matching [7, 15], alignment [14],

structure from motion and object recognition. Many de-

scriptor methods have been proposed and early descriptors

are mostly hand-crafted [22, 36, 27, 6, 19, 4, 33, 30]. Al-

though with decent performance in many applications, man-

ually designed rules can not be thorough and often lead to

sub-optimal results. Recent advances on deep learning have

inspired several descriptor methods to further improve de-

scriptor performance by exploring convolutional neural net-

works (CNNs).

Deep learning has been used for learning both descrip-

tor embeddings and similarity metrics. Metric learning has

been achieved by decision network [40] or pairwise similar-

ity learning [17]. Significant improvement can be obtained

but at the cost of very expensive computation during testing.

1Source code avaliable at https://github.com/shamangary/DeepCD

As an example, one of such metric learning methods could

take 104 times of computation than using the L2 norm as the

distance metric between patches. Such a high testing cost

prevents them from being employed in many applications

despite their excellent performance. Thus, in this paper, we

focus on descriptor embedding and simply use L2 norm or

the Hamming distance as the dissimilarity metrics.

This paper proposes to learn two complementary de-

scriptors jointly. The approach is inspired by feature fusion.

The fusion of multiple features has been shown effective in

vision and multimedia applications. It has been shown that,

as long as the features are complementary, even simple late

fusion schemes by adding or multiplying scores can signif-

icantly improve results. However, for manually crafted fea-

tures, it is impossible to know in advance whether they are

complementary. Thus, the main challenge of feature fusion

is to select complementary features. By employing deep

learning for descriptor embedding, we could learn descrip-

tors that are guaranteed complementary to each other by for-

mulating the complementary property into the loss function.

By complementary, we mean that using these descriptors

jointly outperforms using them individually.

This paper proposes the DeepCD framework for learn-

ing complementary descriptors and formulates a joint loss

function for enforcing the complementary property. The

proposed DeepCD framework learns a complementary de-

scriptor along with a leading descriptor. It can be done by

taking any descriptor learning architecture and augmenting

it with a network stream for learning the complementary

descriptor. By optimizing the proposed joint loss function,

we obtain a leading descriptor which performs well by itself

and its complementary descriptor which focuses on helping

the leading one. Note that the complementary descriptor

could perform poorly by itself. It is important that the de-

scriptors are asymmetric. By requiring that one is primary,

the other can focus on learning residual information to help

the primary one. It would be easier for the complementary

one to focus on the failure cases that the primary one can not

perform well. We further propose a novel network layer

termed data-dependent modulation (DDM) layer for adap-

tively modulating the learning rate of the complementary
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network stream in a data-specific fashion. It follows that

the corner cases are better addressed with the extra comple-

mentary descriptor.

The main contributions of the paper are as follows. First,

we propose the concept of joint embedding of complemen-

tary descriptors. Second, we provide a design of the joint

loss function coupled with the DDM layer for enforcing

the complementary property properly. Finally, the proposed

method is simple yet effective. We applied it to several

problems and datasets and obtained significant improve-

ment against the state of the art.

2. Related work

Early hand-crafted descriptor methods, such as SIFT

[22], LIOP [36] and CovOpt [30], encode spatial informa-

tion into the descriptors. Our method employs deep learn-

ing techniques for extracting descriptors and we will review

related deep learning methods in this section.

2.1. Deep learning methods for descriptors

Fischer et al. presented an early attempt on applying

deep learning to descriptors [8]. Although showing signifi-

cant improvement against SIFT, the output dimension is too

high and the method requires a lot of training data. Later,

more progresses on descriptors have been made on learning

both descriptors and metrics.

Learning descriptor embedding. Methods of this cate-

gory learn descriptor embedding but use conventional met-

rics such as L2 norm. Several loss functions have been pro-

posed for improving descriptor embedding, such as hinge

loss [29], SoftMax ratio [13], SoftPN [2, 3], and Margin

ranking loss [3]. They have been used in siamese and triplet

networks. Different sampling schemes have also been pro-

posed in Deepdesc [29] and PNNet [2]. Several training

schemes were proposed in different application areas, such

as face feature embedding by using triplet network train-

ing [28, 1] or by two-stage hashing scheme [41], and image

retrieval using lifted structure [31]. Some focused on learn-

ing a pipline for image matching [39, 38].

Decision network. In addition to embedding, several meth-

ods also learn similarity metrics, such as Deepcompare [40]

and Matchnet [11]. For computing the similarity, several

fully connected layers called decision network are used.

Kumar et al. further improved the performance by optimiz-

ing global loss [17]. These methods often achieve great per-

formance at an expensive cost on memory and computation.

2.2. Other related deep learning methods

Fusion of information. For fine-grained recognition, Lin et

al. proposed to use two distinct streams and combine them

into a single result using bilinear pooling [21]. This method

greatly improves the recognition performance, but creates

a very high dimensional feature vector. A more compact

method called compact bilinear pooling (CBP) [10, 9] has

been proposed.

Joint loss functions. Several joint loss functions have been

proposed for knowledge distillation [12]. For instance, Fit-

Nets [26] adopts two separate network models, the teacher

and the student networks, and the optimization focuses on

copying the output results from the teacher network to the

student network with a smaller size. Although it achieves an

impressive compression rate, for our application, mimick-

ing the existing teacher network will not provide any gain.

With a fixed learning rate in the leading stream, the pro-

posed DDM layer dynamically determines the learning rate

of the augmented stream for each training sample. The

DDM layer enables the adaptive collaboration between the

leading and the augmented streams.

3. DeepCD framework

Given an image patch q, the goal of a feature descriptor

method is to find a mapping from q to its representation

d(q), which is an n-d vector (either real-valued or binary).

In the past, most descriptor mappings were hand-crafted.

Recently, convolutional neural networks (CNNs) have been

employed for learning the embedding of feature descriptors.

Given a pair of patches qi and qj , the dissimilarity ∆ij

between them is defined as

∆ij , D(d(qi), d(qj)), (1)

where D is the distance function. Typically, L2 norm is

used for real-valued descriptors and the Hamming distance

is often used for binary ones. However, some recent deep

learning descriptor methods also learn complex functions

D for measuring distances between descriptors. Such a

learned metric often requires a decision network and is of-

ten very slow to compute. Thus, in this paper, we only focus

on learning the descriptor embedding and use the more ef-

ficient L2 norm or Hamming distance as the metric. This

way, various well-studied techniques such as KD-tree or

ANN could be more readily applied [2].

Recent deep learning methods of feature descriptors uti-

lize patch pairs {qi, qj} and find a good mapping by min-

imizing the Hinge embedding loss L(∆ij), which penal-

izes corresponding pairs that are placed far apart and non-

corresponding pairs that are close in the descriptor space.

The descriptor d can then be found by optimizing

d = argmin
d

X

ij

L(∆ij). (2)

Instead of learning a single descriptor, the proposed

DeepCD method learns two descriptors jointly for a single

patch q, a leading descriptor d(q) and a complementary de-

scriptor d(q). That is, we would learn a joint embedding
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(d, d) for a patch. Similar to the dissimilarity ∆ij for the

leading descriptor, we define the dissimilarity ∆ij for the

complementary descriptor as

∆ij , D(d(qi), d(qj)), (3)

where D is the distance function for complementary de-

scriptors. Again, we simply use L2 norm if the complemen-

tary descriptor is real-valued and the Hamming distance if

it is binary. Finally, we define a joint loss function as:

J(qi, qj) = L(∆ij) + λL0(Φ(∆ij ,∆ij)), (4)

where λ is a weighting factor for determining the relative

importance of both terms; Φ is a late fusion function which

combines two dissimilarity scores into a single one; and

both L and L0 play the similar role as explained above. The

first term in Equation 4 encourages the leading descriptor

performs well by itself while the second term requires that

the combination of the leading descriptor and the comple-

mentary descriptor performs well. Thus, the leading de-

scriptor learns to be a good descriptor alone while the com-

plementary descriptor focuses on helping the leading one

by learning residual information. The proposed DeepCD

framework finds the joint embedding by optimizing

(d, d) = argmin
d,d

X

ij

J(qi, qj). (5)

In the DeepCD framework, one has to determine the late

fusion function Φ and the network architecture for learning

the leading descriptor d and the complementary descriptor

d. For late fusion, there are several strategies for combining

the scores of multiple features, such as the sum, product and

maximum rules. In this paper, we employ the product rule

for similar reasons as Zheng et al. [35]. First, it has been

demonstrated that the product rule has very similar, if not

superior, performance to the sum rule. Second, the product

rule adapts well to input data with different scales and does

not require heavily a proper normalization of the data.

3.1. Network architectures

We decide to use a real-valued leading descriptor while

having a binary complementary descriptor. The leading de-

scriptor is real-valued because real-valued descriptors are

usually more effective. We opt for a binary complemen-

tary descriptor for two reasons. First, binary descriptors are

more compact. Second, different types of descriptors have

a better chance to be complementary to each other.

As for network architecture, in this paper, we choose

to model after the architecture of PNNet [2] because of its

state-of-the-art performance. The top of Figure 1 displays

the architecture of the PNNet. There are essentially two

streams in the DeepCD network, one for the leading de-

scriptor and the other for the complementary descriptor. We

spatial 

conv
tanh

spatial  

maxpooling

fully 

connected
sigmoid

hard threshold 

(testing stage)

S
C

ta
n
h

S
M S
C

ta
n
h

F
C

F
C

ta
n
h

ta
n
h

F
C

S
ig

S
C

ta
n
h

S
M S
C

ta
n
h

F
C

F
C

ta
n
h

ta
n
h

F
C

S
ig

S
C

ta
n
h

S
M S
C

ta
n
h

Splitting

2-stream

Leading 

(128 dims)

Complementary 

(256 bits)

Leading 

(128 dims)

Complementary 

(256 bits)

S
C

ta
n
h

S
M S
C

ta
n
h

F
C

ta
n
h

PNNet
Descriptor 

(128 dims)

S
C

ta
n
h

S
M F
C

S
ig

Figure 1. Network architectures of the proposed models. The

top shows the PNNet model [2]. The middle illustrates the split-

ting model. Starting with a single stream, the model splits into

two streams after the fifth layer. The leading stream continues to

model after PNNet while the complementary stream has its own

fully-connected layers and sigmoid transfer layer for making a bi-

nary descriptor. The bottom shows the 2-stream model which uses

two separated streams from the beginning, one for leading and the

other for complementary. The gray blocks denote the augmented

parts of the proposed DeepCD framework.

propose two network models, the splitting model and the 2-

stream model. They are demonstrated in Figure 1, the gray

blocks denote the parts augmented to the PNNet model.

Splitting model. The PNNet model can be represented

as {Conv(7,7)-Tanh-SpatialMaxPool(2,2)-Conv(6,6)-Tanh-

FC(4096!128)-Tanh}. In this model, there is a sin-

gle stream modelled after PNNet at the beginning. Af-

ter the fifth layer, the stream is split into two streams, the

leading stream continues PNNet while the complementary

stream is formed by augmenting {FC(4096!128)-Tanh-

FC(128!256)-Sigmoid2}. The sigmoid function plays the

role for smooth binarization. The inputs of the leading

stream and the complementary stream are the same from

the previous layer3. The model is demonstrated at the mid-

dle of Figure 1. Note that, during training, we do not ac-

tually quantize the complementary descriptor into binary so

that it is easier to optimize.

2-stream model. This model uses two separate

streams for the two descriptors from the beginning

to the end. The leading stream is the same as

the PNNet model, while the complementary stream

is {Conv(7,7)-Tanh-SpatialMaxPool(2,2)-Conv(6,6)-Tanh-

FC(4096!128)-Tanh-FC(128!256)-Sigmoid}. The bot-

tom of Figure 1 illustrates the model. It is obvious that the

model size of the splitting model is much smaller than that

2To neutralize the effect of quantization error, we use the sigmoid func-

tion, 1/ (1 + exp (−100 ∗ t)).
3It was implemented by using torch function torch.ConcatTable().
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of the 2-stream model. On the other hand, the 2-stream

model offers more flexibility and has better potential for ob-

taining a better complementary binary descriptor.

3.2. Joint optimization for triplets

Similar to PNNet, we use triplets for training rather than

pairs in Equation 5. A triplet contains three patches, qa, qp
and qn, where qa is the anchor patch; qp is a positive patch

which is a correspondence of qa; and qn is a negative patch

which is not a correspondence of qa. There are three patch

pairs in a triplet, one positive ({qa, qp}) and two negative

({qa, qn}, {qp, qn}). The joint loss function for a triplet is

J(qa, qp, qn) = L(∆ap,∆an,∆pn) (6)

+ λL0

✓

q

∆ap∆ap,

q

∆an∆an,

q

∆pn∆pn

◆

,

where λ = 5 and both L and L0 are essentially the SoftPN

function defined in the PNNet model [2],

L(δ+, δ−1 , δ−2 ) =
h

eδ
+

/
⇣

emin(δ−
1
,δ

−

2
) + eδ

+
⌘i2

(7)

+
⇣h

emin(δ−
1
,δ

−

2
)/

⇣

emin(δ−
1
,δ

−

2
) + eδ

+
⌘i

− 1
⌘2

,

but for L0, we do not take min. Note that we assign a higher

weight to the second term of Equation 6 since the fusion

score will be taken as the final score during the testing stage.

One thing to note is that the ranges of the distances for

the leading and the complementary descriptors are different

and a proper normalization is necessary. Since tanh is used

as the transfer function for the leading descriptor, each com-

ponent is within the range [−1,+1]. Assume that we use a

128-d leading descriptor and a 256-bit complementary de-

scriptor, the maximum distance for the leading descriptor is

128⇥22 while the maximum distance for the complementary

descriptor is 256⇥1. Thus, the distance of the complemen-

tary descriptor needs to be scaled by 2 to match up.

3.3. Data-dependent modulation layer

To further enhance the complementary property between

the two network streams, we introduce a data-dependent

modulation (DDM) layer. The DDM layer dynamically

learns the attenuation factors of the learning rate in the

augmented stream conditioned on training data. That is,

the learning rate will vary from training sample to training

sample in the augmented stream. This way, the augmented

stream is equipped with the flexibility in putting more em-

phasis on the training data that are not well represented by

the leading stream.

When stochastic gradient descent is used for network op-

timization, the DDM layer takes as input the set of all pair-

wise leading and complementary distances in the batch, i.e.,

x = [· · ·∆ij ,∆ij , · · · ]. The DDM layer is composed of

a fully connected layer followed by an activation function.

We use the sigmoid function here so that each element of

the output, w = [· · ·wk · · · ] 2 R
b, is ranged between 0 and

1, where b is the batch size. The output w then serves as

the attenuation factors of the learning rate in the augmented

stream. Namely, the learning rate for the kth training sam-

ple of the batch in backward propagation is adaptively set to

the original learning rate multiplied by wk. Since the learn-

ing rate in the leading stream remains fixed, the dynamic

learning rate in the augmented stream controls the relative

importance of the two streams in a sample-dependent way.

It is worth mentioning that the DDM layer is involved only

in backward propagation. Thus, no extra computation is re-

quired in the stage of testing.

Unlike SoftPN [3, 2] and sMCL [18] which only update a

single network stream for a training sample, the DDM layer

allows the two streams in the DeepCD framework to be

learned adaptively and jointly so that they can better collab-

orate to make predictions through late fusion. For smoother

optimization, we follow the strategy of STN [16]: the learn-

ing rate of the DDM layer is set to 10−3⇠10−4 of the base

learning rate for the rest of the network.

3.4. Comparing two patches

Both L and L0 in Equation 6 are functions of descriptors

d and d, the outputs of DeepCD. They are both differen-

tiable. Thus, the proposed DeepCD framework can be op-

timized by using stochastic gradient descent (SGD). After

optimization, we obtain the joint feature descriptor (d, d).

Given two patches qi and qj , we first extract their descrip-

tors (d(qi), d(qi)) and (d(qj), d(qj)). The dissimilarity of

the leading descriptor is ∆ij = kd(qi)−d(qj)k
2
2 and the one

for the complementary is ∆ij = kd(qi) − d(qj)k
2
2 (imple-

mented by calculating Hamming distance since the descrip-

tor is binary). The final dissimilarity between two patches is

calculated by the product late fusion as the product ∆ij∆ij .

Note that in practice, the proposed scheme allows us to

compute ∆ij first by using efficient Hamming distance cal-

culation or even hash-table-based search [24, 25] and then

determine whether it is necessary to calculate the more ex-

pensive ∆ij . For example, for similar patches with very

small ∆ij values, one could skip the calculation of ∆ij and

declare that they are matched.

4. Experiments

We implemented the proposed method with Torch and

Matlab. The experiments were performed on a Linux ma-

chine with NVIDIA GTX1070. Our models were trained

using SGD with the parameters, 0.1 learning rate, 10−6

decay rate, 10−4 weight decay and 0.9 momentum. The

batch size is 128. We applied the proposed method to a

few problems and datasets, including a local image patch

benchmark (Brown dataset [5]), a wide baseline matching

3317



Test Train
des.

2-stream

PNNet

+CBP

Deep

comp

Deep

desc
TNet PNNet

TFeat

Margin⇤
DeepCD

splitting

DeepCD

2-stream

DeepCD

2-stream

(DDM)

bytes 256 512 128 256 128 256 128 128+32

Notre.
Lib. 16.99 4.54

5.16
3.91 3.81 3.71 3.12 2.98 2.87 2.59

Yose. 18.22 5.58 5.43 4.45 4.23 3.85 3.51 3.02 2.95

Yose.
Lib. 34.46 13.24

18.21
10.65 9.55 8.99 7.82 8.27 7.78 7.03

Notre. 30.70 13.02 9.47 7.74 7.21 7.08 6.85 6.65 6.69

Lib.
Notre. 21.33 8.79

9.56
9.91 8.27 8.13 7.22 6.32 6.08 5.85

Yose. 32.47 12.84 13.45 9.76 9.65 9.79 9.10 7.76 7.82

mean 25.70 9.67 10.98 8.8 7.26 6.98 6.47 6.17 5.69 5.48

Table 1. FPR95 for real-valued descriptors on the Brown dataset.

Test Train
des. BinBoost CovOpt Deepbit

DeepCD

splitting

DeepCD

2-stream

DeepCD

2-stream
(DDM)

bits 64 1024 256 128+64 512+256 128+64 512+256 128+64 512+256

Notre.
Lib. 16.90 8.25 26.66 13.34 3.96 8.43 3.99 8.31 3.73

Yose. 14.54 7.09 29.60 11.59 4.95 9.07 4.68 8.97 4.35

Yose.
Lib. 22.88 14.84 57.61 26.41 9.88 17.62 10.31 16.29 9.97

Notre. 18.97 8.5 63.68 17.72 7.76 13.99 7.86 13.62 7.67

Lib.
Notre. 20.49 12.16 32.06 16.07 8.06 13.29 7.22 14.45 7.82

Yose. 21.67 15.15 34.41 21.85 12.06 18.06 11.50 18.38 11.75

mean 19.24 11.00 40.67 17.83 7.78 13.41 7.59 13.34 7.55

Table 2. FPR95 for binary descriptors on the Brown dataset.

dataset (Strecha dataset [32]) and a local descriptor evalua-

tion benchmark (Oxford dataset [23]).

For training, we used the Brown dataset [5] which con-

sists of three subsets: Liberty, Notredame, and Yosemite.

For most methods and problems, we used the Liberty sub-

set for training. However, for the evaluation on the Brown

dataset, we followed the convention by taking different

combinations of training and testing subsets which will be

detailed later. Next, we describe the methods we compared

with and then present the results and analysis in detail.

4.1. Competing methods

We compare the proposed DeepCD method with a set

of state-of-the-art deep-learning-based descriptor methods.

Note that some deep-learning descriptor methods learn both

feature embeddings and similarity metrics. As discussed in

the introduction, the learned metrics often incur very ex-

pensive computation cost. Thus, we only utilize their em-

beddings for comparisons. (1) Deepcompare [40]. The

paper explores several deep architectures for embedding

and metrics. We compare with the embedding model

siam−2st−l2 with 2-stream and concatenation fusion. (2)

Deepdesc [29]. The method performs stochastic sampling

and aggressive mining when training CNNs for embedding

patch representations. We used their pre-trained models.

Note that, unlike other methods, the training was done with

two subsets of the Brown dataset rather than one. (3) Global

loss [17]. This method explores the similar network struc-

tures as Deepcompare but enhances performance by opti-

mizing global loss over the whole dataset instead of sum-

ming individual loss within sample pairs. They provide

TNet as the embedding method and CS SNet Gloss as

the decision network for the similarity metric. Only TNet

was used in the experiments. (4) PNNet [2] and TFeat [3].

These two methods are related to each other and are most re-

lated to our method. We choose PNNet 128-d embedding as

the leading descriptor because of its great performance. By

using the original data from the papers and the pre-trained

models provided by the authors, we compare with four

models in this paper: PNNet−128dim , PNNet−256dim ,

TFeat−ratio⇤, TFeat−margin⇤. Note that, in practice,

the real-valued descriptors often store a real number with

only one byte.

4.2. Local image patch benchmark

In this evaluation, we used the standard benchmark, the

Brown dataset [5]. The dataset includes more than 450, 000
patches cropped from real world image using the DoG de-

tector [22]. The patches are of two sizes, 32 ⇥ 32 and

64 ⇥ 64. They are normalized in both the scale and the

orientation. As mentioned above, there are three subsets

in this dataset, Liberty, Notredame, and Yosemite. We fol-

lowed the convention by alternatively using one of them for

training the model, and the other two for testing. As previ-

ous papers, the results were evaluated with FPR95, the false

positive rate under 95% recall.

Table 1 reports results of all competing real-valued de-

scriptors on all six combinations and the average. The

top performer of each setting is highlighted in bold. All

proposed DeepCD models outperform all other competing
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methods. Not surprisingly, the 2-stream model performs

better than the splitting model since the 2-stream model of-

fers more flexibility. Note that both our models augment

PNNet−128dim with a 32-byte binary complementary de-

scriptor. The leading and complementary descriptors can be

binary or real-valued. We evaluated different combinations

and found that a real-valued leading descriptor with a binary

complementary descriptor works the best. The performance

is improved significantly from 7.26 to 6.17 (splitting) and

5.69 (2-stream) with a minor space increase.

An interesting question to answer is whether DeepCD is

a more effective way to improve performance by increas-

ing the descriptor’s size. For answering the question, we

performed two experiments. First, we simply increase the

dimensionality of PNNet to 256. Table 1 shows that FPR95

only improves mildly to 6.98 even the space is doubled. We

have also tried to combine two PNNets by using compact

blinear pooling (CBP) [10], which has been shown effec-

tive on combining two information sources for the applica-

tions of VQA [9] and fine-grained recognition [21]. The

results are displayed in the column named “2-stream PN-

Net+CBP.” It is obvious that the combination with CBP is

not effective. Both experiments show that it is not a trivial

task to improve the descriptor’s performance by increasing

space or combining information. The success of DeepCD

is attributed to its design with a complementary descriptor

focusing on helping the leading descriptor and the joint opti-

mization using the loss function with late fusion. By adding

the DDM layer, the performance can be further improved.

To show that the improvement achieved by DeepCD does

not result from simply increasing the size of the network,

we compare it with variants of PNNet of similar network

sizes in the supplementary material.

It is also possible to use DeepCD methods to generate

a pair of binary descriptors. For achieving this, the lead-

ing descriptor is turned binary by adding a fully connected

layer and a sigmoid transfer layer at the end of its pipeline

in the same way we did for the complementary descriptor.

We compare our binary descriptor with the state-of-the-art

binary descriptors. (1) BinBoost [33]. The method adopts

an AdaBoost-like method for training binary descriptors us-

ing positive and negative patch pairs in the gradient domain.

(2) CovOpt [30]. It uses convex optimization for learning

the robust region of the image patch. (3) Deepbits [20]. By

using an unsupervised method, it learns a descriptor in the

binary form while keeping the balance among quantization

loss, the invariant property and even distributions.

Table 2 compares these methods with our methods. It

is clear that the proposed DeepCD descriptors outperform

other competing methods by a margin. Note that BinBoost

uses only 64 bits but achieves a decent performance. Unfor-

tunately, as reported in the original paper, its performance

nearly saturates after 64 bits because increasing the bit num-

ber to 256 just reduces FPR95 from 19.24% to 19.0%.

Deepbits does not perform as well as others since it is an un-

supervised method. Our binary descriptors can even com-

pete with the real-valued descriptors by using 512+256 bits,

less than 128 bytes used by many real-valued descriptors.

The main advantage of the binary descriptor is that the dis-

tance between descriptors can be computed using the very

efficient Hamming distance. Thus, descriptor matching can

be performed much faster.

Note that, although decision network methods, Deep-

compare 2ch-2stream [40] and CS SNet Gloss [17], re-

ported better performances on Brown dataset, as mentioned

in Section 1, they have extremely high computation costs

during the testing stage, making them less practical to be

used. In addition, their descriptors require 768 bytes per

patch, 3 ⇠ 4 times larger than others.

4.3. Wide baseline matching evaluation

For studying how well our descriptors perform with per-

spective transformations, we compared our descriptors with

others for the application of wide baseline matching on the

Strecha dataset [32]. The dataset contains two image se-

quences with large perspective changes. The fountain se-

quence contains 11 images of the same scene from dif-

ferent perspectives while the herzjesu sequence contains 8
perspectives. The ground truth depth maps are provided

with the dataset. We sampled 5,000 points randomly and

used the ground truth depth maps for determining corre-

spondences. We extract 64 ⇥ 64 patches densely over the

images for matching. The patches were normalized using

the mean and the standard deviation of the intensity values

of all sampled patches per image. Descriptors were then

extracted for patches. For each image pair, matches were

determined by finding the closest patches in the other im-

age. Only matches passing the left-right consistency check

are considered valid. All valid matches were then sorted by

similarity. A PR curve was computed and the mAP value

was calculated for each descriptor.

Table 3 reports mAP values for Deepdesc, PNNet, TFeat

and DeepCD descriptors. All models were trained on the

liberty subset of the Brown dataset except Deepdesc. We

used the pre-trained Deepdesc models released by the au-

thors. The models were trained on either two subsets or all

three. With more training data, Deepdesc seems to perform

better. But, even with all three subsets for training, its per-

formance is still the worst. The proposed DeepCD model

outperforms all competing descriptors. Since the 2-stream

model is generally better than splitting, we only report the

results of DeepCD 2-stream in the following experiments.

To study how robust the descriptors are against the per-

spective changes, we report the average precision (AP)

along with different magnitudes of perspective changes for

both sequences in Figure 2. In each sequence, the first im-
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Deepdesc

Lib, Yose

Deepdesc

All
PNNet

TFeat

Ratio⇤
TFeat

Margin⇤

DeepCD

2-stream

DeepCD

2-stream

(DDM)

Fountain 0.4155 0.4226 0.4239 0.4388 0.4486 0.4733 0.4829

Herzjesu 0.3343 0.3425 0.3658 0.3912 0.4157 0.4303 0.4347

mean 0.3749 0.3826 0.3948 0.4150 0.4321 0.4518 0.4588

Table 3. Comparisons of descriptors on the Strecha dataset using mAP.
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Figure 2. Comparisons of descriptors on wide baseline matching for the two sequences in the Strecha dataset, fountain (a) and herzjesu (b).

For each sequence, we show the AP values of all descriptors along with the magnitude of view change. The proposed DeepCD method

provides more significant improvement for more challenging cases with larger view changes. (c) The precision-recall curve of different

methods on the case (mag0 vs. mag7 on fountain) with a wide baseline.

age (the rightmost view) serves as the base image that other

images were matched against. The last image (the leftmost

view) sees the largest view change. From Figure 2, the

proposed DeepCD descriptor offers more improvement for

the more challenging cases with larger perspective changes.

Figure 2 also shows the precision-recall (PR) curve for an

example of matching between images with a large perspec-

tive change. It is obvious that DeepCD-stream outperforms

other methods by a margin and the performance can be fur-

ther boosted by adding the DDM layer.

4.4. Local descriptor performance evaluation

In this experiment, we tested how the descriptors per-

form under a variety of transformations using the Oxford

dataset [23]. The dataset contains 48 images in 8 se-

quences with different variations and magnitudes, includ-

ing blurring, compression, viewpoint changes, zoom, light-

ing changes and others. The ground truth homographies

are given. We took 1,000 points per image by using DoG

affine approximated detector [34]. The correspondences

were sorted using the distance ratios between the best match

and the second best match. The PR curves were formed

and mAP values were calculated. In addition to the CNN-

based descriptors, we have also included two hand-crafted

descriptors, SIFT and ASV-SIFT [37] which aggregates in-

formation across different scales.

Table 4 summarizes mAP values for all competing de-

scriptors. Again, DeepCD descriptors perform the best

among all methods. Interestingly, the hand-crafted ASV-

SIFT descriptor performs quite well with its performance

better than Deepdesc and similar to PNNet. It is because

ASV-SIFT explores information across multiple scales

while all competing CNN-based descriptors including ours

only use information at a fixed scale. CNN-based descrip-

tors could be further improved by exploring multi-scale in-

formation.

4.5. Discussions

To investigate how the complementary descriptor im-

proves the performance, we conducted a couple of exper-

iments. We first examine the matching performances of in-

dividual descriptors and their combination on the Brown

dataset. Figure 3(a) shows the performances of descrip-

tors for different training-testing configurations. In gen-

eral, the leading descriptor’s performances are very good,

close to PNNet’s, showing that it is a good descriptor alone.

The complementary descriptor alone generally does not per-

form well. However, their combination improves the per-

formance. In some cases, the performance boost are quite

significant, such as lib->yose. Similar observations can be

made in Figure 3(b) for Strecha and Oxford datasets.

Next, we show a more detailed analysis for complemen-

tary effects of our descriptors on lib->notre. In Figure 4(a),

each point represents a pair of patches. Blue points are

positive matches (the patches are correspondences) and red

points are negative matches (they are not). Each point is

plotted according to the distances in the feature space of

the leading descriptor (y-axis) and the complementary one

(x-axis). The distances are normalized within the range

[0, 1]. When using only the leading descriptor and taking

the threshold for 80% recall (the horizontal line in Fig-

ure 4(a), some points are mis-classified (the blue points
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SIFT
ASV-

SIFT

Deepdesc

Lib, Yose

Deepdesc

All
PNNet

TFeat

Ratio⇤

TFeat

Margin⇤

DeepCD

2-stream

DeepCD

2-stream

(DDM)

mAP 0.4766 0.5522 0.5267 0.5299 0.5541 0.5614 0.5594 0.5726 0.5773

Table 4. Comparisons of descriptors on the Oxford dataset using mAP.
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Figure 3. Performances of individual descriptors and their com-

bination on (a) Brown and (b) Strehca and Oxford datasets. In

(a), several training-testing configurations are shown. For exam-

ple, lib->notre represents the one in which Liberty was used for

training and Notredame for testing.
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Figure 4. Analysis of complementary effects. (a) The plot of patch

matches according to the distances in the feature space of the lead-

ing descriptor (y-axis) and the complementary descriptor (x-axis).

(b) Matches are colored for better reference. For example, the cyan

points represents mis-classified matches by the leading descriptor.

above the line and the red points below). The vertical line

at 80% recall is similarly drawn for the complementary de-

scriptor. This time, mis-classified points are blue points on

the right and red ones on the left. It is clear that the comple-

mentary descriptors made more mistakes than the leading

one, leading to a worse performance.

To better refer points in Figure 4(a), we label them with

different colors in Figure 4(b). In the 2nd quadrant, the

cyan points indicate the mis-classified matches by the lead-

ing descriptor. They cannot be distinguished from the (cor-

rectly classified) black points since their distance distribu-

tions overlap on the y-axis. However, it is clear that the

cyan group and the black group have more distinguishable

distributions vertically on the x-axis. Thus, they can be bet-

ter separated vertically using the complementary descriptor.

Similarly, in the 4th quadrant, the green points and magenta

points cannot be separated vertically using the complemen-
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Figure 5. Performance-computation tradeoffs of different methods

on the Brown dataset.

tary descriptor, but they can be better separated horizontally

using the leading descriptor. It shows that the descriptors

are complementary and help each other in the 2nd and 4th

quadrants. Thus, their combination boosts the performance.

Figure 5 plots tradeoffs between the matching perfor-

mance and the computation cost for different methods.

Since floating point operations are much more expensive

than bit operations, we use floating point operations per pair

(FLOPP) as the computation cost. Although learned met-

rics such as global loss [17] have great performance, their

computation costs during the testing stage are nearly 104

times higher than the descriptor embedding methods. The

detailed analysis is given in the supplementary material.

5. Conclusions

In this paper, we present the DeepCD framework which

learns two complementary descriptors jointly and an in-

stance of it based on the PNNet. The proposed DDM layer

adaptively adjusts learning rates in accordance with training

samples and further encourages the complementary descrip-

tor to emphasize on correcting mistakes made by the lead-

ing one. Experiments show that the proposed framework is

effective in improving the performance of the patch descrip-

tors for various applications and transformations. There are

several research directions worth of exploring. We would

like to try other architectures, for example, employing very

different structures for the leading descriptor and the com-

plementary descriptor. A possible extension is to learn more

than two descriptors jointly. Finally, we plan to extend the

idea of joint complementary learning to other domains.
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