
Learning Feature Pyramids for Human Pose Estimation

Wei Yang1 Shuang Li1 Wanli Ouyang1,2 Hongsheng Li1 Xiaogang Wang1

1 Department of Electronic Engineering, The Chinese University of Hong Kong
2 School of Electrical and Information Engineering, The University of Sydney

{wyang, sli, wlouyang, hsli, xgwang}@ee.cuhk.edu.hk

Abstract

Articulated human pose estimation is a fundamental yet

challenging task in computer vision. The difficulty is partic-

ularly pronounced in scale variations of human body parts

when camera view changes or severe foreshortening hap-

pens. Although pyramid methods are widely used to handle

scale changes at inference time, learning feature pyramids

in deep convolutional neural networks (DCNNs) is still not

well explored. In this work, we design a Pyramid Resid-

ual Module (PRMs) to enhance the invariance in scales

of DCNNs. Given input features, the PRMs learn convo-

lutional filters on various scales of input features, which

are obtained with different subsampling ratios in a multi-

branch network. Moreover, we observe that it is inappro-

priate to adopt existing methods to initialize the weights

of multi-branch networks, which achieve superior perfor-

mance than plain networks in many tasks recently. There-

fore, we provide theoretic derivation to extend the current

weight initialization scheme to multi-branch network struc-

tures. We investigate our method on two standard bench-

marks for human pose estimation. Our approach obtains

state-of-the-art results on both benchmarks. Code is avail-

able at https://github.com/bearpaw/PyraNet.

1. Introduction

Localizing body parts for human body is a fundamen-

tal yet challenging task in computer vision, and it serves

as an important basis for high-level vision tasks, e.g., ac-

tivity recognition [60, 54], clothing parsing [57, 58, 36],

human re-identification [65], and human-computer interac-

tion. Achieving accurate localization, however, is difficult

due to the highly articulated human body limbs, occlusion,

change of viewpoint, and foreshortening.

Significant progress on human pose estimation has been

achieved by deep convolutional neural networks (DC-

NNs) [53, 52, 11, 51, 42, 55, 39]. In these methods, the

DCNNs learn body part detectors from images warped to

the similar scale based on human body size. At inference

(a) (b) (c)

Figure 1. Our predictions on the LSP dataset [31]. When images

are warped to approximately the same scale, scales of different

body parts may still be inconsistent due to camera view change

and foreshortening. In (a), the scale of hand and head are larger

than that of foot. In (b), the scale of foot is larger than that of head.

time, testing images should also be warped to the same scale

as that for training images.

Although the right scale of the full human body is pro-

vided, scales for body parts may still be inconsistent due

to inter-personal body shape variations and foreshortening

caused by viewpoint change and body articulation. It results

in difficulty for body part detectors to localize body parts.

For example, severe foreshortening is present in Figure 1.

When the images are warped to the same size according

to human body scale, the hand in Figure 1 (a) has a larger

scale than that in Figure 1 (b). Therefore, the hand detector

that can detect the hand in Figure 1 (a) might not be able

to detect the hand in Figure 1 (b) reliably. In DCNNs, this

problem from scale change happens not only for high-level

semantics in deeper layers, but also exists for low-level fea-

tures in shallower layers.

To enhance the robustness of DCNNs against scale varia-

tions of visual patterns, we design a Pyramid Residual Mod-

ule to explicitly learn convolutional filters for building fea-

ture pyramids. Given input features, the Pyramid Residual

Module obtains features of different scales via subsampling

with different ratios. Then convolution is used to learn fil-

ters for features in different scales. The filtered features are

upsampled to the same resolution and are summed together

for the following processing. This Pyramid Residual Mod-

ule can be used as building blocks in DCNNs for learning

1281

https://github.com/bearpaw/PyraNet

feature pyramids at different levels of the network.

There is a trend of designing networks with branches,

e.g., Inception models [47, 30, 48, 46] and ResNets [25, 26]

for classification, ASPP-nets [9] for semantic segmenta-

tion, convolutional pose machines [55] and stacked hour-

glass networks [39] for human pose estimation, in which

the input of a layer is from multiple other layers or the

output of a layer is used by many other layers. Our pyra-

mid residual module also has branches. We observe that

the existing weight initialization scheme, e.g., MSR [24]

and Xavier [21] methods, are not proper for layers with

branches. Therefore, we extend the current weight initial-

ization scheme and provide theoretic derivation to show

that the initialization of network parameters should take

the number of branches into consideration. We also show

another issue in the residual unit [26], where the variance

of output of the residual unit accumulates as the depth in-

creases. The problem is caused by the identity mapping.

Since Hourglass network, also called conv-deconv struc-

ture, is an effective structure for pose estimation [39], object

detection [34], and pixel level tasks [10], we use it as the ba-

sic structure in experiments. We observe a problem of using

residual unit for Hourglass: when outputs of two residual

units are summed up, the output variance is approximately

doubled, which causes difficulty in optimization. We pro-

pose a simple but efficient way with negligible additional

parameters to solve this problem.

The main contributions are three folds:

• We propose a Pyramid Residual Module, which en-

hances the invariance in scales of deep models by learn-

ing feature pyramids in DCNNs with only a small in-

crease of complexity.

• We identify the problem for initializing DCNNs includ-

ing layers with multiple input or output branches. A

weight initialization scheme is then provided, which can

be used for many network structures including inception

models [47, 30, 48, 46] and ResNets [25, 26].

• We observe that the problem of activation variance accu-

mulation introduced by identity mapping may be harm-

ful in some scenarios, e.g., adding outputs of multiple

residual units implemented by identity mapping [26] to-

gether in the Hourglass structure. A simple yet effective

solution is introduced for solving this issue.

We evaluate the proposed method on two popular human

pose estimation benchmarks, and report state-of-the-art re-

sults. We also demonstrate the generalization ability of our

approach on standard image classification task. Ablation

study demonstrates the effectiveness of the pyramid resid-

ual module, the new initialization scheme, and the approach

in handling drastic activation variance increase caused by

adding residual units.

2. Related Work

Human pose estimation. Graph structures, e.g., Picto-

rial structures [19, 17, 61] and loopy structures [44, 49, 18],

have been broadly used to model the spatial relationships

among body parts. All these methods were built on hand-

crafted features such as HOG feature [15], and their perfor-

mances relied heavily on image pyramid. Recently, deep

models have achieved state-of-the-art results in human pose

estimation [3, 29, 5, 55, 39, 12, 59, 13, 7, 40]. Among

them, DeepPose [53] is one of the first attempts on using

DCNNs for human pose estimation. It regressed the coordi-

nates of body parts directly, which suffered from the prob-

lem that image-to-locations is a difficult mapping to learn.

Therefore, later methods modeled part locations as Gaus-

sian peaks in score maps, and predicted the score maps with

fully convolutional networks. In order to achieve higher ac-

curacy, multi-scale testing on image pyramids was often uti-

lized, which produced a multi-scale feature representation.

Our method is a complementary to image pyramids.

On the other hand, to learn a model with strong scale in-

variance, a multi-branch network trained on three scales of

image pyramid was proposed in [51]. However, when im-

age pyramids are used for training, computation and mem-

ory linearly increases with the number of scales. In com-

parison, our pyramid residual module provides an efficient

way of learning multi-scale features, with relatively small

cost in computation and memory.

DCNNs combining multiple layers. In contrast to

traditional plain networks (e.g., AlexNet [33] and VGG-

nets [45]), multi-branch networks exhibit better perfor-

mance on various vision tasks. In classification, the incep-

tion models [47, 30, 48, 46] are one of the most successful

multi-branch networks. The input of each module is first

mapped to low dimension by 1×1 convolutions, then trans-

formed by a set of filters with different sizes to capture var-

ious context information and combined by concatenation.

ResNet [25, 26] can be regarded as a two-branch networks

with one identity mapping branch. ResNeXt [56] is an ex-

tension of ResNet, in which all branches share the same

topology. The implicitly learned transforms are aggregated

by summation. In our work, we use multi-branch network

to explore another possibility: to learn multi-scale features.

Recent methods in pose estimation, object detection and

segmentation used features from multiple layers for making

predictions [37, 6, 23, 4, 39, 9]. Our approach is comple-

mentary to these works. For example, we adopt Hourglass

as our basic structure, and replace its original residual units,

which learn features from a single scale, with the proposed

Pyramid Residual Module.

Weight initialization. Good initialization is essential

for training deep models. Hinton and Salakhutdinov [27]

adopted the layer-by-layer pretraining strategy to train a

1282

Hourglass Hourglass

Stack 1 Stack

C
o

n
v

P
R

M
 +

 P
o

o
l

P
R

M

128 × 128

64 × 64

Detailed hourglass structure

Convolu�on Pyramid Residual module Score maps Addi�on

(a)

(b)

2
5
6
x
2
5
6

Figure 2. Overview of our framework. (a) demonstrates the net-

work architecture, which has n stacks of hourglass network. De-

tails of each stack of hourglass is illustrated in (b). Score maps of

body joint locations are produced at the end of each hourglass, and

a squared-error loss is also attached in each stack of hourglass.

deep autoencoder. Krizhevsky et al. [33] initialized the

weight of each layer by drawing samples from a Gaussian

distribution with zero mean and 0.01 standard deviation.

However, it has difficulty in training very deep networks

due to the instability of gradients [45]. Xavier initializa-

tion [21] has provided a theoretically sound estimation of

the variance of weight. It assumes that the weights are ini-

tialized close to zero, hence the nonlinear activations like

Sigmoid and Tanh can be regarded as linear functions. This

assumption does not hold for rectifier [38] activations. Thus

He et al. [24] proposed an initialization scheme for rec-

tifier networks based on [21]. All the above initialization

methods, however, are derived for plain networks with only

one branch. We identify the problem of the initialization

methods when applied for multi-branch networks. An ini-

tialization scheme for networks with multiple branches is

provided to handle this problem.

3. Framework

An overview of the proposed framework is illustrated in

Figure. 2. We adopt the highly modularized stacked Hour-

glass Network [39] as the basic network structure to inves-

tigate feature pyramid learning for human pose estimation .

The building block of our network is the proposed Pyramid

Residual Module (PRM). We first briefly review the struc-

ture of hourglass network. Then a detailed discussion of our

pyramid residual module is presented.

3.1. Revisiting Stacked Hourglass Network

Hourglass network aims at capturing information at ev-

ery scale in feed-forward fashion. It first performs bottom-

up processing by subsampling the feature maps, and con-

ducts top-down processing by upsampling the feature maps

with the comination of higher resolution features from bot-

tom layers, as demonstrated in Figure. 2(b). This bottom-

up, top-down processing is repeated for several times to

build a “stacked hourglass” network, with intermediate su-

pervision at the end of each stack.

In [39], residual unit [26] is used as the building block of

the hourglass network. However, it can only capture visual

patterns or semantics at one scale. In this work, we use the

proposed pyramid residual module as the building block for

capturing multi-scale visual patterns or semantics.

3.2. Pyramid Residual Modules (PRMs)

The objective is to learn feature pyramids across differ-

ent levels of DCNNs. It allows the network to capture fea-

ture pyramids from primitive visual patterns to high-level

semantics. Motivated by recent progress on residual learn-

ing [25, 26], we propose a novel Pyramid Residual Module

(PRM), which is able to learn multi-scale feature pyramids.
The PRM explicitly learns filters for input features with

different resolutions. Let x(l) and W(l) be the input and
the filter of the l-th layer, respectively. The PRM can be
formulated as,

x
(l+1) = x

(l) + P(x(l);W(l)), (1)

where P(x(l);W(l)) is feature pyramids decomposed as:

P(x(l);W(l)) = g

(

C
∑

c=1

fc(x
(l);w

(l)
fc
);w(l)

g

)

+ f0(x
(l);w

(l)
f0
).

(2)

The C in (2) denotes the number of pyramid levels, fc(·) is

the transformation for the c-th pyramid level, and W(l) =

{w
(l)
fc
,w

(l)
g }Cc=0 is the set of parameters. Outputs of trans-

formations fc(·) are summed up together, and further con-

volved by filters g(·). An illustration of the pyramid resid-

ual module is illustrated in Figure. 3. To reduce the com-

putational and space complexity, each fc(·) is designed as a

bottleneck structure. For example, in Figure. 3, the feature

dimension is reduced by a 1× 1 convolution, then new fea-

tures are computed on a set of subsampled input features by

3× 3 convolutions. Finally, all the new features are upsam-

pled to the same dimension and are summed together.

Generation of input feature pyramids. Max-pooling or

average-pooling are widely used in DCNNs to reduce the

resolution of feature maps, and to encode the translation in-

variance. But pooling reduces the resolution too fast and

coarse by a factor of an integer of at least two, which is

unable to generate pyramids gently. In order to obtain in-

put feature maps of different resolutions, we adopt the frac-

tional max-pooling [22] to approximate the smoothing and

subsampling process used in generating traditional image

1283

Addi�on

dstridedstride 1

BN-ReLU-3x3Conv

BN-ReLU-

3x3 Dilated Conv

Downsampling

Upsampling

Ra�o 1 Ra�o Ra�o 1 Ra�o

BN-ReLU-1x1Conv

(a) PRM-A
PRM-B = Addi�on

PRM-C = Concatena�on
(c) PRM-D

()

(+1)

0

1

(b)

g
ni

p
p

a
M

ytit
n

e
dI

Figure 3. Structures of PRMs. Dashed links indicate identity mapping. (a) PRM-A produces separate input feature maps for different

levels of pyramids, while (b) PRM-B uses shared input for all levels of pyramids. PRM-C use concatenation instead of addition to combine

features generated from pyramids, which is similar to inception models. (c) PRM-D use dilated convolutions, which are also used in

ASPP-net [9], instead of pooling to build the pyramid. The dashed trapezoids mean that the subsampling and upsampling are skipped.

pyramids. The subsampling ratio of the cth level pyramid is

computed as:

sc = 2−M c

C , c = 0, · · · , C,M ≥ 1, (3)

where sc ∈ [2−M , 1] denotes the relative resolution com-

pared with the input features. For example, when c = 0,

the output has the same resolution as its input. When

M = 1, c = C, the map has half resolution of its input.

In experiments, we set M = 1 and C = 4, with which the

lowest scale in pyramid is half the resolution of its input.

3.3. Discussions

PRM for general CNNs. Our PRM is a general module

and can be used as the basic building block for various CNN

architectures, e.g., stacked hourglass networks [39] for pose

estimation, and Wide Residual Nets [64] and ResNeXt [56]

for image classification, as demonstrated in experiments.

Variants in pyramid structure. Besides using frac-

tional max-pooling, convolution and upsampling to learn

feature pyramids, as illustrated in Figure. 3(a-b), one can

also use dilated convolution [9, 63] to compute pyramids, as

shown in Figure. 3(c)(PRM-D). The summation of features

in pyramid can also replaced by concatenation, as shown in

Figure. 3(b)(PRM-C). We discuss the performance of these

variants in experiments, and show that the design in Fig-

ure. 3(b)(PRM-B) has comparable performance with oth-

ers, while maintains relatively fewer parameters and smaller

computational complexity.

Weight sharing. To generate the feature pyramids, tradi-

tional methods usually apply a same handcrafted filter, e.g.,

HOG, on different levels of image pyramids [1, 16]. This

process corresponds to sharing the weights W
(l)
fc

across dif-

ferent levels of pyramid fc(·), which is able to greatly re-

duce the number of parameters.

Complexity. The residual unit used in [39] has 256-d input

and output, which are reduced to 128-d within the residual

unit. We adopt this structure for the branch with original

scale (i.e., f0 in Eq.(2)). Since features with smaller res-

olution contain relatively fewer information, we use fewer

feature channels for branches with smaller scales. For ex-

ample, given a PRM with five branches and 28 feature chan-

nels for branches with smaller scale (i.e., f1 to f4 in Eq.(2)),

the increased complexity is about only 10% compared with

residual unit in terms of both parameters and GFLOPs.

4. Training and Inference

We use score maps to represent the body joint locations.
Denote the ground-truth locations by z = {zk}

K
k=1, where

zk = (xk, yk) denotes the location of the kth body joint in
the image. Then the ground-truth score map Sk is generated
from a Gaussian with mean zk and variance Σ as follows,

Sk(p) ∼ N (zk,Σ), (4)

where p ∈ R2 denotes the location, and Σ is empirically set
as an identity matrix I. Each stack of hourglass network pre-

dicts K score maps, i.e. Ŝ = {Ŝk}
K
k=1, for K body joints.

A loss is attached at the end of each stack defined by the
squared error

L =
1

2

N
∑

n=1

K
∑

k=1

‖Sk − Ŝk‖
2
, (5)

where N is the number of samples.

During inference, we obtain the predicted body joint lo-
cations ẑk from the predicted score maps generated from

1284

the last stack of hourglass by taking the locations with the
maximum score as follows:

ẑk = argmax
p

Ŝk(p), k = 1, · · · ,K. (6)

4.1. Initialization Multi­Branch Networks

Initialization is essential to train very deep networks [21,

45, 24], especially for tasks of dense prediction, where

Batch Normalization [30] is less effective because of the

small minibatch due to the large memory consumption of

fully convolutional networks. Existing weight initialization

methods [33, 21, 24] are designed upon the assumption of

a plain networks without branches. The proposed PRM has

multiple branches, and does not meet the assumption. Re-

cent developed architectures with multiple branches, e.g.,

Inception models [47, 30, 48, 46] and ResNets [25, 26], are

not plain network either. Hence we discuss how to derive a

proper initialization for networks adding multiple branches.

Our derivation mainly follows [21, 24].

Forward propagation. Generally, multi-branch networks
can be characterized by the number of input and output
branches. Figure. 4 (a) shows an example where the lth

layer has C
(l)
i input branches and one output branch. Fig-

ure. 4 (b) shows an example where the lth layer has one in-

put branch and C
(l)
o output branches. During forward prop-

agation, C
(l)
i affects the variance for the output of the lth

layer while C
(l)
o does not. At the lth layer, assume there

are C
(l)
i input branches and C

(l)
o output branches. There

are C
(l)
i input vectors {x

(l)
c |c = 1, . . . , C

(l)
i }. Take fully-

connected layer for example, a response is computed as:

y
(l) = W

(l)

C
(l)
i
∑

c=1

x
(l)
c + b

(l)
, (7)

x
(l+1) = f

(

y
(l)
)

, (8)

where f(·) is the non-linear activation function.

As in [21, 24], we assume that W(l) and x(l) are both
independent and identically distributed (i.i.d.), and they are
independent of each other. Therefore, we respectively de-

note y(l), x(l) and w(l) as the element in y(l),x(l) and W(l).
Then we have,

Var
[

y
(l)
]

= C
(l)
i n

(l)
i Var

[

w
(l)
x
(l)
]

, (9)

where n
(l)
i is the number of elements in x

(l)
c for c =

1, . . . , C
(l)
i . Suppose w(l) has zero mean. The variance for

the product of independent variables above is as follows:

Var
[

y
(l)
]

= C
(l)
i n

(l)
i Var

[

w
(l)
]

E

[

(

x
(l)
)2
]

= αC
(l)
i n

(l)
i Var

[

w
(l)
]

Var
[

y
(l−1)

]

,

Conv / FC

1
()

2
() ()

()

Conv / FC

1
()

2
() ()

()

(a) (b)

Figure 4. Examples of multi-branch networks when (a) the inputs

might be an addition of multiple branches, or (b) the output might

be forwarded to multiple branches.

where α depends on the activation function f in (8). α =
0.5 for ReLU and α = 1 for Tanh and Sigmoid. In order

to make the variances of the output y(l) approximately the
same for different layers l, the following condition should
be satisfied:

αC
(l)
i n

(l)
i Var

[

w
(l)
]

= 1. (10)

Hence in initialization, a proper variance for W (l) should be

1/(αC
(l)
i n

(l)
i).

Backward propagation. Denote ∂L
∂x(l) and ∂L

∂y(l) by ∆x(l)

and ∆y(l) respectively. During backward propagation, the
gradient is computed by chain rule,

∆x
(l) =

C
(l)
o
∑

c=1

W
(l)T∆y

(l)
, (11)

∆y
(l) = f

′(y(l))∆x
(l+1)

. (12)

Suppose w(l) and ∆y(l) are i.i.d. and independent of each

other, then ∆x(l) has zero mean when w(l) is initialized
with zero mean and symmetric with small magnitude. Let

n
(l)
o denote the number of output neurons. Then we have,

Var
[

∆x
(l)
]

= C
(l)
o n

(l)
o Var[w(l)] Var[∆y

(l)]. (13)

Denote E(f ′(y(l))) = α. α = 0.5 for ReLU and α = 1
for Tanh and Sigmoid. We further assume that f ′(y(l)) and

∆x(l) are independent of each other, then from Eq. (12),

we have E
[

∆y(l)
]

= αE
[

∆x(l+1)
]

. Then we can derive

that Var[∆y(l)] = E[(∆y(l))2] = αVar[x(l+1)]. Therefore,
from Eq.(13) we have,

Var
[

∆x
(l)
]

= αC
(l)
o n

(l)
o Var[w(l)] Var[∆x

(l+1)].. (14)

To ensure Var[∆x(l)] = Var[∆x(l+1)], we must have

Var[w(l)] = 1/(αC
(l)
o n

(l)
o).

In many cases, C
(l)
i n

(l)
i 6= C

(l)
o n

(l)
o . As in [21], a com-

promise between the forward and backward constraints is to
have,

Var[w(l)] =
1

α2(C
(l)
i n

(l)
i + C

(l)
o n

(l)
o)

, ∀l. (15)

1285

BN

ReLU

Weight

BN

ReLU

Weight

Addi�on

()

(+1)

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9

S
ta

n
d

a
rd

 d
e

v
ia
�o

n

Residual Units

Variance Accumula�on with

Iden�ty Mapping

downsampling

Figure 5. Response variances accumulate in ResNets. This ac-

cumulation can be reset (blue bar) when the identity mappings

are replaced by convolution or batch normalization (i.e., when the

feature channels of feature resolutions changes between input and

output features).

Special case. For plain networks with one input and one

output branch, we have C
(l)
i = C

(l)
o = 1 in (15). In this

case, the result in (15) degenerates to the conclusions ob-

tained for Tanh and Sigmoid in [21] and the conclusion

in [24] for ReLU.

General case. In general, a network with branches would

have C
(l)
i 6= 1 or C

(l)
o 6= 1 for some ls. There-

fore, the number of input branches and output branches

should be taken into consideration when initializing pa-

rameters. Specifically, if several multi-branch layers are

stacked together without other operations (e.g., batch nor-

malization,convolution, ReLU, etc.), the output variance

would be increased approximately
∏

l C
(l)
i times by using

Xavier [21] or MSR [24] initialization.

4.2. Output Variance Accumulation

Residual learning [25, 26] allows us to train extremely

deep neural networks due to identity mappings. But it is

also the source of its drawbacks: identity mapping keeps in-

creasing the variances of responses when the network goes

deeper, which increases the difficulty of optimization.
The response of the residual unit is computed as follows:

x
(l+1) = x

(l) + F
(

x
(l);W(l)

)

, (16)

where F denotes the residual function, e.g., a bottleneck
structure with three convolutions (1× 1 → 3× 3 → 1× 1).
Assume x(l) and F

(

x(l);W(l)
)

are uncorrelated, then the
variance of the response of residual unit is as

Var
[

x
(l+1)

]

= Var
[

x
(l)
]

+Var
[

F
(

x
(l+1);W(l)

)]

> Var
[

x
(l)
]

, (17)

where Var
[

F
(

x(l+1);W(l)
)]

is positive.

ℱ

ℱ

(a) (b)

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ta

n
d

a
rd

 d
e

v
ia
�o

n

Residual Units

Original HG

Ours (variance control)

ℱ

ℱ
BN

ReLU

Conv

Figure 6. Top: (a) Addition of outputs of two identity mappings.

(b) One identity mapping is replaced by a BN-ReLU-Conv block.

Bottom: Statistics of response variances of the original hourglass

network (yellow bar) and our structure (b) (red bar).

In [25, 26], the identity mapping will be replaced by
convolution layer when the resolution of feature maps is re-
duced, or when the dimension of feature channels are in-
creased. This allows the networks to reset the variance of
response to a small value, and avoid responses with very
large variance, as shown in Figure. 5. The effect of increas-
ing variance becomes more obvious in hourglass-like struc-
tures, where the responses of two residual units are summed
together, as illustrated in Figure. 6(a). Assume branches are
uncorrelated, then the variance will be increased as:

Var
[

x
(l+1)

]

=

2
∑

i=1

(

Var
[

x
(l)
i

]

+Var
[

Fi

(

x
(l)
i ;W

(l)
i

)])

>

2
∑

i=1

Var
[

x
(l)
i

]

. (18)

Hence the output variance is almost doubled. When the

network goes deeper, the variance will increase drastically.

In this paper, we use a 1× 1 convolution preceding with

batch normalization and ReLU to replace the identity map-

ping when the output of two residual units are summed up,

as illustrated in Figure. 6(b). This simple replacement stops

the variance explosion, as demonstrated in Figure. 6(c). In

experiments, we find that breaking the variance explosion

also provide a better performance (Section 5.1.3).

5. Experiments

5.1. Experiments on Human Pose Estimation

We conduct experiments on two widely used human

pose estimation benchmarks. (i) The MPII human pose

dataset [2], which covers a wide range of human activities

with 25k images containing over 40k people. (ii) The Leeds

Sports Poses (LSP) [31] and its extended training dataset,

which contains 12k images with challenging poses in sports.

1286

Table 1. Comparisons of PCKh@0.5 score on the MPII test set.

Ours-A is trained using the training set used in [51]. Ours-B is

trained with the same settings but using all the MPII training set.
Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Pishchulin et al. [41] 74.3 49.0 40.8 34.1 36.5 34.4 35.2 44.1

Tompson et al. [52] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6

Carreira et al. [8] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3

Tompson et al. [51] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0

Hu&Ramanan [28] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4

Pishchulin et al. [42] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4

Lifshitz et al. [35] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0

Gkioxary et al. [20] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1

Rafi et al. [43] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3

Insafutdinov et al. [29] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5

Wei et al. [55] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5

Bulat&Tzimiropoulos [5] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7

Newell et al. [39] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

Ours-A 98.4 96.5 91.9 88.2 91.1 88.6 85.3 91.8

Ours-B 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0

Table 2. Comparisons of PCK@0.2 score on the LSP dataset.
Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Belagiannis&Zisserman [3]95.2 89.0 81.5 77.0 83.7 87.0 82.8 85.2

Lifshitz et al. [35] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7

Pishchulin et al. [42] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1

Insafutdinov et al. [29] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1

Wei et al. [55] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5

Bulat&Tzimiropoulos [5] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7

Ours 98.3 94.5 92.2 88.9 94.4 95.0 93.7 93.9

5.1.1 Implementation Details

Our implementation follows [39]. The input image is

256 × 256 cropped from a resized image according to the

annotated body position and scale. For the LSP test set, we

simply use the image center as the body position, and es-

timate the body scale by the image size. Training data are

augmented by scaling, rotation, flipping, and adding color

noise. All the models are trained using Torch [14]. We use

RMSProp [50] to optimize the network on 4 Titan X GPUs

with a mini-batch size of 16 (4 per GPU) for 200 epochs.

The learning rate is initialized as 7 × 10−4 and is dropped

by 10 at the 150th and the 170th epoch. Testing is conducted

on six-scale image pyramids with flipping.

5.1.2 Experimental Results

Evaluation measure. Following previous work, we use the

Percentage Correct Keypoints (PCK) measure [62] on the

LSP dataset, and use the modified PCK measure that uses

the matching threshold as 50% of the head segment length

(PCKh) [2] on the MPII dataset.

MPII Human Pose. We report the performance on MPII

dataset in Table 1. Ours-A is trained using the training and

validation set used in [51]. Ours-B is trained with the same

settings but using all the MPII training set. Our approach

achieves 92.0% PCKh score at threshold of 0.5, which is

the new state-of-the-art result. Specifically, our method

achieves 1.6% and 2.4% improvements on wrist and ankle,

Figure 7. Results on the MPII (top) and the LSP dataset (bottom).

8
7

.6
4

8
8

8
8

.4
7

8
8

.5
1

8
8

.5
2

8
8

.5
8

8
8

.5
3

86.5

87

87.5

88

88.5

89

89.5

90

5.
0

@
h

K
C

P

(a) Accuracy

1
3

.3 1
5

.3

1
5

.7

1
4

.7

1
4

.7

1
5

.3

1
6

.2

0

5

10

15

20

G
F

LO
P

s

(c) Complexity

6
.2 7

.3 7
.6

7
.3

6
.9 7

.5

7
.3

0

2

4

6

8

10

#
P

a
ra

m
s

(M
il

li
o

n
)

(b) Parameters

Figure 8. Statistics of (a) accuracy, (b) number of parameters, and

(c) computational complexity in terms of GFLOPs on different de-

signs of PRMs in Figure. 3.

which are considered as the most challenging parts to be

detected. Qualitative results are demonstrated in Figure. 7.

Complexity. Our model increases the number of param-

eters by 13.5% from 23.7M to 26.9M given an eight-stack

hourglass network. Our model needs 45.9 GFLOPs for a

256×256 RGB image, which is a 11.4% increase compared

to hourglass network (41.2 GFLOPs). As reported in [39],

deeper hourglass with more stacks hardly improves result.

LSP dataset. Table 2 presents the PCK scores at the thresh-

old of 0.2. We follow previous methods [42, 55, 29] to train

our model by adding MPII training set to the LSP and its

extended training set. Our method improves the previous

best result with a large margin by 3.2%. For difficult body

parts, e.g., wrist and ankle, we have 3.7% and 5.0% im-

provements, respectively. Our method gains a lot due to the

high occurrence of foreshortening and extreme poses pre-

sented in this dataset, as demonstrated in Figure. 7.

5.1.3 Ablation Study

We conduct ablation study on the MPII validation set used

in [51] with a 2-stack hourglass network as the basic model.

Architectures of PRM. We first evaluate different designs

of PRM, as discussed in Section 3.2, with the same number

of branches, and the same feature channels for each branch

(e.g., 5 branches with 28 feature channels for each pyrami-

dal branch). We use PRM-A to PRM-D, which corresponds

to Figure. 3, to denote the different architectures. Specifi-

cally, PRM-A produces separate input feature maps for dif-

ferent levels of pyramids, while PRM-B uses shared feature

maps for all levels of pyramids. PRM-C uses concatena-

tion instead of addition to combine features generated from

pyramid, which is similar to inception models. PRM-D uses

dilated convolutions, which are also used in ASPP-net [9],

instead of pooling to build the pyramid. The validation ac-

1287

100 150 200 250

(a) Epoch

76

78

80

82

84

P
C

K
h

@
0

.5

Train

100 150 200 250

(b) Epoch

75.5

76

76.5

77

77.5

78

78.5

P
C

K
h

@
0

.5

Validation

BL

S3

S5

100 150 200 250

(c) Epoch

76

78

80

82

84

P
C

K
h

@
0

.5

Train

100 150 200 250

(d) Epoch

76

76.5

77

77.5

78

78.5

P
C

K
h

@
0

.5

Validation

Xavier

MSR

Ours

S
c
a
le
s

In
it
ia
li
z
a
ti
o
n

Figure 9. Training and validation curves of PCKh scores vs. epoch

on the MPII validation set. (a-b) Investigate the number of scales

in the pyramid. BL stands for baseline model (two-stack hour-

glass network), S2 to S8 indicate PRM-B* with four scales to eight

scales. (c-d) Comparison of our initialization scheme with Xavier

method [21] and MSR method [24].

curacy is reported in Figure. 8(a). All the PRMs have better

accuracy compared with the baseline model. We observe

that the difference in accuracy between PRM-A to PRM-D

is subtle, while the parameters of PRM-A/C are higher than

PRM-B/B*/D (Figure. 8(b)), and the computational com-

plexity (GFLOPs) of PRM-A/C/D are higher than PRM-

B/B*. Therefore, we use PRM-B* in the rest of the ex-

periments. Noted that increasing the number of channels to

make the baseline model has the similar model size as ours

(Wide BS) would slightly improve the performance. But it

is still worse than ours.

Scales of pyramids. To evaluate the trade-off between the

scales of pyramids C, we vary the scales from 3 to 5, and

fix the model size by tuning the feature channels in each

scale. We observe that increasing scales generally improves

the performance, as shown in Figure. 9(a-b).

Weight initialization. We compare the performance of our

initialization scheme with Xavier [21] and MSR [24] meth-

ods. The training and validation curves of accuracy vs.

epoch are reported in Figure 9(c-d). It can be seen that the

proposed initialization scheme achieves better performance

than both methods.

Controlling variance explosion. Controlling variance ex-

plosion, as discussed in Section 4.2, obtains higher valida-

tion score (88.0) compared with the baseline model (87.6).

With our pyramid residual module, the performance could

be further improved to 88.5 PCKh score.

Table 3. Top-1 test error (%), model size (million) and GFLOPs

on CIFAR-10. WRN-28-10 denote the Wide ResNet with depth 29

and widen factor 10. ResNeXt-29, m × nd denote ResNeXt with

depth 29, cardinality m and base width n.

method #params GFLOPs top-1

WRN-28-10 [64] 36.5 10.5 4.17

Ours-28-9 36.4 9.5 3.82

Ours-28-10 42.3 11.3 3.67

ResNeXt-29, 8× 64d [56] 34.4 48.8 3.65

ResNeXt-29, 16× 64d [56] 68.2 184.5 3.58

Ours-29, 8× 64d 45.6 50.5 3.39

Ours-29, 16× 64d 79.3 186.1 3.30

5.2. Experiments on CIFAR­10 Image Classification

The CIFAR-10 dataset [32] consists of 50k training im-

ages and 10k test images with size 32 × 32 drawn from

10 classes. We follow previous works for data prepara-

tion and augmentation. We incorporate the proposed pyra-

mid branches into two state-of-the-art network architec-

tures, i.e., Wide residual networks [64] and ResNeXt [56].

We add four pyramid branches with scales ranging from

0.5 to 1 into the building block of both Wide ResNet and

ResNeXt. For Wide ResNet, the total width of all pyramid

branches is equal to the width of the output of each residual

module. For ResNeXt, we simply use the same width as its

original branches for our pyramid branches. Table 3 shows

the top-1 test error, model sizes and GFLOPs. Our method

with similar or less model size (Ours-28-9 vs. WRN-28-10

and Ours-29, 8 × 64d vs. ResNeXt-29, 16 × 64d) achieve

better results. A larger model with our pyramid module

(Ours-29, 16 × 64d) achieves 3.30% test error, which is

the state-of-the-art result on CIFAR-10.

6. Conclusion

This paper has proposed a Pyramid Residual Module to

enhance the invariance in scales of the DCNNs. We also

provide a derivation of the initialization scheme for multi-

branch networks, and demonstrate its theoretical soundness

and efficiency through experimental analysis. Additionally,

a simple yet effective method to prevent the variances of

response from explosion when adding outputs of multiple

identity mappings has been proposed. Our PRMs and the

initialization scheme for multi-branch networks are general,

and would help other tasks.

Acknowledgment: This work is supported by SenseTime

Group Limited, the General Research Fund sponsored by

the Research Grants Council of Hong Kong (Project Nos.

CUHK14213616, CUHK14206114, CUHK14205615,

CUHK419412, CUHK14203015, CUHK14207814, and

CUHK14239816), the Hong Kong Innovation and Tech-

nology Support Programme (No.ITS/121/15FX), National

Natural Science Foundation of China (No. 61371192), and

ONR N00014-15-1-2356.

1288

References

[1] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and

J. M. Ogden. Pyramid methods in image processing. RCA

engineer, 1984. 4

[2] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d

human pose estimation: New benchmark and state of the art

analysis. In CVPR, 2014. 6, 7

[3] V. Belagiannis and A. Zisserman. Recurrent human pose

estimation. FG, 2017. 2, 7

[4] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick.

Inside-outside net: Detecting objects in context with skip

pooling and recurrent neural networks. In CVPR, 2016. 2

[5] A. Bulat and G. Tzimiropoulos. Human pose estimation via

convolutional part heatmap regression. In ECCV, 2016. 2, 7

[6] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos. A unified

multi-scale deep convolutional neural network for fast object

detection. In ECCV, 2016. 2

[7] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. In CVPR,

2017. 2

[8] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Hu-

man pose estimation with iterative error feedback. In CVPR,

2016. 7

[9] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. arXiv preprint arXiv:1606.00915, 2016. 2, 4,

7

[10] W. Chen, Z. Fu, D. Yang, and J. Deng. Single-image depth

perception in the wild. In NIPS, 2016. 2

[11] X. Chen and A. L. Yuille. Articulated pose estimation by a

graphical model with image dependent pairwise relations. In

NIPS, 2014. 1

[12] X. Chu, W. Ouyang, H. Li, and X. Wang. Structured feature

learning for pose estimation. In CVPR, 2016. 2

[13] X. Chu, W. Yang, W. Ouyang, C. Ma, A. L. Yuille, and

X. Wang. Multi-context attention for human pose estima-

tion. CVPR, 2017. 2

[14] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A

matlab-like environment for machine learning. In BigLearn,

NIPS Workshop, 2011. 7

[15] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 2

[16] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. TPAMI, 2010. 4

[17] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial struc-

tures for object recognition. IJCV, 61(1):55–79, 2005. 2

[18] V. Ferrari, M. Marı́n-Jiménez, and A. Zisserman. 2d human

pose estimation in tv shows. In Statistical and Geometri-

cal Approaches to Visual Motion Analysis, pages 128–147.

Springer, 2009. 2

[19] M. A. Fischler and R. A. Elschlager. The representation and

matching of pictorial structures. IEEE Transactions on Com-

puters, 22(1):67–92, 1973. 2

[20] G. Gkioxari, A. Toshev, and N. Jaitly. Chained predictions

using convolutional neural networks. In ECCV, 2016. 7

[21] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In Aistats, vol-

ume 9, pages 249–256, 2010. 2, 3, 5, 6, 8

[22] B. Graham. Fractional max-pooling. arXiv preprint

arXiv:1412.6071, 2014. 3

[23] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-

columns for object segmentation and fine-grained localiza-

tion. In CVPR, 2015. 2

[24] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, 2015. 2, 3, 5, 6, 8

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 2, 3, 5, 6

[26] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In ECCV, 2016. 2, 3, 5, 6

[27] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimen-

sionality of data with neural networks. science, 2006. 2

[28] P. Hu and D. Ramanan. Bottom-up and top-down reasoning

with hierarchical rectified gaussians. In CVPR, 2016. 7

[29] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and

B. Schiele. Deepercut: A deeper, stronger, and faster multi-

person pose estimation model. In ECCV. Springer, 2016. 2,

7

[30] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

ICML, 2015. 2, 5

[31] S. Johnson and M. Everingham. Clustered pose and nonlin-

ear appearance models for human pose estimation. In BMVC,

2010. 1, 6

[32] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. In Tech report, 2009. 8

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 2, 3, 5

[34] H. Li, Y. Liu, W. Ouyang, and X. Wang. Zoom out-and-in

network with recursive training for object proposal. arXiv

preprint arXiv:1702.05711, 2017. 2

[35] I. Lifshitz, E. Fetaya, and S. Ullman. Human pose estimation

using deep consensus voting. In ECCV, 2016. 7

[36] S. Liu, X. Liang, L. Liu, X. Shen, J. Yang, C. Xu, L. Lin,

X. Cao, and S. Yan. Matching-cnn meets knn: Quasi-

parametric human parsing. In CVPR, 2015. 1

[37] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. Ssd: Single shot multibox detector. In

ECCV, 2016. 2

[38] V. Nair and G. E. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In ICML, 2010. 3

[39] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. In ECCV. Springer, 2016.

1, 2, 3, 4, 7

[40] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tomp-

son, C. Bregler, and K. Murphy. Towards accurate multi-

person pose estimation in the wild. In CVPR, 2017. 2

[41] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele.

Strong appearance and expressive spatial models for human

pose estimation. In ICCV, 2013. 7

1289

[42] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. An-

driluka, P. V. Gehler, and B. Schiele. Deepcut: Joint subset

partition and labeling for multi person pose estimation. In

CVPR, 2016. 1, 7

[43] U. Rafi, J. Gall, and B. Leibe. An efficient convolutional

network for human pose estimation. In ECCV, 2016. 7

[44] X. Ren, A. C. Berg, and J. Malik. Recovering human body

configurations using pairwise constraints between parts. In

ICCV, 2005. 2

[45] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 2, 3, 5

[46] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-

v4, inception-resnet and the impact of residual connections

on learning. arXiv preprint arXiv:1602.07261, 2016. 2, 5

[47] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 2, 5

[48] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

CVPR, 2016. 2, 5

[49] T.-P. Tian and S. Sclaroff. Fast globally optimal 2d human

detection with loopy graph models. In CVPR, 2010. 2

[50] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide

the gradient by a running average of its recent magnitude.

COURSERA: Neural networks for machine learning, 2012.

7

[51] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler.

Efficient object localization using convolutional networks. In

CVPR, 2015. 1, 2, 7

[52] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training

of a convolutional network and a graphical model for human

pose estimation. In NIPS, 2014. 1, 7

[53] A. Toshev and C. Szegedy. Deeppose: Human pose estima-

tion via deep neural networks. In CVPR, 2014. 1, 2

[54] C. Wang, Y. Wang, and A. L. Yuille. An approach to pose-

based action recognition. In CVPR, 2013. 1

[55] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-

volutional pose machines. In CVPR, 2016. 1, 2, 7

[56] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. arXiv

preprint arXiv:1611.05431, 2016. 2, 4, 8

[57] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg.

Parsing clothing in fashion photographs. In CVPR, 2012. 1

[58] W. Yang, P. Luo, and L. Lin. Clothing co-parsing by joint

image segmentation and labeling. In CVPR, 2014. 1

[59] W. Yang, W. Ouyang, H. Li, and X. Wang. End-to-end learn-

ing of deformable mixture of parts and deep convolutional

neural networks for human pose estimation. In CVPR, 2016.

2

[60] W. Yang, Y. Wang, and G. Mori. Recognizing human actions

from still images with latent poses. In CVPR, 2010. 1

[61] Y. Yang and D. Ramanan. Articulated pose estimation with

flexible mixtures-of-parts. In CVPR, 2011. 2

[62] Y. Yang and D. Ramanan. Articulated human detection with

flexible mixtures of parts. TPAMI, 35(12):2878–2890, 2013.

7

[63] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. ICLR, 2016. 4

[64] S. Zagoruyko and N. Komodakis. Wide residual networks.

In BMVC, 2016. 4, 8

[65] L. Zheng, Y. Huang, H. Lu, and Y. Yang. Pose invariant

embedding for deep person re-identification. arXiv preprint

arXiv:1701.07732, 2017. 1

1290

