
Pixel-Level Matching for Video Object Segmentation using Convolutional Neural

Networks

Jae Shin Yoon† ‡ Francois Rameau‡ Junsik Kim‡ Seokju Lee‡ Seunghak Shin‡ In So Kweon‡

†UMN, Minneapolis, MN ‡KAIST, South Korea

yoon0074@umn.edu, {frameau, Jskim2, sjlee, shshin}@rcv.kaist.ac.kr, iskweon@kaist.ac.kr

Abstract

We propose a novel video object segmentation algorithm

based on pixel-level matching using Convolutional Neural

Networks (CNN). Our network aims to distinguish the tar-

get area from the background on the basis of the pixel-level

similarity between two object units. The proposed network

represents a target object using features from different depth

layers in order to take advantage of both the spatial details

and the category-level semantic information. Furthermore,

we propose a feature compression technique that drastically

reduces the memory requirements while maintaining the ca-

pability of feature representation. Two-stage training (pre-

training and fine-tuning) allows our network to handle any

target object regardless of its category (even if the object’s

type does not belong to the pre-training data) or of varia-

tions in its appearance through a video sequence. Exper-

iments on large datasets demonstrate the effectiveness of

our model - against related methods - in terms of accuracy,

speed, and stability. Finally, we introduce the transferabil-

ity of our network to different domains, such as the infrared

data domain.

1. Introduction & Related Works

Video object segmentation refers to the propagation of

the mask of an initial object(s) from the first to the last

frame of a video sequence. With it, users can determine the

pixel-level foreground masks of every image from single

key frame supervision. Separating the foreground from the

background in a video is a fundamental problem with high

applicability to many video based tasks including video

summarization, stabilization, retrieval, and scene under-

standing. For these reasons, video object segmentation has

been studied intensively, but it still demonstrates poor re-

sults in real world scenarios.

Most recent approaches [5, 23, 29, 1, 25, 28] separate

discriminative objects from a background by optimizing

an energy equation under various pixel graph relationships.

F
ra

m
e

 1
F

ra
m

e
 t

(T
a

rg
e

t)
(R

e
fe

re
n

c
e

)

O
b

je
c
tn

e
s
s

P
ix

e
l-le

v
e

l S
im

ila
rity

S
e

a
rc

h
Q

u
e

ry

Result

Figure 1. Example of a result of the proposed pixel-level matching

network. Here, a completely segmented reference frame is fixed

to the query and a sample target frame is fed to the search input.

Each colored box is associated with the same color in Fig. 2.

For instance, fully connected graphs have been proposed in

[22] to construct a long range spatio-temporal graph struc-

ture robust to challenging situations such as occlusion. In

another study [9], the higher potential term in a supervoxel

cluster unit was used to enforce the steadiness of a graph

structure. More recently, non-local graph connections were

effectively approximated in the bilateral space [17], which

drastically improved the accuracy of segmentation. How-

ever, many recent methods are too computationally expen-

sive to deal with long video sequences. They are also

greatly affected by cluttered backgrounds, resulting in a

drifting effect. Furthermore, many challenges remain partly

unsolved, such as large scale variations and dynamic ap-

pearance changes. The main reason behind these failure

cases is likely poor target appearance representations which

do not encompass any semantic level information.

Recently, Convolutional Neural Networks (CNN) have

been extensively applied to various vision tasks given their

ability to encapsulate semantic information in the object

representation task itself. In spite of this advantage, how-

ever, only a few attempts [4, 20, 10] have been made to

solve video object segmentation problems using a CNN.

2167

Three major causes can be considered: The lack of a train-

ing dataset is the primary problem. Indeed, CNN generally

requires training with abundant and representative datasets

for specific classes. However, it is difficult to account for

all types of target object classes given that the class type is

always assumed to be undefined for video object segmen-

tation purposes. Many recent benchmarks [7, 13, 21] (in-

cluding pixel-level ground-truth labeling) provide a partial

solution to this problem but nonetheless cannot cover all

possible classes. Secondly, training a network exclusively

with the initial frame of a video usually leads to over-fitting.

If the network is over-fitted to a specific object appearance

in the first image, it cannot deal with appearance changes

of the target object in the subsequent frames. Finally, the

localization of the target object using a CNN is also a chal-

lenging issue, especially in relation to pixel-level accuracy.

Most CNN structures encode category-level semantic infor-

mation using features from deep layers generally exploited

for object classification. However, they cannot preserve the

spatial details of the target object, which are the key com-

ponents for object localization. For this reason, the idea of

combining higher-level features with lower-level ones has

attracted much attention in relation to object localization but

a unified and elegant method has yet to be proposed.

In order to solve the aforementioned problems, our

method is mainly inspired by recent breakthroughs in visual

tracking. In a sense, visual tracking shares many common

features with video object segmentation (i.e. propagating

the initial object mask through a series of images). CNN

based visual tracking is also a relatively new trend, but vari-

ous approaches have already been proposed. We can distin-

guish two types of visual tracking methods using a CNN, as

described below:

1) Generative model based tracking aims statistically to de-

scribe the appearance of a target and to track the bounding

box with the best score compared to previous ones. Some

works [16, 24] exploit hierarchical features from different

layers to create robust correlation filters. However, these ap-

proaches cannot integrate this idea into an end-to-end CNN

structure. Nam et al. [18] pre-train a network using tracking

datasets and fine-tune the model using the initial appearance

of the target (in the first image), such that their tracker can

be adapted to any type of object. Tao et al. [27] validated

that matching with Siamese structure can be robust to vari-

ous challenging scenarios without model updates.

2) Discriminative tracking involves the learning of a model

that separates distinguishable target objects from the sur-

rounding background. Wang et al. [30] effectively deal with

the identification problems using the features from conv4

and conv5 layers simultaneously. The criterion used to se-

lect the layers, however, causes confusion to the network. In

other work [31], a pre-trained network is frequently updated

with the appearance of the object to track. For this purpose,

the authors reshape the last fully connected layer encoded

with the target objectness and calculate the element-wise

loss with a conventional regression model.

In consideration of the above tracking approaches, the pro-

posed network embodies the features from lower to higher

levels in an end-to-end process. Our learning method also

consists of two steps to propose an arbitrary target class

adaptation and to cope with appearance variations. The

feature extraction part of our network is designed with a

Siamese structure to improve the robustness against chal-

lenging scenarios. Using the proposed network, our video

object segmentation strategy consists of the matching of an

object of interest (initialized in the first frame) with sub-

sequent images until the end of a sequence. Therefore,

the proposed network must be trained to perform seman-

tic matching between non-successive frames which contain

target appearance variations as shown in Fig. 1.

Overall descriptions of the proposed network and the tar-

get object mask propagation strategy are described in Fig. 2

and Fig. 3 respectively. The main contributions of this paper

are three folded as presented below:

• We propose a novel pixel-level matching network for

video object segmentation. Our method shows good com-

putational efficiency as well as higher performance capa-

bilities compared to previous graph based approaches. •
We propose a feature compression technique that drastically

reduces the memory requirements of the network but that

also maintains its representation ability. • We experimen-

tally validate the transferability of our network pre-trained

on RGB data wiith different domain like infrared data.

2. Proposed Method

If we directly train the proposed network from scratch

(random weight parameters) using only the initial frame of

a new sequence, the network weights are over-fitted to the

first frame object and cannot handle appearance changes.

To prevent this, we split the training into two stages. The

first involves network pre-training (off-line). In this stage,

training involves semantic matching inference in order to

deal with appearance variations using a dataset consisting

of 300,000 image pairs. The second stage is network fine-

tuning (on-line) using the appearance of the object in the

first image. This step is indispensable because the target

object does not necessarily belong to any pre-trained object

class. This makes our network versatile enough to deal with

any arbitrary target.

In light of this two-stage learning process, we present

specific methods by which to train our pixel-level matching

network including its architecture details. We then explain

how our model can be applied directly to video object seg-

mentation tasks.

2168

ReLU+Pool

1024

512

1536

2500

ReLU+Pool ReLU+Pool

ReLU+PoolReLU+Pool

ReLU+Pool

ReLU+Pool

Conv.

1 times

ReLU+Pool

C
o

n
v. L

a
y

e
r

W
e

ig
h

t sh
a

rin
g

64
128 256

512

512
256

128
64

100x100

100x100

50x50

50x50

24x24
10x10

25x25
10x10

: 3x3 Convolutional filter

: Compressor

: Vectorize and concatenate

Inputs
C@NxN

Outputs
(C/16)@NxNR

e
L

U

N
o

rm
50x50

50x50
50x50 50x50

256

ReLU

Input/2

ReLU

Conv.

Conv.

2 times

Conv.

2 times

Conv.

2 times

Conv.

2 times

Conv.

2 times

Conv.

2 timesConv.

2 times

7 times

Search Input

Query Input

100x100
3

100x100
3

Conv.

1 times

Conv.

1 times

Conv.

1 times

Conv.

1 times

Ground-truth

Loss

Reshape

ReLU

Probability

Figure 2. The architecture of the proposed pixel-level matching network. Multi-layered features are extracted from a Siamese structure

(blue). Here, all convolutional layers share their weights with mirrored layers including compressors. The pixel-level similarity is then

encoded via three more hidden fully connected layers (red). Finally, we discriminatively enforce the object coherency through multiple

usages of convolutional layers, finally classifying each pixel into the background and the foreground (green). Zero-padding is properly

used to fit the output size, while the pooling size is 2×2 with a stride of 2.

2.1. Pretraining Pixel­Level Matching Network

The proposed network is composed of two main parts:

pixel-level similarity encoding and target objectness decod-

ing. Our model is pre-trained using 30 video sequences

from the DAVIS [21] dataset which contains various chal-

lenging scenarios. A global description of our network is

available in Fig. 2.

Network inputs Since the first part of our network is

a Siamese structure, it requires two types of inputs: a refer-

ence for the query stream and a target for the search stream.

To make our network robust to dynamic appearance varia-

tions during the learning process, we choose the target and

reference frames randomly (in the same sequence) in order

to avoid successive frames (with high similarity).

To generate the query stream dataset, we randomly select

20 reference frames in each training video. For each frame,

we crop the bounding box containing the reference object

leaving margins around it (25% larger than the original ob-

ject box size). This region of interest is then completely

segmented using the ground-truth label and resized into a

100×100p image patch.

Regarding the search stream data, we randomly select

six target frames associated with each reference frame in

the same sequence. We then generate the search stream data

by cropping and resizing (into 100×100p) multiple bound-

ing boxes at various locations around the target object with

three different margins sizes (ρ1, ρ2 and ρ3). By doing this,

we can train the model to deal with localization and scale

variation. The generated search stream data is further aug-

mented by flipping and rotating. Here, the target object is

always fully or partially included in the cropped box (over-

lapping minimum: 50%). In our experiments, training with

hard negative data which does not contain any part of a tar-

get object has proved to be rather inefficient.

Pixel-level matching To encode the pixel-wise similar-

ity between the search and query processes, our network

initially extracts the features from inputs through several

combinations of convolution, max pooling and Rectified

Linear Units (ReLU). In the field of visual tracking, one

of the major issues is to determine the optimal number of

layers to ensure an effective representation of a target ob-

ject. It was recently found that too many deep layers can

be redundant because visual tracking is a binary classifi-

cation task (foreground or background). Therefore, many

works [27, 30, 16, 24] have exploited VGGNet [26] or pro-

posed much lighter structures [31, 18] which demonstrate

high performance in terms of accuracy and processing time.

Given that our task also belongs to binary classification, we

designed our feature extractor similarly. Fig. 2-(blue) shows

our feature extraction part. Because our model starts with

a Siamese structure, the weights for feature extraction are

shared between the search and query streams.

In the fully connected (FC) layers (Fig. 2-(red)), the sim-

ilarity between the query and search inputs is globally en-

coded using the extracted features. Here, directly feeding

the output features from the last layer in the Siamese struc-

ture to the initial FC layer is a good strategy to generate the

semantic information of a target object. It can, however,

also cause critical localization and identification issues due

to the lack of spatial details. On the other hand, the use

of lower features alone makes it easy to lose the semantic

information. To solve this dilemma, we exploit all of the

feature instances from the lower to the higher layers and

stack them on the initial FC layer. We then use three more

2169

hidden FC layers to globally combine the multi-level fea-

ture instances which encode the similarity between two ob-

ject units. The size and number of FC layers are similar

to that in earlier work [31], which reduces the strong cor-

relation between neighboring pixels to prevent over-fitting

problems. A 50×50 matching score table is finally gener-

ated by reshaping the last FC layer. However, the use of a

large volume of features in the initial FC layer incurs heavy

memory requirements which can lead to a critical computa-

tional bottleneck. Hence, we compress the output features

from each layer (with a data compression ratio of 16) and

feed them to the initial FC layer. We call this process com-

pression and the associated components compressors.

A compressor is composed of three types of layers:

3×3 convolution, ReLU, and Local Response Normaliza-

tion (LRN). The number of convolution filters is sixteen

times smaller than the input channel size. The filter weights

of a compressor are also shared between the query and

search stream. Note that the output value of ReLU at each

layer shows a different scale due to the unbounded nonlin-

earity. These unbalanced scales can cause confusion when

the feature instances are globally combined in the FC layers.

Moreover, pre-normalized features before a loss function

induce more effective network convergence as validated in

Sec. 3.2. We thus include LRN layer at a compressor. Fi-

nally, we vectorize and concatenate all of the features from

each compressor and feed them to the initial FC layer.

The inspiration behind the concept of a compressor

comes from Wang et al. [30]. They fix the number of chan-

nels exploited simply by discarding redundant features from

the outputs of the conv4 and conv5 layers. Using such a

technique, they proved that a target object can be effectively

represented without noise. This can, however, cause a crit-

ical loss of valuable information depending on the type of

data or the complexity of a scene. Therefore, we adaptively

compress our features in order to reduce redundancy with-

out losing reliable information.

Objectness decoding The 50×50 matching score ta-

ble reshaped from the last FC layer encodes the similarity

between two input objects. However, direct classification

of this matching table at the pixel-level is ineffective due to

outliers and inconsistent similarity scores. We thus enforce

objectness coherency and reject outliers through several in-

stances of the use of convolutional layers (shaded in green

in Fig. 2). Note that one zero padded input is always con-

voluted by 3×3 filters to maintain the spatial resolution. An

example of a clearly separated target object area is available

in Fig. 3-(h), and the performance according to the number

of decoding layers is validated in Sec. 3.2.

Loss To constraint the network outputs to binary values

(background: 1, target: 0) in each pixel, we use the basic

element-wise Euclidean distance as a loss function L. Let

the P indexes be the probability of the output and let L

denote the value of the ground-truth label. The score is then

estimated by

L =
1

N2

N∑

x=1

N∑

y=1

‖ P (x, y)− L(x, y) ‖2, (1)

where L ∈ {0, 1}, N is the output size, which is set to

50, and (x, y) is the pixel location in the probability map. It

should be noted that Sigmoid activation can be used before

L2 loss in order to prevent a "strong positive probability"

pixel which results in a large penalty. In our case, however,

the normalization layer in each compressor effectively pre-

adjusts the feature scale to [0, 1], resulting in stable loss

convergence with the simple L2 function only (Fig. 4-(b)).

2.2. Video Object Segmentation

Fig. 3 shows the pipeline of the proposed video object

segmentation method for an arbitrary video. Our method to

propagate the initial object mask consists of two parts: can-

didates sampling and optimal area extraction. Before us-

ing our pixel-level matching network, however, it must be

fine-tuned (second training stage) during the first frame be-

cause the network parameters at the end of the pre-training

process are optimized exclusively for the objects in the 30

training videos. Thanks to the supervision of the initial tar-

get appearance, the model can adapt to any type of object.

Initial frame fine-tuning In order to generate the fine-

tuning data, we use only the first frame of a new video (not

utilized for training). For the query input, we completely

segment the target object and crop the bounding box around

it with small margins (this step assumes a manually labeled

image). For the search input, we sample multiple boxes

around the target object with different margins (ρ1, ρ2, ρ3)

to deal with various scales. It is further augmented by trans-

lation and flipping. Here, the target object is always fully or

partially included (at least 50% overlapped) for more effi-

cient weight convergence. The input data (about 150 pairs)

are finally resized to 100×100p while the corresponding la-

bels are adjusted to 50×50p. We believe that the feature

extraction parts are not highly dependent on the appearance

of an arbitrary target. Therefore, the weights for the feature

extraction parts (the blue boxes in Fig. 2), except for the

compressors, are fixed, whereas the others are updated.

In the field of visual tracking, many previous works

[18, 30, 31] use a frequent model update strategy in the

course of a new video sequence. In our case, however, we

do not update the network after fine-tuning for the follow-

ing reasons. First, we need to consider the computational

efficiency for video processing. In consideration of this, the

model update is particularly heavy (about ten times slower

than one single feed forward process). Secondly, the model

update strategy has a rather negative effect on video seg-

mentation because we cannot obtain a perfect pixel-level

label in the middle of the sequence. Therefore, updating the

model using slightly mislabeled data can increase the drift.

2170

F
ra

m
e

 t
F

ra
m

e
 t
+

1

F
ra

m
e

 1

0 9

(b)

(c)

(d)

(e) (f)

(g)

0 10 1

(h)
(a)

O
b

je
c
tn

e
s
s

P
ix

e
l-le

v
e

l S
im

ila
rity

S
e

a
rc

h
Q

u
e

ry

Fine-tuned Network

Figure 3. The proposed video object segmentation strategy for an online sequence: (a) Candidates sampling, (b) Image resizing, (c, d)

Feeding search and query inputs, (e) Probability maps for each candidate, (f) Size restoration, (g) Stacking, and (h) Thresholding.

Therefore, we match the initial frame with current frame

until the end of the sequence without any model update.

Candidates sampling In order to predict reliable target

object area in the following frame, we investigate the net-

work responses to multiple candidates and aggregate their

information. To do this, we initially sample nine bounding

boxes in the next frame in light of the current target ob-

ject area with certain margins (Fig. 3 - (a)). They are then

resized into 100×100p patches to fit the input size of the

network (Fig. 3 - (b)). Finally, the patches are fed to the

fine-tuned network to obtain the probability maps as shown

in Fig. 3 - (c, d, e).

Optimal area extraction Because the size of each

probability map is 50×50p, the outputs are reshaped back

to the original frame size as described in Fig. 3-(f). We then

accumulate all of the response maps aligning the pixel lo-

cations. Using the combined information, an optimal target

area is finally extracted by thresholding with a pre-defined

parameter (Fig. 3-(h)). This strategy is particularly efficient

because the output of the network differs slightly accord-

ing to the location of the box. Therefore, we can extract a

more reliable target object area through the aggregation of

multiple pixel responses, especially in the edge area. An

investigation of the network responses to a larger number

of sample candidates may lead to greater performances. In

practice, however, we determined that using nine samples is

a good compromise between speed and accuracy.

3. Experiments

In this section, we describe implementation details, and

we demonstrate the validity of the proposed network struc-

ture. Comparative evaluations on three different bench-

marks show the effectiveness of the proposed method. Fi-

nally, we apply our method to region tracking tasks using

infrared data to demonstrate the transferability of our net-

work to a different domain.

3.1. Implementation details

Our CNN pixel-level matching structure is designed

and pre-trained using the Caffe toolbox. Our video seg-

mentation algorithm (including fine-tuning) is implemented

through the MATLAB wrapper of Caffe. All of the experi-

ments are conducted on a desktop computer equipped with

a 3.60 GHz CPU and a TITAN X graphic card.

We pre-trained our network using a Stochastic Gradient

Descent (SGD) method with a learning rate of 10−5. The

momentum and weight decay parameters are fixed to 0.9

and 5×10−4 respectively. The learning rate is reduced at

every 10 epochs, while the parameters of the local size, α

and β for the LRN are set to 5, 10−4 and 7.5×10−1 respec-

tively. For fine-tuning using the initial frame, the learning

rate is twice as large (2×10−5) for more rapid convergence,

while the other parameters are identical to the pre-training

parameters. In our experiments, ρ1, ρ2, and ρ3 are fixed at

10, 30 and 50 respectively. After fine-tuning, online model

update does not occur during the sequence.

3.2. Proposed Network Validation

To demonstrate the efficiency of our pixel-level match-

ing network, we conducted a self-structure evaluation on

the DAVIS [21] benchmark with two different metrics: re-

gion similarity (intersection-over-union: IoU) and contour

accuracy (calculated from the F-measure score). In order to

evaluate the system stability, we also report the mean stan-

dard deviation of each metric. Here, the speed for one feed

forward task in our network is approximately 8 × 10−3s,

while it takes about 1.5×10−1s per frame to deal with the

entire process. The major bottleneck (except for the feed

forward time) comes from the image resizing step. In Ta-

ble 1, the results from the proposed pixel-level matching

network and its post-processed results are denoted as PLM

and PLMP , respectively. PLMP is simply obtained by in-

serting a mask from PLM with the corresponding image into

a publicly available weighted median filter [34] code (filter

size 5, iteration 3). It makes the PLM results to be sharper

and effectively rejects outliers, while it does not have a sig-

nificant impact on the computational time.

Ablation test for decoding convolutional (DC) layers

We conduct an ablation test to find the optimal combina-

2171

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Region Similarity

Contour Accuracy

1 2 3 4 5 6 7 8 9 10

Fine-tunedWithout fine-tuningPLM� :

PLM PLM�� =

L2 loss with normalization

L2 loss without normalization

L2 loss with sigmoid

Iteration (unit : 10)

L
o

s
s
 p

e
n

a
lt

y

(a) (b)

A
c
c
u

ra
c
y

Figure 4. (a) The performance graph according to the number of

decoding convolutional layers. The structure PLM9 is the identical

to the PLM. (b) The loss graphs for three different conditions.

tion of DC layers (the green parts in Fig. 2). In this as-

sessment, we add DC layers one by one and stop the layer

addition process when the accuracy reaches its maximum as

depicted in Fig. 4-(a). The performance (in terms of the av-

erage score) for each experimental setting (PLM1˜ PLM10)

is evaluated on the DAVIS 20 test sequences without fine-

tuning. Here, the first DC layer increases the channel size

from 1 to 2(x−1), where x is the total number of DC lay-

ers, while the subsequent DC layers reduce the size of the

previous channel by a factor of two. From this graph, we

can also demonstrate the effect of fine-tuning (second stage

training) by comparing PLM9 with PLM because they have

identical network structures.

Normalization vs. without normalization

Fig. 4-(b) depicts the effectiveness of the normalization lay-

ers in the compressors. The loss severely fluctuates without

normalization, while the normalized features lead to stable

loss convergence even without sigmoid activation. We fur-

ther noted that this convergence tendency is similar to the

case when using "sigmoid activation + L2 loss" function.

Use and disuse of compressor

As described in Sec. 2.1, owing to the compressor, we

could shorten the computational time while also boosting

the memory efficiency of the network. In order to highlight

the advantages offered by the compression technique, we

attempted to train the network without compressors. How-

ever, the memory requirement exceeded 12GB which be-

yond the capacity of our GPU (even for a batch size of 1).

This implies that compressors are indispensable when train-

ing the network (about 3.7GB with a batch size of 32).

Features from multiple layers vs. single layer

To consider the spatial details and semantic information at

the same time, we exploit the features from different layers.

To underline the importance of this, we compare our net-

work against the same network but using the features from

a single layer only denoted as PLMS . In this case, we di-

rectly feed the output of the last convolutional layer (in the

Siamese structure) to the initial FC layer. We then train

and test the network on the same environment. In Table 1,

PLMS does not work for every sequence due to ineffective

pixel-wise object localization, and it is highly affected by

cluttered background causing critical drifting effects.

HVS NLC JMP SEA BVS OFL PLM PLMP PLMS PLMU

blackswan 0.91 0.87 0.93 0.93 0.94 0.94 0.86 0.89 0.27 0.86
0.91 0.82 0.94 0.95 0.96 0.98 0.87 0.89 0.20 0.87

bmx 0.18 0.21 0.23 0.11 0.38 0.14 0.47 0.48 0.27 0.40
tree 0.28 0.33 0.31 0.13 0.65 0.16 0.66 0.68 0.43 0.55

break 0.55 0.67 0.48 0.33 0.50 0.52 0.47 0.48 0.06 0.50
dance 0.47 0.66 0.51 0.39 0.49 0.52 0.35 0.41 0.08 0.36

camel
0.87 0.76 0.64 0.65 0.67 0.86 0.65 0.68 0.40 0.62
0.87 0.72 0.71 0.61 0.70 0.84 0.54 0.61 0.20 0.49

car 0.77 0.50 0.72 0.70 0.85 0.90 0.86 0.87 0.27 0.87
roundabout 0.55 0.25 0.61 0.71 0.62 0.76 0.64 0.71 0.16 0.68
car 0.70 0.64 0.64 0.77 0.57 0.84 0.77 0.79 0.43 0.77

shadow 0.59 0.54 0.62 0.75 0.47 0.74 0.62 0.73 0.32 0.63

cows
0.78 0.88 0.75 0.71 0.89 0.91 0.81 0.83 0.15 0.79
0.63 0.80 0.7 0.67 0.85 0.85 0.71 0.74 0.10 0.65

dance 0.31 0.34 0.44 0.11 0.49 0.53 0.59 0.62 0.44 0.61
twirl 0.51 0.36 0.52 0.21 0.48 0.60 0.50 0.54 0.35 0.49

dog
0.72 0.81 0.67 0.58 0.72 0.89 0.73 0.74 0.29 0.79
0.63 0.70 0.59 0.54 0.59 0.82 0.61 0.63 0.15 0.63

drift 0.33 0.32 0.24 0.12 0.03 0.10 0.73 0.71 0.03 0.61
chicane 0.54 0.31 0.33 0.16 0.07 0.21 0.79 0.79 0.03 0.60
drift 0.29 0.47 0.61 0.51 0.40 0.33 0.73 0.74 0.12 0.63
straight 0.26 0.38 0.47 0.50 0.41 0.27 0.52 0.56 0.05 0.50

goat 0.58 0.01 0.73 0.53 0.66 0.86 0.76 0.77 0.05 0.74
0.54 0.13 0.61 0.47 0.58 0.84 0.63 0.69 0.05 0.60

horse 0.76 0.83 0.58 0.63 0.80 0.86 0.72 0.77 0.38 0.71
jump 0.80 0.88 0.65 0.65 0.80 0.90 0.73 0.78 0.24 0.70

kite 0.40 0.45 0.50 0.48 0.42 0.70 0.59 0.64 0.20 0.25
surf 0.37 0.45 0.31 0.28 0.64 0.49 0.45 0.45 0.15 0.17

libby
0.55 0.63 0.29 0.22 0.77 0.55 0.52 0.54 0.23 0.43
0.64 0.74 0.36 0.21 0.84 0.61 0.57 0.58 0.21 0.45

motorcross 0.09 0.25 0.58 0.38 0.34 0.60 0.49 0.51 0.27 0.44
jump 0.13 0.30 0.54 0.40 0.37 0.47 0.32 0.37 0.06 0.27
paragliding 0.53 0.62 0.59 0.57 0.64 0.63 0.55 0.57 0.41 0.54
launch 0.20 0.24 0.17 0.18 0.32 0.25 0.15 0.18 0.11 0.16

parkour
0.24 0.90 0.34 0.12 0.75 0.85 0.77 0.82 0.05 0.57
0.32 0.91 0.41 0.27 0.67 0.87 0.75 0.81 0.08 0.56

scooter 0.62 0.16 0.62 0.79 0.33 0.80 0.73 0.75 0.09 0.69
black 0.57 0.22 0.53 0.72 0.40 0.73 0.57 0.64 0.10 0.53

soapbox
0.68 0.63 0.75 0.78 0.79 0.68 0.72 0.76 0.16 0.70
0.69 0.65 0.67 0.75 0.76 0.67 0.54 0.62 0.18 0.49

Average
0.54 0.55 0.56 0.50 0.59 0.67 0.68 0.70 0.23 0.63
0.52 0.52 0.53 0.47 0.58 0.63 0.58 0.62 0.16 0.52

Stability
0.24 0.26 0.18 0.25 0.13 0.25 0.12 0.12 0.13 0.16
0.21 0.24 0.18 0.24 0.21 0.25 0.17 0.16 0.10 0.17

Speed 5s 20s 12s 6s 0.37s 42.2s 0.15s 0.3s 0.2s 3.85s

Table 1. Performance evaluation on the DAVIS [21] benchmark.

First: IoU score for region similarity (higher is better). Second:

F-measure (higher is better) for contour accuracy. Stability is de-

noted by the mean standard deviation of each metric (lower is bet-

ter). At the end of the table, we present the approximate process-

ing time for each method as reported in earlier work [17]. Here,

the left part is for a comparative evaluation, while the right one

is for the self-structure evaluation. Red: best, blue: second best.

For comparison, the following baseline algorithms are assessed:

SEA: SeamSeg [25], JMP: JumpCut [7], NLC: Non-Local Con-

sensus Voting [6], HVS: Efficient Hierarchical Graph-Based Video

Segmentation [8], BVS: Bilateral Space Video Segmentation [17],

OFL: Video Segmentation via Object Flow [28].

Initial frame matching without a model update vs.

successive frames matching with a model updates

To prevent the background drift problem and ensure good

computational efficiency, our strategy consists of matching

the initially fine-tuned query input with the entire sequence.

In order to validate the effectiveness of our strategy, we

compare it against successive frame matching with a model

update scheme. To do so, the query input for frame t + 1
is generated using the output mask of the previous frame t.

The network model is updated every ten frames through 50

2172

In
te

rs
e
c
ti
o
n
-

o
v
e
r-

u
n
io

n
 (

Io
U

)

Sequence length (frame)

HVS NLC JMP SEA

PLMpPLMBVS OFL

Figure 5. The average IoU graph at each sequence as evaluated

on the DAVIS [21] benchmark. The performances of most base-

lines decrease except for NLC as the initial object mask is propa-

gated. Due to the low dependency between successive frames, our

method shows stable graph appearance with high accuracy despite

the fact that the initial mask reaches the back part of the sequence.

iterations. Here, the model update is done in a manner simi-

lar to that in our fine-tuning scheme (described in Sec. 2.2).

The performance of the pixel-level matching model with

updating is denoted as PLMU . In Table 1, PLMU is compa-

rable to PLM, but it never outperforms PLM. This is mainly

due to the fact that model updating and matching between

two successive frames using continuously drifted outputs

lead to rather degenerated results.

3.3. Comparative Evaluation

In our comparative experiments, we measure how much

the key frame object mask is precisely propagated through

the sequences on four different benchmarks.

DAVIS [21] supplies 30 training datasets and 20 test

datasets. This database provides a wide range of challeng-

ing scenarios, such as occlusions, dynamic deformations,

illumination changes, and scale variations. Note that we

did not use any additional datasets to train the network even

when testing on different benchmarks.

As described in Table 1, the proposed method generally

shows better performance on average compared to all of

the other approaches. Among the baselines, OFL is highly

comparable but our method is much more efficient in terms

of the processing time and system stability which are crucial

components in real-world situations. Overall, there are two

reasons for these promising results. First, our pixel-level

matching network can encompass semantic-level informa-

HSV FST DAG TMF KEY NLC BVS PLM PLMP

birdfall 0.57 0.59 0.71 0.62 0.49 0.74 0.66 0.64 0.65

cheetah 0.19 0.28 0.40 0.37 0.44 0.69 0.10 0.65 0.65

girl 0.32 0.73 0.82 0.89 0.88 0.91 0.89 0.77 0.78

monkeydog 0.68 0.79 0.75 0.71 0.74 0.78 0.41 0.61 0.72

parachute 0.69 0.91 0.94 0.93 0.96 0.94 0.94 0.85 0.88

Average 0.49 0.66 0.72 0.70 0.70 0.81 0.60 0.70 0.73

Table 2. Performance evaluation on the SegTrack [13] benchmark

using IoU score (higher is better). Red: best , blue: second best.

RB DA SEA JMP PLM PLMp

animation 11.9 6.38 6.78 4.55 9.38 5.86

bball 18.4 8.47 8.89 3.90 12.8 8.04

bear 4.58 4.48 4.21 4.00 8.60 3.45
car 1.76 5.93 5.08 2.26 4.12 2.18

cheetah 31.5 16.6 7.68 8.16 14.1 11.8

couple 17.5 16.0 23.4 5.13 13.1 9.14
cup 5.45 12.9 9.31 2.15 8.63 6.04

dance 56.1 50.8 43.0 18.7 31.5 14.7

fish 51.8 21.7 25.7 17.5 9.39 7.42
giraffe 22.0 11.2 17.4 7.40 19.7 17.4
goat 13.1 13.3 8.22 4.14 17.8 15.2
hiphop 67.5 51.1 33.7 14.2 19.9 13.6

horse 8.39 45.1 37.8 6.80 11.5 7.94
kongfu 40.2 40.8 17.9 8.00 9.74 6.25
park 11.8 6.54 6.91 5.39 16.5 10.2
pig 9.22 9.85 10.3 3.43 9.09 5.15
pot 2.43 5.03 2.98 2.95 5.46 2.66

skater 38.7 40.8 29.6 22.8 16.8 12.6

station 8.85 20.9 21.3 9.01 7.31 4.68
supertramp 129 60.5 57.4 42.9 30.4 20.7
toy 1.28 3.19 2.16 1.30 5.07 2.25

tricking 79.4 70.9 35.8 21.3 21.9 15.7

Average 28.6 23.7 18.8 9.81 13.7 9.55

Table 3. Errors on the JumpCut [7] benchmark using a transfer

distance of sixteen (lower is better). Red: best , blue: second best.

tion as well as spatial details. Therefore, our method ro-

bustly responds to many challenging scenarios such as oc-

clusions, illumination changes, scale variations, and non-

rigid motions. Secondly, unlike previous spatio-temporal

graph optimization based approaches [5, 23, 29, 1, 25, 28],

our method handles each frame independently. Therefore, a

slight mis-segmentation in the current frame does not have

induce critical effects on the following frames. The perfor-

mance gap between the first and last image of the sequences

(see Fig. 5) and the stability in Table 1 highlight the robust-

ness of our system to the drifting effect problem. Nonethe-

less, however, background objects of the same class and

with an appearance similar to the target object are highly

distractive in our system. Furthermore, the small size of the

network output shows difficulty in handling thin objects.

SegTrack [13] To validate the performance of the pro-

posed method more thoroughly, we also conducted experi-

ments on this dataset using the following additional base-

line algorithms: FST: Fast Object Segmentation in Un-

constrained Video [19], DAG: Video Object Segmentation

through spatially accurate and temporally dense extraction

of primary object regions [33], TMF: Video segmentation

by tracking many figure-ground segments [14], and KEY:

Key-segments for video object segmentation [12]. Table 2

summarizes the results. Here, our method shows compa-

rable results but does not always outperform the other ap-

proaches. This is mainly due to the fact that our network has

not been trained on the same dataset. In addition, the low-

quality videos have caused the confusion for our network to

distinguish the target object from the background.

JumpCut In order to validate the effectiveness of our

model on non-successive scenarios, we use 22 medium res-

olution videos published by Fan et al. [7]. We compare

2173

003 003

045

003

0010

080

(a) Horsejump-high (b) Paragliding-launch

032

048 039

(c) Libby

003

0029

042

(d) Drift-chicane

003

014

024

003

019

034

003

373

782

(e) Cheetah (f) Parachute (g) City

Figure 6. Representative results of the proposed method on challenging scenarios. Each color of the output mask is associated with each

benchmark: green, red and blue come from DAVIS [21], SegTrack [13] and Thermal-Road [32] benchmark respectively.

TD AlexNet CN24 FCN PLM PLMp

campus 10.7 42.1 36.4 10.3 11.3 9.89

mountain 14.0 41.1 21.1 6.34 11.4 10.4

city 12.6 29.1 28.0 9.77 11.95 11.5

Average 11.8 39.0 36.7 9.45 11.5 10.6

Table 4. Error rate (lower is better) evaluation on the Thermal-

Road [32] benchmark. Red: best , blue: second best.

our algorithm to the following methods: RB: RotoBrush

tool from Adobe AfterEffect [2] based on the SnapCut,

and DA: Discontinuity-aware video object cutout [35]. We

measured the performance using the same error metric de-

scribed in [7]. Thus, we investigate the transferred mask

from the ith key frame (i= 0, 16,..,96) to the (i+d)th frame.

To do this, we fine-tune the network at the key frame and

propagate mask skipping for 16 frames (d=16). We then

calculate the average error score in each sequence accord-

ing to the following equation:

Err =
100

Ni

∑

i

of mislabeled pixels at (i+ d)th frame

of foreground pixels at (i+ d)th frame
,

(2)

where Ni denotes the number of key frames. Overall,

the proposed method outperforms all other methods, even

without the active contour refinement process introduced in

an earlier study [7].

Thermal-Road To demonstrate the applicability of our

network to region based tasks such as road tracking, we

present an evaluation of the thermal-infrared based road

scene data from Yoon et al. [32], which contains three dif-

ferent scenarios for a total of approximately 6000 manually

annotated images. To generate query and search data on

this benchmark, we use the full frame (instead of bound-

ing boxes), as the road occupies nearly the entire image.

We conduct a comparison with one hand-crafted feature

based method (TD: Thermal-infrared based drivable region

detection [32]) and three different CNN based approaches

(AlexNet [11], CN24 [3], and FCN [15]). We follow the

same error rate metric with [32] calculated by:

ErrorRate =
NFP +NFN

NP +NN

× 100, (3)

where NFP , NFN , NP , and NN are the number of pix-

els which are respectively associated with incorrectly de-

tected drivable and non-drivable region, and their ground-

truth. As summarized in Table 4, our method outper-

forms the state-of-the-art hand-crafted feature based ap-

proach (TD), and performs second best overall, closely fol-

lowing the FCN approach. Note that, however, we use only

an initial frame for fine-tuning our network pre-trained with

color images, whereas FCN is fully supervised with the

Thermal-Road datasets. From these experiments, we can

validate that the proposed network is transferable to a dif-

ferent domain or task using only a single frame. The results

also demonstrate that the proposed network is readily train-

able with a simple fine-tuning step.

4. Conclusion

In this paper, we proposed a deep learning based video

object segmentation algorithm. Our network is composed of

encoding and decoding models which are suitable for pixel-

level object matching. Two-stage training allows our net-

work to handle appearance variations while also preventing

over-fitting problem. We extensively evaluated our method

on three widely used benchmark datasets. The obtained re-

sults demonstrate that our method performs better than pre-

vious related methods in terms of accuracy, speed, and sta-

bility. We also verified the importance of using multilayer

features and a compression technique to make the network

compact while maintaining its object representation capa-

bility. Finally, we proved the transferability of our network

to different domains using the thermal infrared database.

Acknowledgement
This work was supported by the Technology Innovation

Program(No. 2017-10069072) funded By the Ministry of

Trade, Industry Energy (MOTIE, Korea).

2174

References

[1] V. Badrinarayanan, F. Galasso, and R. Cipolla. Label prop-

agation in video sequences. In Computer Vision and Pat-

tern Recognition (CVPR), 2010 IEEE Conference on, pages

3265–3272. IEEE, 2010.

[2] X. Bai, J. Wang, D. Simons, and G. Sapiro. Video snap-

cut: robust video object cutout using localized classifiers. In

ACM Transactions on Graphics (TOG), volume 28, page 70.

ACM, 2009.

[3] C.-A. Brust, S. Sickert, M. Simon, E. Rodner, and J. Den-

zler. Convolutional patch networks with spatial prior for road

detection and urban scene understanding. arXiv preprint

arXiv:1502.06344, 2015.

[4] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé,

D. Cremers, and L. Van Gool. One-shot video object seg-

mentation. In Computer Vision and Pattern Recognition

(CVPR), 2017.

[5] R. Dondera, V. Morariu, Y. Wang, and L. Davis. Interac-

tive video segmentation using occlusion boundaries and tem-

porally coherent superpixels. In IEEE Winter Conference

on Applications of Computer Vision, pages 784–791. IEEE,

2014.

[6] A. Faktor and M. Irani. Video segmentation by non-local

consensus voting. In BMVC, volume 2, page 6, 2014.

[7] Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen.

Jumpcut: non-successive mask transfer and interpolation

for video cutout. ACM Transactions on Graphics (TOG),

34(6):195, 2015.

[8] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient

hierarchical graph-based video segmentation. In Computer

Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-

ence on, pages 2141–2148. IEEE, 2010.

[9] S. D. Jain and K. Grauman. Supervoxel-consistent fore-

ground propagation in video. In European Conference on

Computer Vision, pages 656–671. Springer, 2014.

[10] V. Jampani, R. Gadde, and P. V. Gehler. Video propagation

networks. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2017.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[12] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video

object segmentation. In 2011 International Conference on

Computer Vision, pages 1995–2002. IEEE, 2011.

[13] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video

segmentation by tracking many figure-ground segments. In

ICCV, 2013.

[14] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video

segmentation by tracking many figure-ground segments. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 2192–2199, 2013.

[15] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3431–3440, 2015.

[16] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical

convolutional features for visual tracking. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 3074–3082, 2015.

[17] N. Märki, F. Perazzi, O. Wang, and A. Sorkine-Hornung.

Bilateral space video segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 743–751, 2016.

[18] H. Nam and B. Han. Learning multi-domain convolu-

tional neural networks for visual tracking. arXiv preprint

arXiv:1510.07945, 2015.

[19] A. Papazoglou and V. Ferrari. Fast object segmentation in

unconstrained video. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 1777–1784,

2013.

[20] F. Perazzi, A. Khoreva, R. Benenson, B. Schiele, and

A.Sorkine-Hornung. Learning video object segmentation

from static images. In Computer Vision and Pattern Recog-

nition, 2017.

[21] F. Perazzi, J. P.-T. B. McWilliams, L. Van Gool, M. Gross,

and A. Sorkine-Hornung. A benchmark dataset and evalua-

tion methodology for video object segmentation.

[22] F. Perazzi, O. Wang, M. Gross, and A. Sorkine-Hornung.

Fully connected object proposals for video segmentation. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 3227–3234, 2015.

[23] B. L. Price, B. S. Morse, and S. Cohen. Livecut: Learning-

based interactive video segmentation by evaluation of multi-

ple propagated cues. In 2009 IEEE 12th International Con-

ference on Computer Vision, pages 779–786. IEEE, 2009.

[24] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, and J. L. M.-H.

Yang. Hedged deep tracking. In Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition, 2016.

[25] S. A. Ramakanth and R. V. Babu. Seamseg: Video object

segmentation using patch seams. In 2014 IEEE Conference

on Computer Vision and Pattern Recognition, pages 376–

383. IEEE, 2014.

[26] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[27] R. Tao, E. Gavves, and A. W. Smeulders. Siamese instance

search for tracking. arXiv preprint arXiv:1605.05863, 2016.

[28] Y.-H. Tsai, M.-H. Yang, and M. J. Black. Video segmenta-

tion via object flow. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[29] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F.

Cohen. Interactive video cutout. In ACM Transactions on

Graphics (TOG), volume 24, pages 585–594. ACM, 2005.

[30] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual track-

ing with fully convolutional networks. In Proceedings of the

IEEE International Conference on Computer Vision, pages

3119–3127, 2015.

[31] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung. Transferring rich

feature hierarchies for robust visual tracking. arXiv preprint

arXiv:1501.04587, 2015.

[32] J. S. Yoon, K. Park, S. Hwang, N. Kim, Y. Choi, F. Rameau,

and I. so Kweon. Thermal-infrared based drivable region de-

2175

tection. In Intelligent Vehicles Symposium (IV), 2016 IEEE,

pages 978–985. IEEE, 2016.

[33] D. Zhang, O. Javed, and M. Shah. Video object segmentation

through spatially accurate and temporally dense extraction

of primary object regions. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

628–635, 2013.

[34] Q. Zhang, L. Xu, and J. Jia. 100+ times faster weighted

median filter (wmf). In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2830–

2837, 2014.

[35] F. Zhong, X. Qin, Q. Peng, and X. Meng. Discontinuity-

aware video object cutout. ACM Transactions on Graphics

(TOG), 31(6):175, 2012.

2176

