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Abstract

Visual question answering (VQA) is challenging because

it requires a simultaneous understanding of both the visual

content of images and the textual content of questions. The

approaches used to represent the images and questions in a

fine-grained manner and questions and to fuse these multi-

modal features play key roles in performance. Bilinear

pooling based models have been shown to outperform tra-

ditional linear models for VQA, but their high-dimensional

representations and high computational complexity may

seriously limit their applicability in practice. For multi-

modal feature fusion, here we develop a Multi-modal Fac-

torized Bilinear (MFB) pooling approach to efficiently and

effectively combine multi-modal features, which results in

superior performance for VQA compared with other bilin-

ear pooling approaches. For fine-grained image and ques-

tion representation, we develop a ‘co-attention’ mechanism

using an end-to-end deep network architecture to jointly

learn both the image and question attentions. Combining

the proposed MFB approach with co-attention learning in

a new network architecture provides a unified model for

VQA. Our experimental results demonstrate that the single

MFB with co-attention model achieves new state-of-the-

art performance on the real-world VQA dataset. Code

available at https://github.com/yuzcccc/mfb.

1. Introduction

Thanks to recent advances in computer vision and natu-

ral language processing, computers are expected to be able

to automatically understand the semantics of images and

natural languages in the near future. Such advances have

∗Jun Yu is the corresponding author

also stimulated new research topics like image-text retrieval

[35, 37], image captioning [5, 34], and visual question

answering [3, 19].

Compared with image-text retrieval and image caption-

ing (which just require the underlying algorithms to search

or generate a free-form text description for a given image),

visual question answering (VQA) is a more challenging

task that requires fine-grained understanding of the seman-

tics of both the images and the questions as well as supports

complex reasoning to predict the best-matching answer

correctly. In some aspects, the VQA task can be treated as a

generalization of image captioning and image-text retrieval.

Thus building effective VQA algorithms, which can achieve

close performance like human beings, is an important step

towards enabling artificial intelligence in general.

Existing VQA approaches usually have three stages: (1)

representing the images as visual features and questions as

textual features; (2) combining these multi-modal features

to obtain fused image-question features; (3) using the

integrated image-question features to learn a multi-class

classifier and to predict the best-matching answer. Deep

neural networks (DNNs) are effective and flexible, many

existing approaches model the three stages in one DNN

model and train the model in an end-to-end fashion through

back-propagation. In the three stages, feature representa-

tion and multi-modal feature fusion particular affect VQA

performance.

With respect to multi-modal feature fusion, most existing

approaches simply use linear models for multi-modal fea-

ture fusion (e.g., concatenation or element-wise addition)

to integrate the image’s visual feature with the question’s

textual feature [39, 18]. Since multi-modal feature distribu-

tions may vary dramatically, the integrated image-question

representations obtained by such linear models may not be

sufficiently expressive to fully capture complex associations

between the visual features from images and the textual
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features from questions. In contrast to linear pooling,

bilinear pooling [28] has recently been used to integrate

different CNN features for fine-grained image recognition

[17]. However, the high dimensionality of the output

features and the huge number of model parameters may

seriously limit the applicability of bilinear pooling. Fukui

et al. proposed the Multi-modal Compact Bilinear (MCB)

pooling model to effectively and simultaneously reduce

the number of parameters and computation time using the

Tensor Sketch algorithm [6]. Using the MCB model, the

group proposed a network architecture for the VQA task

and won the VQA challenge 2016. Nevertheless, the MCB

model lies on a high-dimensional output feature to guar-

antee robust performance, which may limit its applicability

due to huge memory usage. To overcome this problem, Kim

et al. proposed the Multi-modal Low-rank Bilinear (MLB)

pooling model based on the Hadamard product of two

feature vectors [12]. Since MLB generate output features

with lower dimensions and models with fewer parameters,

it is highly competitive with MCB. However, MLB has a

slow convergence rate and is sensitive to the learned hyper-

parameters. To address these issues, here we develop the

Multi-modal Factorized Bilinear pooling (MFB) method,

which enjoys the dual benefits of compact output features

of MLB and robust expressive capacity of MCB.

With respect to feature representation, directly using

global features for image representation may introduce

noisy information that is irrelevant to the given question.

Therefore, it is intuitive to introduce visual attention mech-

anism [34] into the VQA task to adaptively learn the most

relevant image regions for a given question. Modeling

visual attention may significantly improve performance

[6]. However, most existing approaches only model im-

age attention without considering question attention, even

though question attention is also very important since the

questions interpreted in natural languages may also contain

colloquialisms that can be regarded as noise. Therefore,

based on our MFB approach, we design a deep network

architecture for the VQA task using a co-attention learning

module to jointly learn both image and question attentions.

To summarize, the main contributions of this study

are as follows: First, we develop a simple but effective

Multi-modal Factorized Bilinear pooling (MFB) approach

to fuse the visual features from images with the textual

features from questions. MFB significantly outperforms

existing multi-modal bilinear pooling approaches such as

MCB [6] and MLB [12]. Second, based on the MFB

module, a co-attention learning architecture is designed to

jointly learn both image and question attention. Our MFB

approach with co-attention model achieves the state-of-the-

art performance on the VQA dataset. We also conduct

detailed and extensive experiments to show why our MFB

approach is effective. Our experimental results demonstrate

that normalization techniques are extremely important in

bilinear models.

2. Related Work

In this section, we briefly review the most relevant

research on VQA, especially those studies that use multi-

modal bilinear models.

2.1. Visual Question Answering (VQA)

Malinowski et al. [19] made an early attempt at solving

the VQA task. Since then, solving the VQA task has

received increasing attention from the computer vision and

natural language processing communities. VQA approach-

es can be classified into the following methodological

categories: the coarse joint-embedding models [39, 3, 11,

26], the fine-grained joint-embedding models with attention

[1, 18, 6, 9, 21, 38, 40] and the external knowledge based

models [29, 30, 31].

The coarse joint-embedding models are the most s-

traightforward VQA solutions. Image and question are first

represented as global features and then integrated to predict

the answer. Zhou et al. proposed a baseline approach for the

VQA task by using the concatenation of the image CNN

features and the question BoW (bag-of-words) features,

with a linear classifier learned to predict the answer [39].

Some approaches introduce more complex deep models,

e.g., LSTM networks [3] or residual networks [11], to tackle

the VQA task in an end-to-end fashion.

One limitation of coarse joint-embedding models is that

their global features may contain noisy information, making

it hard to correctly answer fine-grained problems (e.g.,

“what color are the cat’s eyes?”) . Therefore, recent VQA

approaches introduce the visual attention mechanism [34]

into the VQA task by adaptively learning the local fine-

grained image features for a given question. Chen et al.

proposed a “question-guided attention map” that projects

the question embeddings to the visual space and formulates

a configurable convolutional kernel to search the image

attention region [4]. Yang et al. proposed a stacked atten-

tion network to learn the attention iteratively [36]. Some

approaches introduce off-the-shelf object detectors [9] or

object proposals [27] as the attention region candidates

and then use the question to identify related ones. Fukui

et al. proposed multi-modal compact bilinear pooling to

integrate image features from spatial grids with textual

features from the questions to predict the attention [6]. In

addition, some approaches apply attention learning to both

the images and questions. Lu et al. proposed a co-attention

learning framework to alternately learn the image attention

and the question attention [18]. Nam et al. proposed a

multi-stage co-attention learning framework to refine the

attentions based on memory of previous attentions [21].
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Despite joint embedding models for VQA delivering

impressive performance, they are not good enough for

answering problems that require complex reasoning or

common sense knowledge. Therefore, introducing external

knowledge is beneficial for VQA. However, existing ap-

proaches have either only been applied to specific datasets

[29, 30], or have been ineffective on benchmark datasets

[31]. There is room for further exploration and develop-

ment.

2.2. Multimodal Bilinear Models for VQA

Multi-modal feature fusion plays an important and fun-

damental role in VQA. After the image and question fea-

tures are obtained, concatenation or element-wise sum-

mations are most frequently used for multi-modal feature

fusion. Since the distributions of two feature sets in dif-

ferent modalities (i.e.,the visual features from images and

the textual features from questions) may vary significantly,

the representation capacity of the fused features may be

insufficient, limiting the final prediction performance.

Fukui et al. first introduced the bilinear model to solve

the problem of multi-modal feature fusion in VQA. In

contrast to the aforementioned approaches, they proposed

the Multi-modal Compact Bilinear pooling (MCB), which

uses the outer product of two feature vectors to produce a

very high-dimensional feature for quadratic expansion [6].

To reduce the computational cost, they used a sampling-

based approximation approach that exploits the property

that the projection of two vectors can be represented as their

convolution. The MCB model outperformed the simple

fusion approaches and demonstrated superior performance

on the VQA dataset [3]. Nevertheless, MCB usually needs

high-dimensional features (e.g., 16,000-D) to guarantee

robust performance, which may seriously limit its applica-

bility due to limitations in GPU memory.

To overcome this problem, Kim et al. proposed the

Multi-modal Low-rank Bilinear Pooling (MLB) approach

based on the Hadamard product of two feature vectors

(i.e., the image feature x ∈ R
m and the question feature

y ∈ R
n) in the common space with two low-rank projection

matrices: [12]:

z = MLB(x, y) = (UTx) ◦ (V T y) (1)

where U ∈ R
m×o and V ∈ R

n×o are the projection

matrices, o is the dimensionality of the output feature,

and ◦ denotes the Hadamard product or the element-wise

multiplication of two vectors. To further increase model

capacity, nonlinear activation like tanh is added after z.

Since the MLB approach can generate feature vectors with

low dimensions and deep models with fewer parameters, it

has achieved comparable performance to MCB. In [12], the

experimental results indicated that MLB may lead to a slow

convergence rate (the MLB with attention model takes 250k

iterations, which is about 140 epochs, to converge [12]).

3. Multi-modal Factorized Bilinear Pooling

Given two feature vectors in different modalities, e.g.,

the visual features x ∈ R
m for an image and the textual

features y ∈ R
n for a question, the simplest multi-modal

bilinear model is defined as follows:

zi = xTWiy (2)

where Wi ∈ R
m×n is a projection matrix, zi ∈ R

is the output of the bilinear model. The bias term is

omitted here since it is implicit in W . To obtain a o-

dimensional output z, we need to learn W = [Wi, ...,Wo] ∈
R

m×n×o. Although bilinear pooling can effectively capture

the pairwise interactions between the feature dimensions, it

also introduces huge number of parameters that may lead to

high computational cost and a risk of over-fitting.

Inspired by the matrix factorization tricks for uni-modal

data [15, 25], the projection matrix Wi in Eq.(2) can be

factorized as two low-rank matrices:

zi = xTUiV
T

i
y =

k∑

d=1

xTudv
T

d
y

= 1
T (UT

i
x ◦ V T

i
y)

(3)

where k is the factor or the latent dimensionality of the

factorized matrices Ui = [u1, ..., uk] ∈ R
m×k and Vi =

[v1, ..., vk] ∈ R
n×k, ◦ is the Hadmard product or the

element-wise multiplication of two vectors, 1 ∈ R
k is an

all-one vector.

To obtain the output feature z ∈ R
o by Eq.(3), the

weights to be learned are two three-order tensors U =
[U1, ..., Uo] ∈ R

m×k×o and V = [V1, ..., Vd] ∈ R
n×k×o

accordingly. Without loss of generality, we can reformulate

U and V as 2-D matrices Ũ ∈ R
m×ko and Ṽ ∈ R

n×ko

respectively with simple reshape operations. Accordingly,

Eq.(3) can be rewritten as follows:

z = SumPooling(ŨTx ◦ Ṽ T y, k) (4)

where the function SumPooling(x, k) means using a one-

dimensional non-overlapped window with the size k to

perform sum pooling over x. We name this model Multi-

modal Factorized Bilinear pooling (MFB).

The detailed procedures of MFB are illustrated in Fig.

1(a). The approach can be easily implemented by combin-

ing some commonly-used layers such as fully-connected,

element-wise multiplication and pooling layers. Further-

more, to prevent over-fitting, a dropout layer is added

after the element-wise multiplication layer. Since element-

wise multiplication is introduced, the magnitude of the

output neurons may vary dramatically, and the model might
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Sum Pooling

(a) Multi-modal Factorized Bilinear Pooling

FC FC

Eltwise Multiplication

Dropout

Power Normalization

L2 Normalization

Sum Pooling

Expand Stage

Squeeze Stage

x y

(b) MFB module

Figure 1. The flowchart of Multi-modal Factorized Bilinear

Pooling and completed design of the MFB module.

converge to an unsatisfactory local minimum. Therefore,

similar to [6], the power normalization (z ← sign(z)|z|0.5)

and ℓ2 normalization (z ← z/‖z‖) layers are appended

after MFB output. The flowchart of the entire MFB module

is illustrated in Fig. 1(b).

Relationship to MLB. Eq.(4) shows that the MLB

in Eq.(1) is a special case of the proposed MFB with

k = 1, which corresponds to the rank-1 factorization.

Figuratively speaking, MFB can be decomposed into two

stages (see in Fig. 1(b)): first, the features from different

modalities are expanded to a high-dimensional space and

then integrated with element-wise multiplication. After

that, sum pooling followed by the normalization layers are

performed to squeeze the high-dimensional feature into the

compact output feature, while MLB directly projects the

features to the low-dimensional output space and performs

element-wise multiplication. Therefore, with the same

dimensionality for the output features, the representation

capacity of MFB is more powerful than MLB.

4. Network Architectures for VQA

The goal of the VQA task is to answer a question about

an image. The inputs to the model contain an image and

a corresponding question about the image. Our model

extracts both the image and the question representations,

integrates the multi-modal features using the MFB mod-

ule in Figure 1(b), treats each individual answer as one

class and performs multi-class classification to predict the

correct answer. In this section, two network architectures

are introduced. The first is the MFB baseline with one

MFB module, which is used to perform ablation analysis

with different hyper-parameters for comparison with other

baseline approaches. The second network introduces co-

attention learning which jointly learns the image and ques-

tion attentions, to better capture fine-grained correlations

between the image and the question, which may lead to a

model with better representation capability.

CNN

LSTM

M
F

B

F
C

S
o

ft
m

a
x

 Banana 

What s the mustache made of ?

Figure 2. MFB baseline network architecture for VQA.

4.1. MFB Baseline

Similar to [6], we extract the image features using 152-

layer ResNet model [7] pre-trained on the ImageNet dataset.

Images are resized to 448× 448, and 2048-D pool5 features

(with ℓ2 normalization) are used for image representation.

Questions are first tokenized into words, and then further

transformed to one-hot feature vectors with max length T .

Then, the one-hot vectors are passed through an embedding

layer and fed into a two-layer LSTM networks with 1024

hidden units [8]. Each LSTM layer outputs a 1024-D

feature for each word. Similar to [6], we extract the output

feature of the last word from each LSTM network, and

concatenate the obtained features of two LSTM networks

to form a 2048-D feature vector for question representation.

For predicting the answers, we simply use the top-N most

frequent answers as N classes since they follow the long-

tail distribution.

The extracted image and question features are fed to the

MFB module to generate the fused feature z. Finally, z
is fed to a N -way classifier with the KL-divergence loss.

Therefore, all the weights except the ones for the ResNet

(due to the limitation of GPU memory) are optimized jointly

in an end-to-end manner. The whole network architecture

is illustrated in Figure 2.

4.2. MFB with CoAttention

For a given image, different questions could result in

entirely different answers. Therefore, an image attention

model, which can predict the relevance of each spatial grid

to the question, is beneficial for predicting the accurate

answer. In [6], 14×14 (196) image spatial grids (res5c

feature maps in ResNet) are used to represent the input

image. After that, the question feature is merged with

each of the 196 image features using MCB, followed by

some feature transformations (e.g., 1 × 1 convolution and

ReLU activation) and softmax normalization to predict the

attention weight for each grid location. Based on the atten-

tion map, the attentional image features are obtained by the

weighted sum of the spatial grid vectors. Multiple attention

maps are generated to enhance the learned attention map,

and these attention maps are concatenated to output the
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Figure 3. MFB with Co-Attention network architecture for VQA. Different from the network of MFB baseline, the images and questions

are firstly represented as the fine-grained features respectively. Then, Question Attention and Image Attention modules are jointly modeled

in the framework to provide more accurate answer predictions.

attentional image features. Finally, the attentional image

features are merged with the question features using MCB

to determine the final answer prediction.

From the results reported in [6], one can see that in-

corporating an attention mechanism allows the model to

effectively learn which region is important for the question,

clearly contributing to better performance than the model

without attention. However, the attention model in [6]

only focuses on learning image attention while completely

ignoring question attention. Since the questions are inter-

preted as natural language, the contribution of each word

is significantly different. Therefore, here we develop a co-

attention learning approach (see Figure 3) to jointly learn

both the question and image attentions.

The difference between the network architecture of our

co-attention model and the attention model in [6] is that

we additionally place a question attention module after the

LSTM networks to learn the attention weights of every

word in the question. Different to other co-attention models

for VQA [18, 21], in our model, the image and question

modules are loosely coupled such that we do not exploit

the image features when learning the question attention

module. This is because we assume that the network can

directly infer the question attention (i.e., the key words of

the question) without seeing the image, as humans do. We

name this network MFB with Co-Attention (MFB+CoAtt).

5. Experiments

In this section, we conduct several experiments to e-

valuate the performance of our MFB models on the VQA

task using the VQA dataset [3] to verify our approach.

We first perform ablation analysis on the MFB baseline

model to verify the efficiency of the proposed approach over

existing state-of-the-art methods such as MCB [6] and MLB

[12]. We then provide detailed analyses of the reasons why

our MFB model outperforms its counterparts. Finally, we

choose the optimal hyper-parameters for the MFB module

and train the model with co-attention (MFB+CoAtt) for fair

comparison with other state-of-the-art approaches on the

VQA dataset [3].

5.1. Datasets

The VQA dataset [3] consists of approximately 200,000

images from the MS-COCO dataset [16], with 3 questions

per image and 10 answers per question. The data set is

split into three: train (80k images and 248k questions),

val (40k images and 122k questions), and test (80k images

and 244k questions). Additionally, there is a 25% test

split subset named test-dev. Two tasks are provided to

evaluate performance: Open-Ended (OE) and Multiple-

Choices (MC). We use the tools provided by Antol et al.

[3] to evaluate the performance on the two tasks.

5.2. Experimental Setup

For the VQA dataset, we use the Adam solver with β1 =
0.9, β2 = 0.99. The base learning rate is set to 0.0007 and

decays every 40,000 iterations using an exponential rate of

0.5. We terminate training at 100,000 iterations (200,000

iterations if the training set is augmented with the large-

scale Visual Genome dataset [14]). Dropouts are used after

each LSTM layer (dropout ratio p = 0.3) and MFB module

(p = 0.1) like [6]. The number of answers N = 3000.

For all experiments (except for the ones shown in Table 2,

which use the train and val splits together as the training set

like the comparative approaches), we train on the train split,

validate on the val split, and report the results on the test
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(a) Standard (b) w/o power norm. (c) w/o ℓ2 norm. (d) w/o power and ℓ2 norms.

Figure 4. The evolution of the output distribution of one typical neuron with different normalization settings, shown as {15,50,85}th

percentiles. Both normalization techniques, especially the ℓ2 normalization make the neuron values restricted within a narrow range, thus

leading to a more stable model. Best viewed in color.

Table 1. Overall accuracies and model sizes of approaches and on

the test-dev set of the Open-Ended task. The reported accuracy is

the overall accuracy of all question types. The model size includes

the parameters for the LSTM networks.

Model Acc. Model Size

MCB[6] (d = 16000) 59.8 63M

MLB[12] (d = 1000) 59.7 25M

MFB(k = 1, o = 5000) 60.4 51M

MFB(k = 5, o = 1000) 60.9 46M

MFB(k = 10, o = 500) 60.6 38M

MFB(k = 5, o = 200) 59.8 22M

MFB(k = 5, o = 500) 60.4 28M

MFB(k = 5, o = 2000) 60.7 62M

MFB(k = 5, o = 4000) 60.4 107M

MFB(k = 5, o = 1000) - -

-w/o power norm. 60.4 -

-w/o ℓ2 norm. 57.7 -

-w/o power and ℓ2 norms. 57.3 -

split1. The batch size is set to 200 for the models without

the attention mechanism, and set to 64 for the models with

attention (due to GPU memory limitation). All experiments

are implemented with the Caffe toolbox [10] and performed

on a workstation with GTX 1080 GPUs.

5.3. Ablation Analysis

In Table 1, we compare MFB’s performance with other

state-of-the-art bilinear pooling models, namely MCB [6]

and MLB (for fair comparison, we replace the tanh function

in MLB with the proposed power+ℓ2 normalizations ) [12],

under the same experimental settings. None of these

methods introduce the attention mechanism. Furthermore,

we explore different hyper-parameters and normalizations

introduced in MFB to explore why MFB outperform the

compared bilinear models.

From Table 1, we can see that:

1the submission attempts for the test-standard split are strictly limited.

Therefore, we evaluate most of our settings on the test-dev split and only

report the best results on the test-standard split.

First, MFB significantly outperforms MCB and MLB.

With 5/6 parameters, MFB(k = 5, o = 1000) achieves

about a 1% accuracy improvement compared with MCB.

Moreover, with only 1/3 parameters , MFB(k = 5, o =
200) obtains similar results to MCB. These characteristics

allows us to train our model on a memory limited GPU

with larger batch-size. Furthermore, the validation accuracy

of MCB gradually falls after 30,000 iterations, indicating

that it suffers from overfitting with the high-dimensional

output features. In comparison, the performance of our

MFB model is relatively robust.

Second, when ko is fixed to a constant, e.g., 5000, the

number of factors k affects the performance. Increasing

k from 1 to 5, produces a 0.5% performance gain. When

k = 10, the performance has approached saturation. This

phenomenon can be explained by the fact that a large k cor-

responds to using a large window to sum pool the features,

which can be treated as a compressed representation and

may loss some information. When k is fixed, increasing o
does not produce further improvements. This suggests that

high-dimensional output features may be easier to overfit.

Similar results can be seen in [6]. In summary, k = 5
and o = 1000 may be a suitable combination for our MFB

model on the VQA dataset, so we use these settings in our

follow-up experiments.

Finally, both the power and ℓ2 normalization bene-

fit MFB performance. Power normalization results in

about 0.5% improvement and ℓ2 normalization, perhaps

surprisingly, results in about 3% improvement. Results

without ℓ2 and power normalizations were also reported

in [3] and are similar to those reported here. To explain

why normalization are so important, we randomly choose

one typical neuron from the MFB output feature before

normalization to illustrate how its distribution evolves over

time in Figure 4. It can be seen that the standard MFB

model (with both normalizations) leads to the most stable

neuron distribution and without the power normalization,

about 10,000 iterations are needed to achieve stabilization.

Without the ℓ2 normalization, the distribution varies seri-
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Table 2. Open-Ended (OE) and Multiple-Choice (MC) results on VQA dataset compared with the state-of-the-art approaches in terms of

accuracy in %. Att. indicates whether the approach introduce the attention mechanism, W.E. indicates whether the approach uses external

word embedding models. VG indicates the model is trained with the Visual Genome dataset additionally. All the reported results are

obtained with a single model. For the test-dev set, the best results in each split are bolded. For the test-standard set, the best results overall

all the splits are bolded.

Model Att. W.E. Test-dev Test-standard

OE MC OE MC

All Y/N Num Other All All Y/N Num Other All

iBOWIMG [39] 55.7 76.5 35.0 42.6 - 55.9 78.7 36.0 43.4 62.0

DPPnet [23] 57.2 80.7 37.2 41.7 - 57.4 80.3 36.9 42.2 -

VQA team [3] 57.8 80.5 36.8 43.1 62.7 58.2 80.6 36.5 43.7 63.1

AYN [20] 58.4 78.4 36.4 46.3 - 58.4 78.2 36.3 46.3 -

AMA [31] 59.2 81.0 38.4 45.2 - 59.4 81.1 37.1 45.8 -

DMN+ [32] 60.3 80.5 36.8 60.3 - 60.4 - - - -

MCB [6] 61.1 81.7 36.9 49.0 - 61.1 81.7 36.9 49.0 -

MRN [11] 61.7 82.3 38.9 49.3 - 61.8 82.4 38.2 49.4 66.3

MFB (Ours) 62.2 81.8 36.7 51.2 67.2 - - - - -

SMem [33] X 58.0 80.9 37.3 43.1 - 58.2 80.9 37.3 43.1 -

NMN [2] X 58.6 81.2 38.0 44.0 - 58.7 81.2 37.7 44.0 -

SAN [36] X 58.7 79.3 36.6 46.1 - 58.9 - - - -

FDA [9] X 59.2 81.1 36.2 45.8 - 59.5 - - - -

DNMN [1] X 59.4 81.1 38.6 45.4 - 59.4 - - - -

HieCoAtt [18] X 61.8 79.7 38.7 51.7 65.8 62.1 - - - -

RAU [22] X 63.3 81.9 39.0 53.0 67.7 63.2 81.7 38.2 52.8 67.3

MCB+Att [6] X 64.2 82.2 37.7 54.8 - - - - - -

DAN [21] X 64.3 83.0 39.1 53.9 69.1 64.2 82.8 38.1 54.0 69.0

MFB+Att (Ours) X 64.6 82.5 38.3 55.2 69.6 - - - - -

MFB+CoAtt (Ours) X 65.1 83.2 38.8 55.5 70.0 - - - - -

MCB+Att+GloVe [6] X X 64.7 82.5 37.6 55.6 - - - - - -

MLB+Att+StV [12] X X 65.1 84.1 38.2 54.9 - 65.1 84.0 37.9 54.8 68.9

MFB+CoAtt+GloVe (Ours) X X 65.9 84.0 39.8 56.2 70.6 65.8 83.8 38.9 56.3 70.5

MCB+Att+GloVe+VG [6] X X 65.4 82.3 37.2 57.4 - - - - - -

MLB+Att+StV+VG [12] X X 65.8 83.9 37.9 56.8 - - - - - -

MFB+CoAtt+GloVe+VG (Ours) X X 66.9 84.1 39.1 58.4 71.3 66.6 84.2 38.1 57.8 71.4

ously over the entire training course. This observation is

consistent with the results shown in Table 1.

5.4. Comparison with Stateoftheart

Table 2 compares our approaches with the current state-

of-the-art. The table is split into four parts over the rows:

the first summarizes the methods without introducing the

attention mechanism; the second includes the methods with

attention; the third illustrates the results of approaches

with external pre-trained word embedding models, e.g.,

GloVe [24] or Skip-thought Vectors (StV) [13]; and the last

includes the models trained with the external large-scale

Visual Genome dataset [14] additionally. To best utilize

model capacity, the training data set is augmented so that

both the train and val splits are used as the training set, result

in about 1% ∼ 2% overall accuracy improvement on the

OE task. Also, to better understand the question semantics,

pre-trained GloVe word vectors are concatenated with the

learned word embedding. The MFB model corresponds to

the MFB baseline model. The MFB+Att model indicates

the model that replaces the MCB with our MFB in the

MCB+Att model [6]. The MFB+CoAtt model represents

the network shown in Figure 3.

From Table 2, we have the following observations:

First, the model with MFB outperforms other compar-

ative approaches significantly. The MFB baseline outper-

forms all other existing approaches without the attention

mechanism for both the OE and MC tasks, and even

surpasses some approaches with attention. When attention

is introduced, MFB+Att consistently outperforms current

next-best model MCB+Att, highlighting the efficacy and

robustness of the proposed MFB.

Second, the co-attention model further improve the per-

formance over the attention model with only considering

the image attention. By introducing co-attention learning,

MFB+CoAtt delivers a 0.5% improvement on the OE task

compared with the MFB+Att model in terms of overall ac-

curacy, indicating the additional benefits of the co-attention

learning framework.

Finally, with the external pre-trained GloVe model and

the Visual Genome dataset, the performance of our models

are further improved. The MFB+CoAtt+GloVe+VG model
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Q: what color are the 
cats eyes
A: yellow   P: yellow

what color are the 
cats eyes ?

Q: what color is the 
catchers pants
A: black     P: white

what color is the 
catchers pants

A: yellow   P: yellow cats eyes 

what color is the 

A: black     white

what color is the 
pants

Q: how many birds 
are flying
A: 2    P: 2

how many birds are 
flying

Q: how many flags 
are shown
A: 6     P: 2

how many flags are 
shown

is the boy on the 
bottom playing left 
handed

Q: is the man smiling
A: yes     P: yes

is the man smiling

is the boy on the 
bottom playing
handed

Q: is the boy on the bottom 
playing left handed
A: yes      P: no

Q: what is on the 
floor
A: cat     P: cat

what is on the floor

Q: what are the red 
things
A: meat   P: tomatoes

what are the red 
things



P  P  P  P  

  

Figure 5. Typical examples of the learned image and question of the MFB+CoAtt+GloVe model. The top row shows four examples of four

correct predictions while the bottom row shows four incorrect predictions. For each example, the query image, question (Q), answer (A)

and prediction (P) are presented from top to bottom; the learned image and question attentions are presented next to them. The brightness

of images and darkness of words represent their attention weights.

Table 3. Comparison with the state-of-the-art results (with model

ensemble) on the test-standard set of the VQA dataset. The best

results are bolded.
Model OE MC

All Y/N Num Other All

HieCoAtt [18] 62.1 80.0 38.2 52.0 66.1

RAU [22] 64.1 83.3 38.0 53.4 68.1

7 MCB models [6] 66.5 83.2 39.5 58.0 70.1

7 MLB models [12] 66.9 84.6 39.1 57.8 70.3

7 MFB models (Ours) 68.4 85.6 40.6 59.8 72.5

Human [3] 83.3 95.8 83.4 72.7 91.5

significantly outperforms the best reported results with a

single model on both the OE and MC task.

In Table 3, we compare our approach with the state-

of-the-art methods with model ensemble. Similar with

[6, 12], we train 7 individual MFB+CoAtt+GloVe models

and average the prediction scores of them. Four of the

seven models additionally introduce the Visual Genome

dataset [14] into the training set. For fair comparison,

only the published results are demonstrated. From Table

3, the ensemble of MFB models outperforms the next best

approach by 1.5% on the OE task and by 2.2% on the

MC task respectively. Finally, compared with the results

obtained by human, there is still a lot of room for the

improvement to approach the human-level.

To better demonstrate the effects of co-attention learn-

ing, in Figure 5 we visualize the learned question and

image attentions of some examples from the validation

set. The examples are randomly picked from different

question types. It can be seen that the learned question

and image attentions are usually closely focus on the key

words and the most relevant image regions. From the

incorrect examples, we can also draw conclusions about the

weakness of our approach, which are perhaps common to

all VQA approaches: 1) some key words in the question are

neglected by the question attention module, which seriously

affects the learned image attention and final predictions

(e.g., the word catcher in the first example and the word

bottom in the third example); 2) even the intention of

the question is well understood, some visual contents are

still unrecognized (e.g., the flags in the second example)

or misclassified (the meat in the fourth example), leading

to the wrong answer for the counting problem. These

observations are useful to guide further improvements for

VQA in the future.

6. Conclusions

In this paper, we develop a Multi-modal Factorized Bi-

linear pooling (MFB) approach to fuse multi-modal features

for the VQA task. Compared with existing bilinear pooling

methods, the MFB approach achieves significant perfor-

mance improvement for the VQA task. Based on MFB, we

design a network architecture with co-attention learning that

achieves new state-of-the-art performance on the real-world

VQA dataset. This explorations of multi-modal bilinear

pooling and co-attention learning are applicable to a wide

range of tasks involving multi-modal data.
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