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Abstract

Distinguishing subtle differences in attributes is valu-

able, yet learning to make visual comparisons remains non-

trivial. Not only is the number of possible comparisons

quadratic in the number of training images, but also access

to images adequately spanning the space of fine-grained

visual differences is limited. We propose to overcome the

sparsity of supervision problem via synthetically generated

images. Building on a state-of-the-art image generation en-

gine, we sample pairs of training images exhibiting slight

modifications of individual attributes. Augmenting real

training image pairs with these examples, we then train at-

tribute ranking models to predict the relative strength of

an attribute in novel pairs of real images. Our results on

datasets of faces and fashion images show the great promise

of bootstrapping imperfect image generators to counteract

sample sparsity for learning to rank.

1. Introduction

Fine-grained analysis of images often entails making vi-

sual comparisons. For example, given two products in a

fashion catalog, a shopper may judge which shoe appears

more pointy at the toe. Given two selfies, a teen may gauge

in which one he is smiling more. Given two photos of

houses for sale on a real estate website, a home buyer may

analyze which facade looks better maintained.

In these and many other such cases, we are interested

in inferring how a pair of images compares in terms of a

particular property, or “attribute”. That is, which is more

pointy, smiling, well-maintained, etc. Importantly, the dis-

tinctions of interest are often quite subtle. Subtle compar-

isons arise both in image pairs that are very similar in almost

every regard (e.g., two photos of the same individual wear-

ing the same clothing, yet smiling more in one photo than

the other), as well as image pairs that are holistically dif-

ferent yet exhibit only slight differences in the attribute in

question (e.g., two individuals different in appearance, and

one is smiling slightly more than the other).

Novel Pair

Real Pairs Synthetic Pairs

vs.

Figure 1: Our method “densifies” supervision for training ranking func-

tions to make visual comparisons, by generating ordered pairs of synthetic

images. Here, when learning the attribute smiling, real training images

need not be representative of the entire attribute space (e.g., Web pho-

tos may cluster around commonly photographed expressions, like toothy

smiles). Our idea “fills in” the sparsely sampled regions to enable fine-

grained supervision. Given a novel pair (top), the nearest synthetic pairs

(right) may present better training data than the nearest real pairs (left).

A growing body of work explores computational models

for visual comparisons [6, 19, 24, 28, 33, 36, 38, 39, 43,

46, 47, 48]. In particular, ranking models for “relative at-

tributes” [19, 24, 28, 33, 43, 47] use human-ordered pairs

of images to train a system to predict the relative ordering

in novel image pairs.

A major challenge in training a ranking model is the

sparsity of supervision. That sparsity stems from two fac-

tors: label availability and image availability. Because

training instances consist of pairs of images—together with

the ground truth human judgment about which exhibits the

property more or less—the space of all possible compar-

isons is quadratic in the number of potential training im-

ages. This quickly makes it intractable to label an image

collection exhaustively for its comparative properties. At

the same time, attribute comparisons entail a greater cog-
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nitive load than, for example, object category labeling. In-

deed, the largest existing relative attribute datasets sample

only less than 0.1% of all image pairs for ground truth la-

bels [47], and there is a major size gap between standard

datasets labeled for classification (now in the millions [7])

and those for comparisons (at best in the thousands [47]).

A popular shortcut is to propagate category-level compar-

isons down to image instances [2, 28]—e.g., deem all ocean

scenes as “more open” than all forest scenes—but this intro-

duces substantial label noise and in practice underperforms

training with instance-level comparisons [19].

More insidious than the annotation cost, however, is the

problem of even curating training images that sufficiently

illustrate fine-grained differences. Critically, sparse super-

vision arises not simply because 1) we lack resources to get

enough image pairs labeled, but also because 2) we lack a

direct way to curate photos demonstrating all sorts of subtle

attribute changes. For example, how might we gather unla-

beled image pairs depicting all subtle differences in “sporti-

ness” in clothing images or “surprisedness” in faces? As a

result, even today’s best datasets contain only partial repre-

sentations of an attribute. See Figure 1.

We propose to use synthetic image pairs to overcome the

sparsity of supervision problem when learning to compare

images. The main idea is to synthesize plausible photos

exhibiting variations along a given attribute from a genera-

tive model, thereby recovering samples in regions of the at-

tribute space that are underrepresented among the real train-

ing images. After (optionally) verifying the comparative la-

bels with human annotators, we train a discriminative rank-

ing model using the synthetic training pairs in conjunction

with real image pairs. The resulting model predicts attribute

comparisons between novel pairs of real images.

Our idea can be seen as semantic “jittering” of the data

to augment real image training sets with nearby varia-

tions. The systemic perturbation of images through label-

preserving transforms like mirroring/scaling is now com-

mon practice in training deep networks for classification [9,

37, 41]. Whereas such low-level image manipulations are

performed independent of the semantic content of the train-

ing instance, the variations introduced by our approach are

high-level changes that affect the very meaning of the im-

age, e.g., facial shape changes as the expression changes.

In other words, our jitter has a semantic basis rather than a

purely geometric/photometric basis. See Figure 2.

We demonstrate our approach in domains where subtle

visual comparisons are often relevant: faces and fashion.

To support our experiments, we crowdsource a lexicon of

fine-grained attributes that people naturally use to describe

subtle differences, and we gather new comparison annota-

tions. In both domains—and for two distinct popular rank-

ing models [38, 47]—we show that artificially “densifying”

comparative supervision improves attribute predictions.

- -

sporty

opencomfort

+

Semantic Jitter

+

+

-

Low-Level Jitter

Figure 2: Whereas standard data augmentation with low-level “jitter” (left)

expands training data with image-space alterations (mirroring, scaling,

etc.), our semantic jitter (right) expands training data with high-level al-

terations, tweaking semantic properties in a controlled manner.

2. Related Work

Attribute Comparisons Since the introduction of rela-

tive attributes [28], the task of attribute comparisons has

gained attention for its variety of applications, such as on-

line shopping [19], biometrics [32], novel forms of low-

supervision learning [2, 36], and font selection [26].

The original approach [28] adopts a learning-to-rank

framework [15]. Pairwise supervision is used to train a lin-

ear ranking function for each attribute. More recently, non-

linear ranking functions [24], combining feature-specific

rankers [6], multi-task learning [5], fusing pointwise and

pairwise labels [42], and training local rankers on the

fly [47, 48] are all promising ways to improve accuracy.

Other work investigates features tailored for attribute com-

parisons, such as facial landmark detectors [33] and vi-

sual chains to discover relevant parts [43]. The success

of deep networks has motivated end-to-end frameworks for

learning features and attribute ranking functions simultane-

ously [38, 39, 46]. Unlike any of the above, the novelty of

our idea rests in the source data for training, not the learning

algorithm. We evaluate its benefits for two popular rank-

ing frameworks—RankSVM [2, 15, 19, 28, 47, 48] and a

Siamese deep convolutional neural network (CNN) [38].

Attributes and Image Synthesis Our approach relies on

a generative model for image synthesis that can progres-

sively modify a target attribute. Attribute-specific alter-

ations have been considered in several recent methods, pri-

marily for face images. Some target a specific domain

and attribute, such as methods to enhance the “memora-

bility” [17] or age [16] of facial photos, or to edit out-

door scenes with transient attributes like weather [22]. Al-

ternatively, the success of deep neural networks for image

generation (i.e., GAN [10] or VAE [11, 18, 20]) opens the

door to learning how to generate images conditioned on de-

sired properties [8, 23, 27, 44, 45]. For example, a con-

ditional multimodal auto-encoder can generate faces from

attribute descriptions [27], and focus on identity-preserving
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changes [23]. We employ the state-of-the-art model of [44]

due to its generality. Whereas the above methods aim to

produce an image for human inspection, we aim to generate

dense supervision for learning algorithms.

Training Recognition Models with Synthetic Images

The use of synthetic images as training data has been ex-

plored to a limited extent, primarily for human bodies.

Taking advantage of high quality graphics models for hu-

manoids, rendered images of people from various view-

points and body poses provide free data to train pose es-

timators [29, 34, 35] or person detectors [31]. For objects

beyond people, recent work considers how to exploit non-

photorealistic images generated from 3D CAD models to

augment training sets for object detection [30], or words

rendered in different fonts for text recognition [13].

While these methods share our concern about the spar-

sity of supervision, our focus on attributes and ranking is

unique. Furthermore, most methods assume a graphics en-

gine and 3D model to render new views with desired pa-

rameters (pose, viewpoint, etc.). In contrast, we investi-

gate images generated from a 2D image synthesis engine in

which the modes of variation are controlled by a learned

model. Being data-driven can offer greater flexibility, al-

lowing tasks beyond those requiring a 3D model, and vari-

ability beyond camera pose and lighting parameters.

3. Approach

Our idea is to “densify” supervision for learning to make

visual comparisons, by leveraging images sampled from an

attribute-conditioned generative model. First we overview

the visual comparison task (Sec. 3.1). Then, we describe the

generative model and how we elicit dense supervision pairs

from it (Sec. 3.2). Finally, we integrate synthetic and real

images to train rankers for attribute comparisons (Sec. 3.3).

3.1. Visual Comparison Predictor

Let xi ∈ R
Nx denote an image with Nx pixels and let

φ(xi) ∈ R
D denote its D-dimensional descriptor (e.g.,

Gist, color, CNN feature, or simply raw pixels). Given

a target attribute A and two images xi and xj , the goal

of visual comparison is to determine which of the images

contains “more” of the specified attribute. The supervision

paradigm widely adopted in ranking models for attribute

comparisons [24, 28, 33, 38, 39, 43, 46, 47, 48] consists

of ordered pairs of images. Specifically, the learning algo-

rithm is provided with ordered pairs PA = {(xi,xj)} for

which human annotators perceive image i to have the at-

tribute A more than image j. The idea is to learn a ranking

function RA(φ(x)) that satisfies the specified orderings as

well as possible:

∀(i, j) ∈ PA : RA(φ(xi)) > RA(φ(xj)). (1)

Precisely what defines “as well as possible” depends on the

specifics of the model, such as a RankNet objective [4, 38]

or paired classification objective with wide margin regular-

ization [15, 28].

Given a novel image pair (xm,xn), the ranker com-

pares them to determine which exhibits the attribute more.

If RA(φ(xm)) > RA(φ(xn)), then image m exhibits at-

tribute A more than image n, and vice versa.

Our goal is to address the sparsity issue in PA through

the addition of synthetic image pairs, such that the training

pairs are more representative of subtle differences in A. Our

approach does not interfere with the formulation of the spe-

cific ranking model used. So, improvements in densifying

supervision are orthogonal to improvements in the relative

attribute prediction model. To demonstrate this versatility,

in experiments we explore two successful learning-to-rank

models from the attributes literature (see Sec. 3.3).

3.2. Synthesizing Dense Supervision

The key to improving coverage in the attribute

space is the ability to generate images exhibiting sub-

tle differences—with respect to the given attribute—while

keeping the others constant. In other words, we want to

walk semantically in the high-level attribute space.

3.2.1 Attribute-Conditioned Image Generator

We adopt an existing state-of-the-art image generation sys-

tem, Attribute2Image, recently introduced by Yan et al. [44,

45], which can generate images that exhibit a given set of

attributes and latent factors.

Suppose we have a lexicon of Na attributes,

{A1, . . . ,ANa
}. Let y ∈ R

Na be a vector containing

the strength of each attribute, and let z ∈ R
Nz be the

latent variables. The Attribute2Image approach constructs

a generative model for pθ(x|y, z) that produces realistic

images x ∈ R
Nx conditioned on y and z. The authors

maximize the variational lower bound of the log-likelihood

log pθ(x|y) in order to obtain the model parameters θ.

The model is implemented with a Conditional Variational

Auto-Encoder (CVAE). The network architecture generates

the entangled hidden representation of the attributes and la-

tent factors with multilayer perceptrons, then generates the

image pixels with a coarse-to-fine convolutional decoder.

The authors apply their approach for attribute progression,

image completion, and image retrieval. See [44, 45] for

more details.

3.2.2 Generating Dense Synthetic Image Pairs

We propose to leverage the Attribute2Image [44] engine

to supply realistic synthetic training images that “fill in”

underrepresented regions of image space, which we show

helps train a model to infer attribute comparisons.
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Figure 3: Spectra of generated images given an identity and an attribute.

We form two types of image pairs: The two solid boxes represent an intra-

identity pair, whereas the two red boxes represent an inter-identity pair.

The next key step is to generate a series of synthetic iden-

tities, then sample images for those identities that are close

by in a desired semantic attribute space.1 The resulting im-

ages will comprise a set of synthetic image pairs SA. We

explore two cases for using the generated pairs: one where

their putative ordering is verified by human annotators, and

another where the ordering implied by the generation en-

gine is taken as their (noisy) label. Section 3.3 describes

how we use the hybrid real and synthetic image pairs to

train specific attribute predictors.

Each identity is defined by an entangled set of latent fac-

tors and attributes. Let p(y) denote a prior over the at-

tribute occurrences in the domain of interest. We model

this prior with a multivariate Gaussian whose mean and co-

variance are learned from the attribute strengths observed

in real training images: p(y) = N (µ,Σ). This distribution

captures the joint interactions between attributes, such that a

sample from the prior reflects the co-occurrence behavior of

different pairs of attributes (e.g., shoes that are very pointy

are often also uncomfortable, faces that have facial hair are

often masculine, etc.).2 The prior over latent factors p(z),
captures all non-attribute properties like pose, background,

and illumination. Following [45], we represent p(z) with

an isotropic multivariate Gaussian.

To sample an identity

Ij = (yj , zj) (2)

1Note that here the word identity means an instance for some domain,

not necessarily a human identity; in experiments we apply our idea both

for human faces as well as fashion images of shoes.
2The training image attribute strengths originate from the raw decision

outputs of a preliminary binary attribute classifier trained on disjoint data

labeled for the presence/absence of the attribute (see Sec. 5 and Supp).

we sample yj and zj from their respective priors. Then,

using an Attribute2Image model trained for the domain of

interest, we sample from pθ(x|yj , zj) to generate an image

x̂j ∈ R
Nx for this identity. Alternatively, we could sample

an identity from a single real image, after inferring its latent

variables through the generative model [46]. However, do-

ing so requires having access to attribute labels for that im-

age. More importantly, sampling novel identities from the

prior (vs. an individual image) supports our goal to densify

supervision, since we can draw nearby instances that need

not have been exactly observed in the real training images.

In experiments, we generate thousands of identities.

Next we modify the strength of a single attribute in y

while keeping all other variables constant. This yields two

“tweaked” identities I
(−)
j and I

(+)
j that look much like Ij ,

only with a bit less or more of the attribute, respectively.

Specifically, let σA denote the standard deviation of at-

tribute scores observed in real training images for attribute

A. We revise the attribute vector for identity Ij by replacing

the dimension for attribute A according to

y
(−)
j (A) = yj(A)− 2σA and

y
(+)
j (A) = yj(A) + 2σA, (3)

and y
(−)
j (a) = y

(+)
j (a) = yj(a), ∀a 6= A. Finally, we

sample from pθ(x|y
(−)
j , zj) and pθ(x|y

(+)
j , zj) to obtain

images x̂
(−)
j and x̂

(+)
j . Recall that our identity sampling ac-

counts for inter-attribute co-occurrences. Slightly altering a

single attribute recovers plausible but yet-unseen instances.

Figure 3 shows examples of synthetic images generated

for a sampled identity, varying only in one attribute. The

generated images form a smooth progression in the attribute

space. This is exactly what allows us to curate fine-grained

pairs of images that are very similar in attribute strength.

Crucially, such pairs are rarely possible to curate systemat-

ically among real images. The exception is special “hands-

on” scenarios, e.g., for faces, asking subjects in a lab to

slowly exhibit different facial expressions, or systematically

varying lighting or head pose (cf. PIE, Yale face datasets).

The hands-on protocol is not only expensive, it is inapplica-

ble in most domains outside of faces and for rich attribute

vocabularies. For example, how would one physically mod-

ify the pointiness of a shoe’s toe, while leaving all other

properties the same? Furthermore, the generation process

allows us to collect in a controlled manner subtle visual

changes across identities as well.

Next we pair up the synthetic images to form the set

SA, which, once (optionally) verified and pruned by hu-

man annotators, will augment the real training image pairs

PA. In order to maximize our coverage of the attribute

space, we sample two types of synthetic image pairs:

intra-identity pairs, which are images sampled from the

same identity’s spectrum and inter-identity pairs, which
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are images sampled from different spectrums (see Fig. 3).

Specifically, for every identity j, SA receives intra pairs

{(x̂
(−)
j , x̂j), (x̂j , x̂

(+)
j )} and for every pair of identities

(j, k), SA receives inter pairs {(x̂j , x̂
(+)
k ), (x̂

(−)
k , x̂j)}.

We expect many of the generated pairs to be valid, mean-

ing that both images are realistic and that the pair exhibits

a slight difference in the attribute of interest. However, this

need not always be true. In some cases the generator will

create images that do not appear to manipulate the attribute

of interest, or where the pair is close enough in the attribute

to be indistinguishable, or where the images simply do not

look realistic enough to tell. Our experiments indicate this

happens about 15% of the time.

To correct erroneous pairs, we collect order labels from

5 crowdworkers per pair. However, while human-verified

pairs are most trustworthy for a learning algorithm, we sus-

pect that even noisy (unverified) pairs could be beneficial

too, provided the learning algorithm 1) has high enough ca-

pacity to accept a lot of them and/or 2) is label-noise resis-

tant. Unverified pairs are attractive because they are free to

generate in mass quantities. We examine both cases below.

3.3. Learning to Rank with Hybrid Comparisons

In principle any learning algorithm for visual compar-

isons could exploit the newly generated synthetic image

pairs. We consider two common ones from the attribute lit-

erature: RankSVMs with local learning and a deep Siamese

RankNet with a spatial transformer network (STN).

RankSVM+Local Learning RankSVM is a learning-to-

rank solution that optimizes RA(φ(x)) to preserve order-

ings of training pairs while maximizing the rank margin,

subject to slack [15]. In the linear case,

R
(svm)
A

(φ(x)) = w
T
Aφ(x), (4)

where w is the ranking model parameters. The formulation

is kernelizable, which allows non-linear ranking functions.

It is widely used for attributes [2, 19, 28, 47, 48].

We employ RankSVM with a local learning model. In

local learning, one trains with only those labeled instances

nearest to the test input [1, 3]. Given a hybrid set of sparse

real pairs and dense synthetic pairs, {PA

⋃
SA}, we use a

local model to select the most relevant mix of real and syn-

thetic pairs (see Fig. 4). Just as bare bones nearest neigh-

bors relies on adequate density of labeled exemplars to suc-

ceed, in general local learning is expected to flourish when

the space of training examples is more densely populated.

Thus, local learning is congruent with our hypothesis that

data density is at least as important as data quantity for

learning subtle visual comparisons. See Figure 1.

Specifically, following [47], we train a local model for

each novel image pair (at test time) using only the most rel-

1 5 10 25
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Figure 4: Examples of nearest neighbor image pairs given novel test pairs

(left). Both real and synthetic image pairs appear in the top neighbors,

suggesting their combined importance in the local learning algorithm.

evant image pairs. Relevance is captured by the inter-pair

image distance: for a test pair (xm,xn), one gathers the

K nearest pairs according to the product of element-wise

distances between (xm,xn) and each training pair. Only

those K pairs are used to train a ranking function (Eqn(4))

to predict the order of (xm,xn). See [47] for details.

DeepCNN+Spatial Transformer Our choice for the sec-

ond ranker is motivated both by its leading empirical per-

formance [38] as well as its high capacity, which makes it

data hungry.

This deep learning to rank method combines a CNN op-

timized for a paired ranking loss [4] together with a spatial

transformer network (STN) [14]. In particular,

R
(cnn)
A

(φ(x)) = RankNetA(STN(φ(x))), (5)

where RankNet denotes a Siamese network with duplicate

stacks. During training these stacks process ordered pairs,

learning filters that map the images to scalars that preserve

the desired orderings in PA. The STN is trained simultane-

ously to discover the localized patch per image that is most

useful for ranking the given attribute (e.g., it may focus on

the mouth for smiling). Given a single novel image, either

stack can be used to assign a ranking score. See [38] for de-

tails. As above, our approach trains this CNN with all pairs

in {PA

⋃
SA}.

Generator vs. Ranker A natural question to ask is why

not feed back the synthetic image pairs into the same gener-

ative model that produced them, to try and enhance its train-

ing? We avoid doing so for two important reasons. First,

this would lead to a circularity bias where the system would

essentially be trying to exploit new data that it has already

learned to capture well (and hence could generate already).

Second, the particular image generator we employ is not
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equipped to learn from relative supervision nor make rela-

tive comparisons on novel data. Rather, it learns from in-

dividual images with absolute attribute strengths. Thus, we

use the synthetic data to train a distinct model capable of

learning relative visual concepts.

Curating Images vs. Curating Supervision While tra-

ditional data collection methods lack a direct way to curate

image pairs covering the full space of attribute variations,

our approach addresses exactly this sparsity. It densifies

the attribute space via plausible synthetic images that ven-

ture into potentially undersampled regions of the attribute

spectra. Our approach does not expect to get “something

for nothing”. Indeed, the synthesized examples are still an-

notated by humans. The idea is to expose the learner to real-

istic images that are critical for fine-grained visual learning

yet difficult to attain in traditional data collection pipelines.

4. A Lexicon of Fine-Grained Attributes

While there are numerous large datasets for single image

tasks like object detection, datasets for visual comparison

with instance-level pairwise supervision are more modest.

In addition, the lexicon of attributes used in existing relative

attributes datasets is selected based on intuitions, i.e., words

that seem domain relevant [19] or words that seem to exhibit

the most subtle fine-grained differences [47].

Towards addressing both limitations, we construct a new

fine-grained relative attribute dataset. We 1) use crowd-

sourcing to mine for an attribute lexicon that is explicitly

fine-grained, and 2) collect a large number of pairwise or-

derings for each attribute in that lexicon. We focus on fash-

ion images of shoes from the UT-Zap50K dataset [47].

Given a pair of images, we ask Turkers to complete the

sentence, “Shoe A is a little more 〈insert word〉 than Shoe

B” using a single word. They are instructed to identify sub-

tle differences between the images and provide a short ra-

tionale. The goal is to find out how people differentiate fine-

grained differences between shoe images. Over 1,000 work-

ers participated in the study, yielding a total of 350+ distinct

word suggestions across 4,000 image pairs viewed. This

approach to lexicon generation takes inspiration from [25],

but fine-tuned towards eliciting “almost indistinguishable”

visual changes rather than arbitrary attribute differences.

After post-processing based on the rationales and merg-

ing of synonyms, we select the 10 most frequent words as

the new fine-grained relative attribute lexicon for shoes:

comfort, casual, simple, sporty, colorful, durable, support-

ive, bold, sleek, and open. See Supp File for more details.

Using this new lexicon, we collect pairwise supervision

for about 4,000 pairs for each of the 10 attributes, using im-

ages from UT-Zap50K [47]. This is a step towards denser

supervision on real images—more than three times the com-

parison labels provided in the original dataset. Still, as we

will see in results, the greater density offered by synthetic

training instances is needed for best results.

5. Experiments

We conduct fine-grained visual comparison experiments

to validate the benefit of our dense supervision idea, for both

rankers described in Section 3.3.

Datasets Our experiments rely on the following existing

and newly collected datasets. To our knowledge there exist

no other instance-labeled relative attribute datasets.

Zap50K+New Lexicon The UT-Zap50K dataset [47] con-

sists of 50,025 catalog shoe images from Zappos.com. It

contains 2,800 pairwise labels on average for each of 4 at-

tributes: open, pointy, sporty, and comfort. The labels are

divided into coarse (UT-Zap50K-1) and fine-grained pairs

(UT-Zap50K-2). We augment it with the crowd-mined lex-

icon (cf. Sec. 4) for 10 additional attributes.

Zap50K-Synth A new synthetic shoe dataset with pair-

wise labels on the new 10-attribute lexicon. We train the

generative model using a subset of UT-Zap50K and a su-

perset of the above attributes (see Supp File for details). We

generate 1,000 identities and each one is used to sample

both an intra- and inter-identity pair, yielding ∼2,000 pair

labels per attribute. The synthetic images are 64×64 pixels.

LFW-10 The LFW-10 dataset [33] consists of 2,000 face

images from Labeled Faces in the Wild (LFW) [12]. It con-

tains 10 attributes: bald, dark hair, eyes open, good looking,

masculine, mouth open, smile, visible teeth, visible fore-

head, and young. After pruning pairs with less than 80%

agreement from the workers, there are 600 pairwise labels

on average per attribute.

PFSmile Face images from the Public Figures dataset

(PubFigAttr) [21, 28]. 8 frontal images each of 8 random in-

dividuals are selected, with the frontal images showing dif-

ferent degrees of smilingness for the given individual (e.g.,

images of Zach Efron going from not smiling at all to fully

smiling). We use smiling because it is the only PubFig at-

tribute that manifests fine-grained changes on the same in-

dividual (e.g., it doesn’t display Zach both as bald and less

bald). This limitation of the data actually reinforces the dif-

ficulty of manually curating images with subtle differences

for learning. We collect labels on all possible pairwise com-

parisons among images of the same individual. After prun-

ing, there are 211 pairwise labels.

LFW-Synth A new synthetic face dataset with pairwise

labels on the attribute smiling. We train the generative

model on a subset of LFW images and the 73 attributes

from [21, 44]. We generate 2,000 identities and sample a

total of 4,000 intra pairs and 1,000 inter pairs. The syn-

thetic images are 35 × 35 pixels, after zooming to a tight

bounding box around the face region.
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Comfort Casual Simple Sporty Colorful Durable Supportive Bold Sleek Open

Classifier 72.69 79.32 82.20 81.21 17.87 80.05 78.62 18.35 17.60 27.15
R

a
n

k
S

V
M

Real 84.03 86.11 86.89 87.27 83.84 85.15 87.75 83.71 86.06 84.41

Real+ 82.41 87.04 86.18 87.58 84.79 84.69 87.75 81.44 88.02 81.18

Jitter 84.49 87.35 88.52 83.36 85.36 86.77 86.86 85.36 86.31 82.53

DSynth 85.02 88.89 85.56 89.95 87.43 84.32 87.29 87.62 86.40 81.05

DSynth-Auto 84.72 87.35 87.59 86.06 85.74 86.78 83.74 85.36 86.55 83.87

D
ee

p
S

T
N

Real 84.95 87.04 89.46 88.79 94.30 83.29 85.75 87.42 85.82 84.68

Real+ 81.25 87.65 86.18 87.88 90.68 83.29 85.52 87.84 86.31 82.53

Jitter 81.94 87.96 86.89 87.58 93.73 85.38 85.75 89.07 83.86 80.65

DSynth 82.18 89.81 89.70 90.30 93.73 87.24 85.52 89.28 86.55 82.26

DSynth-Auto 87.27 88.89 88.76 90.00 95.44 88.86 87.75 87.63 86.80 86.29

Table 1: Results on Zap50K for the new lexicon of 10 attributes most frequently used to distinguish fine-grained differences between shoe images. We

experiment with two kinds of base training models: (top) local learning (RankSVM) [47] and (bottom) localized ranking (DeepSTN) [38].

Implementation Details For synthesis, we use the code

shared by the authors for the Attribute2Image system [44],

with all default parameters. Since we inherit the genera-

tor’s 64 × 64 output image resolution, for apples-to-apples

comparison, we downsize real images to match the resolu-

tion of the synthetic ones. Early experiments showed that a

mix of inter and intra-identity pairs was most effective, so

we use a 50-50 mix in all experiments. For RankSVM, we

use Gist [40] and 30-bin Lab color histograms as the image

features φ, following [28, 47]3, and validate K per method

on held-out data. For DeepSTN, we use training parame-

ters provided in [38] per dataset. The images used to train

the generative model, to train the ranking functions, and to

evaluate (test set) are kept strictly disjoint.

Baselines We compare the following methods:

• Real: Training pool consists of only real image pairs,

labeled by human annotators.

• Jitter: Uses the same real training pairs, but augments

them with pairs using traditional low-level jitter. Each

real image is jittered following parameters in [9] in a

combination of five changes: translation, scaling, ro-

tation, contrast, and color. A jittered pair inherits the

corresponding real pair’s label.

• DSynth: Training pool consists of only half of Real’s

pairs, with the other half replaced with our dense syn-

thetic image pairs, manually verified by annotators.

• DSynth-Auto: Training pool consists of all real image

pairs and our automatically supervised synthetic image

pairs, where noisy pairwise supervision is obtained (for

free) based on the absolute attribute strength used to

generate the respective images.

• Classifier: Predicts the attribute scores directly using

the posterior RA(φ(x)) = p(A|x) obtained from a

binary classifier trained with the same images that train

the image generator.

3Pretrained CNN features with RankSVM proved inferior.

• Real+: Augments Real with additional pseudo real im-

age pairs. The image generator [44] requires attribute

strength values on its training images, which are ob-

tained from outputs of an attribute classifier [21]. The

Real+ baseline trains using the same real pairs used

above, plus pseudo pairs of the equal size boostrapped

from those strength values on individual images.

We stress that our DSynth methods use the same amount of

human-annotated pairs as the Real and Jitter baselines.

5.1. Fashion Images of Shoes

Fashion product images offer a great testbed for fine-

grained comparisons. This experiment uses UT-Zap50K for

real training and testing pairs, and Zap50K-Synth for syn-

thetic training pairs. There are 10 attributes total. Since

the real train and test pairs come from the same dataset,

this presents a challenge for our approach—can synthetic

images, despite their inherent domain shift, still help the al-

gorithm learn a more reliable model?

Table 1 shows the results. The Classifier baseline un-

derperforms both rankers, confirming that the generator’s

initial representation of attribute strengths is insufficient.

Under the local RankSVM model, our approach outper-

forms the baselines in most attributes. Augmenting with

traditional low-level jitter also provides a slight boost in per-

formance, but not as much as ours. Looking at the compo-

sition of the local neighbors, we see that about 85% of the

selected local neighbors are our synthetic pairs (15% real)

while only 55% are jittered pairs (45% real). Thus, our syn-

thetic pairs do indeed heavily influence the learning of the

ranking models. Figure 4 shows examples of nearest neigh-

bor image pairs retrieved for sample test pairs. The exam-

ples illustrate how 1) the synthetic images densify the super-

vision, providing perceptually closer instances for training,

and 2) both real and synthetic image pairs play an important

role in training. We conclude that semantic jitter densifies

the space more effectively than low-level jitter.

Under the DeepSTN model (Table 1), our approach
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Open Sporty Comfort
Z

a
p

5
0

K
-1

RelAttr [28] 88.33 89.33 91.33

FG-LP [47] 90.67 91.33 93.67

DeepSTN [38] 93.00 93.67 94.33

DSynth-Auto (Ours) 95.00 96.33 95.00

Z
a

p
5

0
K

-2

RelAttr [28] 60.36 65.65 62.82

FG-LP [47] 69.36 66.39 63.84

DeepSTN [38] 70.73 67.49 66.09

DSynth-Auto (Ours) 72.18 68.70 67.72

Table 2: Results on UT-Zap50K-1 (coarse pairs) and UT-Zap50K-2 (fine-

grained pairs) vs. prior methods. All methods are trained and tested on

64× 64 images for an apples-to-apples comparison. All experimental

setup details are kept the same except for the addition of dense synthetic

pairs to the training pool for our approach.

outperforms the baselines in all attributes. Interestingly,

DSynth-Auto often outperforms DSynth here. We be-

lieve the higher capacity of the DeepSTN model can bet-

ter leverage the noisy auto-labeled pairs, compared to the

RankSVM model, which more often benefits from the

human-verification step. As one would expect, we notice

that DSynth-Auto does best for attributes where the inferred

labels agree most often with human provided labels. This is

an exciting outcome; our model has potential to generate

useful training data with “free” supervision. Low-level jit-

ter on the other hand has limited benefit, even detrimental

in some cases. Furthermore, the number of synthetic pairs

used correlates positively with performance, e.g., halving

the number of synthetic pairs to DSynth-Auto decreases ac-

curacy by 4 points on average.

For both ranking models, our approach outperforms the

Real baseline. This shows that simply collecting more an-

notations on real images is not enough: “Real” uses twice

as many real training pairs as our method, yet is consis-

tently less accurate. The finding holds even when we aug-

ment Real with [44]’s instance labels (Real+). Both base-

lines suffer from the sparsity issue, lacking the fine-grained

comparisons needed to train a stronger model.

Overall, our gains are significant, considering they are

achieved without any changes to the underlying ranking

models, the features, or the experimental setup.

Comparison to Prior Relative Attribute Results Next,

we take the best model from above (DeepSTN+DSynth-

Auto), and compare its results to several existing methods.

While authors have reported accuracies on this dataset, as-

is comparisons to our model would not be apples-to-apples:

due to the current limits of image synthesis, we work with

low resolution data (64 × 64) whereas prior work uses full

sized 150 × 100 [38, 39, 43]. Therefore, we use the au-

thors’ code to re-train existing methods from scratch with

the same smaller real images we use. In particular, we train

1) Relative attributes (RelAttr) [28]; 2) Fine-grained local

learning (FG-LP) [47]; and 3) End-to-end localization and

Smiling Real Real+ Jitter DSynth DSynth-Auto

Classifier – – – – – – 62.35 – – – – – –

RankSVM 69.29 68.95 74.29 73.88 75.00

DeepSTN 81.52 80.84 80.09 85.78 84.36

Table 3: Results on PFSmile dataset.

ranking (DeepSTN). We compare them on UT-Zap50K, a

primary benchmark for relative attributes [47].4 We do not

use the newly collected real labeled data for our method, to

avoid an unfair advantage.

Tables 2 shows the results. Our approach does best, im-

proving the state-of-the-art DeepSTN even for the difficult

fine-grained pairs on UT-Zap50K-2 where attention to sub-

tle details is necessary.

5.2. Human Faces

Next we consider the face domain. This experiment uses

LFW-10 for real training pairs, LFW-Synth for synthetic

training pairs, and PFSmile for real testing pairs. Since PF-

Smile only contains image pairs of the same individual, the

comparison task is fine-grained by design. Here we have an

additional domain shift, as the real train and test images are

from different datasets with somewhat different properties.

Table 3 shows the results. Consistent with above, our ap-

proach outperforms all baselines. Even without human ver-

ification of our synthetic pairs (DSynth-Auto), our method

secures a decent gain over the Real baseline: 75.00% vs.

69.29% and 84.36% vs. 81.52%. That amounts to a relative

gain of 8% and 3.5%, respectively. The Classifier poste-

rior baseline underperforms the rankers. Our semantic jit-

ter strongly outperforms traditional low-level jitter for the

DeepSTN rankers, with a 6 point accuracy boost.

6. Conclusion

Supervision sparsity hurts fine-grained attributes—

closely related image pairs are exactly the ones the system

must learn from. We presented a new approach to data aug-

mentation, in which real training data mixes with realistic

synthetic examples that vary slightly in their attributes. The

generated training images more densely sample the space

of images to illustrate fine-grained differences. We stress

that sample density is distinct from sample quantity. As our

experiments demonstrate, simply gathering more real im-

ages does not offer the same fine-grained density, due to

the curation problem. Future work could explore ways to

limit annotation effort to only the most questionable syn-

thetic pairs.
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