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Abstract

Understanding the visual relationship between two ob-

jects involves identifying the subject, the object, and a pred-

icate relating them. We leverage the strong correlations

between the predicate and the 〈subj, obj〉 pair (both se-

mantically and spatially) to predict predicates conditioned

on the subjects and the objects. Modeling the three enti-

ties jointly more accurately reflects their relationships com-

pared to modeling them independently, but it complicates

learning since the semantic space of visual relationships

is huge and training data is limited, especially for long-

tail relationships that have few instances. To overcome

this, we use knowledge of linguistic statistics to regular-

ize visual model learning. We obtain linguistic knowledge

by mining from both training annotations (internal knowl-

edge) and publicly available text, e.g., Wikipedia (exter-

nal knowledge), computing the conditional probability dis-

tribution of a predicate given a 〈subj, obj〉 pair. As we

train the visual model, we distill this knowledge into the

deep model to achieve better generalization. Our experi-

mental results on the Visual Relationship Detection (VRD)

and Visual Genome datasets suggest that with this linguis-

tic knowledge distillation, our model outperforms the state-

of-the-art methods significantly, especially when predicting

unseen relationships (e.g., recall improved from 8.45% to

19.17% on VRD zero-shot testing set).

1. Introduction

Detecting visual relationships from images is a cen-

tral problem in image understanding. Relationships are

commonly defined as tuples consisting of a subject (subj),

predicate (pred) and object (obj) [31, 8, 1]. Visual re-

lationships represent the visually observable interactions

between subject and object 〈subj, obj〉 pairs, such as

〈person, ride, horse〉 [19].

Recently, Lu et al. [19] introduce the visual relationship

dataset (VRD) to study learning of a large number of visual
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Figure 1. Linguistic Knowledge Distillation Framework. We ex-

tract linguistic knowledge from training annotations and a public

text corpus (green box), then construct a teacher network to distill

the knowledge into an end-to-end deep neural network (student)

that predicts visual relationships from visual and semantic repre-

sentations (red box). GT is the ground truth label and “+” is the

concatenation operator.

relationships from images. Lu et al. predict the predicates

independently from the subjects and objects, and use the

product of their scores to predict relationships present in a

given image using a linear model. The results in [19] sug-

gest that predicates cannot be predicted reliably with a lin-

ear model that uses only visual cues, even when the ground

truth categories and bounding boxes of the subject and ob-

ject are given ([19] reports Recall@100 of only 7.11% for

their visual prediction). Although the visual input analyzed

by the CNN in [19] includes the subject and object, predi-

cates are predicted without any knowledge about the object

categories present in the image or their relative locations.

In contrast, we propose a probabilistic model to predict the

predicate name jointly with the subject and object names

and their relative spatial arrangement:

P (R|I) = P (pred|Iunion, subj, obj)P (subj)P (obj). (1)

While our method models visual relationships more ac-

curately than [19], our model’s parameter space is also en-
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larged because of the large variety of relationship tuples.

This leads to the challenge of insufficient labeled image

data. The straightforward—but very costly—solution is to

collect and annotate a larger image dataset that can be used

to train this model. Due to the long tail distribution of re-

lationships, it is hard to collect enough training images for

all relationships. To make the best use of available training

images, we leverage linguistic knowledge (LK) to regular-

ize the deep neural network. One way to obtain linguis-

tic knowledge is to compute the conditional probabilities

P (pred|subj, obj) from the training annotations.

However, the number of 〈subj, pred, obj〉 combinations

is too large for each triplet to be observed in a dataset of

annotated images, so the internal statistics (e.g., statistics

of the VRD dataset) only capture a small portion of the

knowledge needed. To address this long tail problem, we

collect external linguistic knowledge (P (pred|subj, obj))
from public text on the Internet (Wikipedia). This external

knowledge consists of statistics about the words that hu-

mans commonly use to describe the relationship between

subject and object pairs, and importantly, it includes pairs

unseen in our training data. Although the external knowl-

edge is more general, it can be very noisy (e.g., due to errors

in linguistic parsing).

We make use of the internal and external knowledge in a

teacher-student knowledge distillation framework [10, 11],

shown in Figure 1, where the output of the standard vision

pipeline, called the student network, is augmented with the

output of a model that uses the linguistic knowledge to score

solutions; their combination is called the teacher network.

The objective is formulated so that the student not only

learns to predict the correct one-hot ground truth labels but

also to mimic the teacher’s soft belief between predicates.

Our main contribution is that we exploit the role of both

visual and linguistic representations in visual relationship

detection and use internal and external linguistic knowledge

to regularize the learning process of an end-to-end deep

neural network to significantly enhance its predictive power

and generalization. We evaluate our method on the VRD

[19] and Visual Genome (VG) [13] datasets. Our experi-

ments using Visual Genome show that while the improve-

ments due to training set size are minimal, improvements

due to the use of LK are large, implying that with current

dataset sizes, it is more fruitful to incorporate other types

knowledge (e.g., LK) than to increase the visual dataset

size—this is particularly promising because visual data is

expensive to annotate and there exist many readily avail-

able large scale sources of knowledge that have not yet been

fully leveraged for visual tasks.

2. Related Work

Knowledge Distillation in Deep Neural Networks:

Recent work has exploited the use of additional information

(or “knowledge”) to help train deep neural networks (DNN)

[16, 3, 12, 9]. Hinton et al. [9] proposed a framework to

distill knowledge, in this case the predicted distribution,

from a large network into a smaller network. Recently, Hu

et al. proposed a teacher-student framework to distill mas-

sive knowledge sources, including logic rules, into DNNs

[10, 11].

Visual Relationship Detection: Visual relationships

represent the interactions between object pairs in images.

Lu et al. [19] formalized visual relationship prediction as

a task and provided a dataset with a moderate number of

relationships. Before [19], a large corpus of work had

leveraged the interactions between objects (e.g. object co-

occurrence, spatial relationships) to improve visual tasks

[30, 27, 21, 14, 4, 5, 15]. To enable visual relationship

detection on a large scale, Lu et al. [19] decomposed the

prediction of a relationship into two individual parts: de-

tecting objects and predicting predicates. Lu et al. used

the sub-image containing the union of two bounding boxes

of object pairs as visual input to predict the predicates and

utilized language priors, such as the similarity between rela-

tionships and the likelihood of a relationship in the training

data, to augment the visual module.

Plummer et al. [25] grounded phrases in images by fus-

ing several visual features like appearance, size, bounding

boxes, and linguistic cues (like adjectives that describe at-

tribute information). Despite focusing on phrase localiza-

tion rather than visual phrase detection, when evaluated on

the VRD dataset, [25] achieved comparable results with

[19]. Recently, there are several new attempts for visual

relationship detection task: Liang et al. [18] proposed to

detect relationships and attributes within a reinforcement

learning framework; Li et al. [17] trained an end-to-end sys-

tem boost relationship detection through better object de-

tection; Bo et al. [2] detected relationships via a relational

modeling framework.

We combine rich visual and linguistic representations in

an end-to-end deep neural network that absorbs external lin-

guistic knowledge using the teacher-student framework dur-

ing the training process to enhance prediction and general-

ization. Unlike [19], which detected objects independently

from relationship prediction, we model objects and relation-

ships jointly. Unlike [17, 18, 2], which do not use linguis-

tic knowledge explicitly, we focus on predicting predicates

using the linguistic knowledge that models correlations be-

tween predicates and 〈subj, obj〉 pairs, especially for the

long-tail relationships. Unlike [9, 10, 11], which used either

the teacher or the student as their final output, we combine

both teacher and student networks, as they each have their

own advantages: the teacher outperforms in cases with suf-

ficient training data, while the student generalizes to cases

with few or no training examples (the zero-shot case).
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3. Our Approach

A straightforward way to predict relationship predicates

is to train a CNN on the union of the two bounding boxes

that contain the two objects of interest as the visual input,

fuse semantic features (that encode the object categories)

and spatial features (that encode the relative positions of

the objects) with the CNN features (that encode the ap-

pearance of the objects), and feed them into a fully con-

nected (FC) layer to yield an end-to-end prediction frame-

work. However, the number of 〈subj, pred, obj〉 tuples is

very large and the parameter space of the end-to-end CNN

would be huge. While the subject, predicate, and object

are not statistically independent, a CNN would require a

massive amount of data to discover the dependence struc-

ture while also learning the mapping from visual features

to semantic relationships. To avoid over-fitting and achieve

better predictive power without increasing the amount of vi-

sual training data, additional information is needed to help

regularize the training of the CNN.

Figure 1 summarizes our proposed model. Given an im-

age, we extract three input components: the cropped im-

ages of the union of the two detected objects (BB-Union);

the semantic object representations obtained from the object

category confidence score distributions obtained from the

detector; and the spatial features (SF) obtained from pairs

of detected bounding boxes. We concatenate VGG fea-

tures, semantic object vectors, and the spatial feature vec-

tors, then train another FC layer using the ground truth label

(GT) and the linguistic knowledge to predict the predicate.

Unlike [19], which used the VGG features to train a linear

model, our training is end-to-end without fixing the VGG-

net. Following [10, 11], we call the data-driven model the

“student”, and the linguistic knowledge regularized model

the “teacher”.

3.1. Linguistic Knowledge Distillation

3.1.1 Preliminary: Incorporating Knowledge in DNNs

The idea of incorporating additional information in DNNs

has been exploited recently [9, 10, 11]. We adapted Hu et

al.’s teacher-student framework [10, 11] to distill linguistic

knowledge in a data-driven model. The teacher network is

constructed by optimizing the following criterion:

min
t∈T

KL(t(Y )||sφ(Y |X))− CEt[L(X,Y )], (2)

where t(Y ) and sφ(Y |X) are the prediction results of the

teacher and student networks; C is a balancing term; φ is

the parameter set of the student network; L(X,Y ) is a gen-

eral constraint function that has high values to reward the

predictions that meet the constraints and penalize the oth-

ers. KL measures the KL-divergence of teacher’s and stu-

dent’s prediction distributions. The closed-form solution of

the optimization problem is:

t(Y ) ∝ s(Y |X)exp(CL(X,Y )) . (3)

The new objective which contains both ground truth labels

and the teacher network is defined as:

min
φ∈Φ

1

n

n
∑

i=1

αl(si, yi) + (1− α)l(si, ti), (4)

where si and ti are the student’s and teacher’s predictions

for sample i; yi is the ground truth label for sample i; α

is a balancing term between ground truth and the teacher

network. l is the loss function. More details can be found

in [10, 11].

3.1.2 Knowledge Distillation for Visual Relationship

Detection

Linguistic knowledge is modeled by a conditional probabil-

ity that encodes the strong correlation between the pair of

objects 〈subj, obj〉 and the predicate that humans tend to

use to describe the relationship between them:

L(X,Y ) = logP (pred|subj, obj), (5)

where X is the input data and Y is the output distribution of

the student network. P (pred|subj, obj) is the conditional

probability of a predicate given a fixed 〈subj, obj〉 pair in

the obtained linguistic knowledge set.

By solving the optimization problem in Eq. 2, we con-

struct a teacher network that is close to the student net-

work, but penalizes a predicted predicate that is unlikely

given the fixed 〈subj, obj〉 pairs. The teacher’s output can

be viewed as a projection of the student’s output in the so-

lution space constrained by linguistic knowledge. For ex-

ample, when predicting the predicate between a “plate” and

a “table”, given the subject (“plate”) and the object (“ta-

ble”), and the conditional probability P (pred|plate, table),
the teacher will penalize unlikely predicates, (e.g., “in”) and

reward likely ones (e.g., “on”), helping the network avoid

portions of the parameter space that lead to poor solutions.

Given the ground truth label and the teacher network’s

output distribution, we want the student network to not only

predict the correct predicate labels but also mimic the lin-

guistic knowledge regularized distributions. This is accom-

plished using a cross-entropy loss (see Eq. 4).

One advantage of this LK distillation framework is that

it takes advantage of both knowledge-based and data-driven

systems. Distillation works as a regularizer to help train

the data-driven system. On the other hand, since we con-

struct the teacher network based on the student network,

the knowledge regularized predictions (teacher’s output)

will also be improved during training as the student’s out-

put improves. Rather than using linguistic knowledge as a
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post-processing step, our framework enables the data-driven

model to absorb the linguistic knowledge together with the

ground truth labels, allowing the deep network to learn a

better visual model during training rather than only having

its output modified in a post-processing step. This leads

to a data-driven model (the student) that generalizes better,

especially in the zero-shot scenario where we lack linguis-

tic knowledge about a 〈subj, obj〉 pair. While [9, 10, 11]

used either the student or the teacher as the final output, our

experiments show that both the student and teacher in our

framework have their own advantages, so we combine them

to achieve the best predictive power (see section 4).

3.1.3 Linguistic Knowledge Collection

To obtain the linguistic knowledge P (pred|subj, obj), a

straightforward method is to count the statistics of the train-

ing annotations, which reflect the knowledge used by an an-

notator in choosing an appropriate predicate to describe a

visual relationship. Due to the long tail distribution of re-

lationships, a large number of combinations never occur in

the training data; however, it is not reasonable to assume

the probability of unseen relationships is 0. To tackle this

problem, one can apply additive smoothing to assign a very

small number to all 0’s [20]; however, the smoothed unseen

conditional probabilities are uniform, which is still confus-

ing at LK distillation time. To collect more useful linguistic

knowledge of the long-tail unseen relationships, we exploit

text data from the Internet.

One challenge of collecting linguistic knowledge online

is that the probability of finding text data that specifically

describes objects and their relationships is low. This re-

quires us to obtain the knowledge from a huge corpus that

covers a very large domain of knowledge. Thus we choose

the Wikipedia 2014-06-16 dump containing around 4 bil-

lion words and 450 million sentences that have been parsed

to text by [24]1 to extract knowledge.

We utilize the scene graph parser proposed in [28]

to parse sentences into sets of 〈subj, pred, obj〉 triplets,

and we compute the conditional probabilities of predicates

based on these triplets. However, due to the possible mis-

takes of the parser, especially on text from a much wider

domain than the visual relationship detection task, the lin-

guistic knowledge obtained can be very noisy. Naive meth-

ods such as using only the linguistic knowledge to pre-

dict the predicates or multiplying the conditional probabil-

ity with the data-driven model’s output fail. Fortunately,

since the teacher network of our LK-distillation framework

is constructed from the student network that is also super-

vised by the labeled data, a well-trained student network

can help correct the errors from the noisy external proba-

1The Wikipedia text file can be found on http://kopiwiki.dsd.

sztaki.hu/

bility. To achieve good predictive power on the seen and

unseen relationships, we obtain the linguistic knowledge

from both training data and the Wikipedia text corpus by a

weighted average of their conditional probabilities when we

construct the teachers’ network, as shown in Eq. 4. We con-

duct a two-step knowledge distillation: during the first sev-

eral training epoches, we only allow the student to absorb

the knowledge from training annotations to first establish a

good data-driven model. After that, we start distilling the

external knowledge together with the knowledge extracted

from training annotations weighted by the balancing term C

as shown in Eq. 4. The balancing terms are chosen by a val-

idation set we select randomly from the training set (e.g., in

VRD dataset, we select 1,000 out of 4,000 images to form

the validation set) to achieve a balance between good gen-

eralization on the zero-shot and good predictive power on

the entire testing set.

3.2. Semantic and Spatial Representations

In [19], Lu et al. used the cropped image containing the

union of two objects’ bounding boxes to predict the predi-

cate describing their relationship. While the cropped image

encodes the visual appearance of both objects, it is difficult

to directly model the strong semantic and spatial correla-

tions between predicates and objects, as both semantic and

spatial information is buried within the pixel values of the

image. Meanwhile, the semantic and spatial representations

capture similarities between visual relationships, which can

generalize better to unseen relationships.

We utilize word-embedding [22] to represent the seman-

tic meaning of each object by a vector. We then extract

spatial features similarly to the ones in [23]:
[

xmin

W
,
ymin

H
,
xmax

W
,
ymax

H
,

A

Aimg

]

, (6)

where W and H are the width and height of the image, A

and Aimg are the areas of the object and the image, respec-

tively. We concatenate the above features of two objects as

the spatial feature (SF) for a 〈subj, obj〉 pair.

We predict the predicate conditioned on the semantic and

spatial representations of the subject and object:

P (R|I) =P (pred|subj, obj, Bs, Bo, I)

· P (subj,Bs|I)P (obj,Bo|I), (7)

where subj and obj are represented using the semantic ob-

ject representation, Bs and Bo are the spatial features, and

I is the image region of the union of the two bounding

boxes. For the BB-Union input, we use the same VGG-

net [29] in [19] to learn the visual feature representation.

We adopt a pre-trained word2vec vectors weighted by con-

fidence scores of each object category for the subject and

the object, then concatenate the two vectors as the semantic

representation of the subject and the object.
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4. Experiments

We evaluate our method on Visual Relationship Detec-

tion [19] and Visual Genome [13] datasets for three tasks:

Predicate detection: given an input image and a set of

ground truth bounding boxes with corresponding object cat-

egories, predict a set of predicates describing each pair of

objects. This task evaluates the prediction of predicates

without relying on object detection. Phrase detection:

given an input image, output a phrase 〈subj, pred, obj〉 and

localize the entire phrase as one bounding box. Relation-

ship detection: given an input image, output a relationship

〈subj, pred, obj〉 and both the subject and the object with

their bounding boxes.

Both datasets have a zero-shot testing set that contains

relationships that never occur in the training data. We eval-

uate on the zero-shot sets to demonstrate the generalization

improvements brought by linguistic knowledge distillation.

Implementation Details. We use VGG-16 [29] to learn

the visual representations of the BB-Union of two objects.

We use a pre-trained word2vec [22] model to project the

subjects and objects into vector space, and the final seman-

tic representation is the weighted average based on the con-

fidence scores of a detection. For the balancing terms, we

choose C = 1 and α = 0.5 to encourage the student net-

work to mimic the teacher and the ground truth equally.

Evaluation Metric. We follow [19, 25] using Recall@n

(R@n) as our evaluation metric (mAP metric would mis-

takenly penalize true positives because annotations are not

exhaustive). For two detected objects, multiple predicates

are predicted with different confidences. The standard R@n

metric ranks all predictions for all object pairs in an image

and compute the recall of top n. However, instead of com-

puting recall based on all predictions, [19] considers only

the predicate with highest confidence for each object pair.

Such evaluation is more efficient and forced the diversity of

object pairs. However, multiple predicates can correctly de-

scribe the same object pair and the annotator only chooses

one as ground truth, e.g., when describing a person “next

to” another person, predicate “near” is also plausible. So we

believe that a good predicted distribution should have high

probabilities for all plausible predicate(s) and probabilities

close to 0 for remaining ones. Evaluating only the top pre-

diction per object pair may mistakenly penalize correct pre-

dictions since annotators have bias over several plausible

predicates. So we treat the number of chosen predictions

per object pair (k) as a hyper-parameter, and report R@n

for different k’s to compare with other methods [19, 25, 26].

Since the number of predicates is 70, k = 70 is equivalent

to evaluating all predictions w.r.t. two detected objects.

2In predicate detection, R@100,k=1 and R@50,k=1 are equivalent

(also observed in [19]) because there are not enough objects in ground

truth to produce over 50 pairs.
3The recall of different k’s are not reported in [19].We calculate those

Table 1. Predicate Detection on VRD Testing Set: “U” is the union

of two objects’ bounding boxes; “SF” is the spatial feature; “W”

is the word-embedding based semantic representations; “L” means

using LK distillation; “S” is the student network; “T” is the teacher

network and “S+T” is the combination of them. Part 1 uses the

VRD training images; Part 2 uses the training images in VRD [19]

and images of Visual Genome (VG) [13] dataset.

Entire Set Zero-shot

R@100/502 R@100 R@50 R@100/50 R@100 R@50

k=1 k=70 k=70 k=1 k=70 k=70

Part 1: Training images VRD only

Visual Phrases [26] 1.91 - - - - -

Joint CNN [6] 2.03 - - - - -

VRD-V only [19] 7.11 37.20 3 28.36 3.52 32.34 23.95

VRD-Full [19] 47.87 84.34 70.97 8.45 50.04 29.77

Baseline: U only 34.82 83.15 70.02 12.75 69.42 47.84

Baseline: L only 51.34 85.34 80.64 3.68 18.22 8.13

U+W 37.15 83.78 70.75 13.44 69.77 49.01

U+W+L:S 42.98 84.94 71.83 13.89 72.53 51.37

U+W+L:T 52.96 88.98 83.26 7.81 40.15 32.62

U+SF 36.33 83.68 69.87 14.33 69.01 48.32

U+SF+L:S 41.06 84.81 71.27 15.14 72.72 51.62

U+SF+L:T 51.67 87.71 83.84 8.05 41.51 32.77

U+W+SF 41.33 84.89 72.29 14.13 69.41 48.13

U+W+SF+L: S 47.50 86.97 74.98 16.98 74.65 54.20

U+W+SF+L: T 54.13 89.41 82.54 8.80 41.53 32.81

U+W+SF+L: T+S 55.16 94.65 85.64 - - -

Part 2: Training images VRD + VG

Baseline: U 36.97 84.49 70.19 13.31 70.56 50.34

U+W+SF 42.08 85.89 72.83 14.51 70.79 50.64

U+W+SF+L: S 48.61 87.15 75.45 17.16 75.26 55.41

U+W+SF+L: T 54.61 90.09 82.97 9.23 43.21 33.40

U+W+SF+L: T+S 55.67 95.19 86.14 - - -

4.1. Evaluation on VRD Dataset

4.1.1 Predicate Prediction

We first evaluate it on predicate prediction (as in [19]).

Since [25, 17, 18] do not report results of predicate pre-

diction, we compare our results with ones in [19, 26].

Part 1 of Table 1 shows the results of linguistic knowl-

edge distillation with different sets of features in our deep

neural networks. In addition to the data-driven baseline

“Baseline: U only”, we also compare with the baseline

that only uses linguistic priors to predict a predicate, which

is denoted as “Baseline: L only”. The “Visual Phrases”

method [26] trains deformable parts models for each rela-

tionship; “Joint CNN” [6] trains a 270-way CNN to predict

the subject, object and predicate together. The visual only

model and the full model of [19] that uses both visual in-

put and language priors are denoted as “VRD-V only” and

“VRD-Full”. S denotes using the student network’s out-

put as the final prediction; T denotes using the teacher net-

work’s output. T+S denotes that for 〈subj, obj〉 pairs that

occur in the training data, we use the teacher network’s out-

put as the final prediction; for 〈subj, obj〉 pairs that never

occur in training, we use the student network’s output.

End-to-end CNN training with semantic and spa-

recall values using their code.
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Data-driven: bus next to truck 

LK only: bus next to truck 

Full model student: bus on truck 

Full model teacher: bus behind truck

Data-driven: shirt wear person 

LK only: shirt on person 

Full model student: shirt on person 

Full model teacher: shirt on person

Data-driven: person next to truck 

LK only: person on truck 

Full model student: person next to truck 

Full model teacher: person next to truck

Data-driven: building above motorcycle 

LK only: building next to motorcycle 

Full model student: building behind motorcycle 

Full model teacher: building behind motorcycle

(a) Seen relationships

Data-driven: car on person 
LK only: car on person 

Full model student: car next to person 

Full model teacher: car on person

Data-driven: luggage near bed 

LK only: luggage on bed 

Full model student: luggage on bed 

Full model teacher: luggage on bed

Data-driven: wheel on cart 

LK only: wheel near cart 

Full model student: wheel on cart 

Full model teacher: wheel on cart

Data-driven: laptop above bed 

LK only: laptop near bed 

Full model student: laptop on bed 

Full model teacher: laptop on bed

(b) Zero-shot Relationships

Figure 2. Visualization of predicate detection results: “Data-driven” denotes the baseline using BB-Union; “LK only” denotes the baseline

using only the linguistic knowledge without looking at the image; “Full model student” denotes the student network with U+W+SF features;

“Full model teacher” denotes the teacher network with U+W+SF features.

tial representations. Comparing our baseline, which uses

the same visual representation (BB-Union) as [19], and

the “VRD-V only” model, our huge recall improvement

(R@100/50, k=1 increases from 7.11% [19] to 34.82%) re-

veals that the end-to-end training with soft-max prediction

outperforms extracting features from a fixed CNN + linear

model method in [19], highlighting the importance of fine-

tuning. In addition, adding the semantic representation and

the spatial features improves the predictive power and gen-

eralization of the data-driven model4.

To demonstrate the effectiveness of LK-distillation, we

compare the results of using different combinations of fea-

tures with/without using LK-distillation. In Part 1 of Table

1, we train and test our model on only the VRD dataset,

and use the training annotation as our linguistic knowledge.

“Linguistic knowledge only” baseline (“Baseline: L only”)

itself has a strong predictive power and it outperforms the

state-of-the-art method [19] by a large margin (e.g., 51.34%

vs. 47.87% for R@100/50, k=1 on the entire VRD test

set), which implies the knowledge we distill in the data-

driven model is reliable and discriminative. However, since,

some 〈subj, obj〉 pairs in the zero-shot test set never occur

in the linguistic knowledge extracted from the VRD train

set, trusting only the linguistic knowledge without looking

at the images leads to very poor performance on the zero-

shot set of VRD, which explains the poor generalization of

“Baseline: L only” method and addresses the need for com-

bining both data-driven and knowledge-based methods as

4More analysis on using different combinations of features can be

found in the supplementary materials.

the LK-distillation framework we propose does.

The benefit of LK distillation is visible across all fea-

ture settings: the data-driven neural networks that absorb

linguistic knowledge (“student” with LK) outperform the

data-driven models significantly (e.g., R@100/50, k=1 is

improved from 37.15% to 42.98% for “U+W” features on

the entire VRD test set). We also observe consistent im-

provement of the recall on the zero-shot test set of data-

driven models that absorb the linguistic knowledge. The

student networks with LK-distillation yield the best gen-

eralization, and outperform the data-driven baselines and

knowledge only baselines by a large margin.

Unlike [9, 10, 11], where either the student or the teacher

is the final output, we achieve better predictive power by

combining both: we use the teacher network to predict

the predicates whose 〈subj, obj〉 pairs occur in the training

data, and use the student network for the remaining. The

setting “U+W+SF+LK: T+S” performs the best. Fig. 2(a)

and 2(b) show a visualization of different methods.

4.1.2 Phrase and Relationship Detection

To enable fully automatic phrase and relationship detection,

we train a Fast R-CNN detector [7] using VGG-16 for ob-

ject detection. Given the confidence scores of detected each

detected object, we use the weighed word2vec vectors as

the semantic object representation, and extract spatial fea-

tures from each detected bounding box pairs. We then use

the pipeline in Fig. 1 to obtain the predicted predicate dis-

tribution for each pair of objects. According to Eq. 7, we

use the product of the predicate distribution and the confi-
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Table 2. Phrase and Relationship Detection: Distillation of Linguistic Knowledge. We use the same notations as in Table 1.

Phrase Detection Relationship Detection

R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50,

k=1 k=1 k=10 k=10 k=70 k=70 k=1 k=1 k=10 k=10 k=70 k=70

Part 1: Training images VRD only

Visual Phrases [26] 0.07 0.04 - - - - - - - - -

Joint CNN [6] 0.09 0.07 - - - - 0.09 0.07 - - - -

VRD - V only [19] 2.61 2.24 - - - - 1.85 1.58 - - - -

VRD - Full [19] 17.03 16.17 25.52 20.42 24.90 20.04 14.70 13.86 22.03 17.43 21.51 17.35

Linguistic Cues [25] - - 20.70 16.89 – – – – 18.37 15.08 – –

VIP-CNN [17] 27.91 22.78 - - – – 20.01 17.32 - - – –

VRL [18] 22.60 21.37 - - – – 20.79 18.19 - - – –

U+W+SF+L: S 19.98 19.15 25.16 22.95 25.54 22.59 17.69 16.57 27.98 19.92 28.94 20.12

U+W+SF+L: T 23.57 22.46 29.14 25.96 29.09 25.86 20.61 18.56 29.41 21.92 31.13 21.98

U+W+SF+L: T+S 24.03 23.14 29.76 26.47 29.43 26.32 21.34 19.17 29.89 22.56 31.89 22.68

Part 2: Training images VRD + VG

U+W+SF+L: S 20.32 19.96 25.71 23.34 25.97 22.83 18.32 16.98 28.24 20.15 29.85 21.88

U+W+SF+L: T 23.89 22.92 29.82 26.34 29.97 26.15 20.94 18.93 29.95 22.62 31.78 22.65

U+W+SF+L: T+S 24.42 23.51 30.13 26.73 30.01 26.58 21.72 19.68 30.45 22.84 32.56 23.18

Table 3. Phrase and Relationship Detection: Distillation of Linguistic Knowledge - Zero Shot. We use the same notations as in Table 1.

Phrase Detection Relationship Detection

R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50,

k=1 k=1 k=10 k=10 k=70 k=70 k=1 k=1 k=10 k=10 k=70 k=70

Part 1: Training images VRD only

VRD - V only [19] 1.12 0.95 - - - - 0.78 0.67 - - - -

VRD - Full [19] 3.75 3.36 12.57 7.56 12.92 7.96 3.52 3.13 11.46 7.01 11.70 7.13

Linguistic Cues [25] - - 15.23 10.86 - - - - 13.43 9.67 - -

VRL [18] 10.31 9.17 - - – – 8.52 7.94 - - – –

U+W+SF+L: S 10.89 10.44 17.24 13.01 17.24 12.96 9.14 8.89 16.15 12.31 15.89 12.02

U+W+SF+L: T 6.71 6.54 11.27 9.45 9.84 7.86 6.44 6.07 9.71 7.82 10.21 8.75

Part 2: Training images VRD + VG

U+W+SF+L: S 11.23 10.87 17.89 13.53 17.88 13.41 9.75 9.41 16.81 12.72 16.37 12.29

U+W+SF+L: T 7.03 6.94 11.85 9.88 10.12 8.97 6.89 6.56 10.34 8.23 10.53 9.03

dence scores of the subject and object as our final prediction

results. We also adopt the triplet NMS in [17] to remove

redundant detections. To compare with [19], we report

R@n, k=1 for both phrase detection and relationship detec-

tion. For fair comparison with [25] (denoted as “Linguistic

Cues”), we choose k=10 as they did to report recall. In

addition, we report the full recall measurement k=70. Eval-

uation results on the entire dataset and the zero-shot setting

are shown in Part 1 of Tables 2 and 3. Our method outper-

forms the state-of-the-art methods in [19] and [25] signifi-

cantly on both entire testing set and zero-shot setting. The

observations about student and teacher networks are consis-

tent with predicate prediction evaluation. We also compare

our method with the very recently introduced “VIP-CNN”

in [17] and “VRL” [18] and achieve better or comparable

results. For phrase detection, we achieve better results than

[18] and get similar result for R@50 to [17]. One possible

reason that [17] gets better result for R@100 is that they

jointly model the object and predicate detection while we

use an off-the-shelf detector. For relationship detection, we

outperform both methods, especially on the zero-shot set.

4.2. Evaluation on Visual Genome Dataset

We also evaluate predicate detection on Visual Genome

(VG) [13], the largest dataset that has visual relationship

annotations. We randomly split the VG dataset into train-

ing (88,077 images) and testing set (20,000 images) and se-

lect the relationships whose predicates and objects occur in

the VRD dataset. We conduct a similar evaluation on the

dataset (99,864 relationship instances in training and 19,754

in testing; 2,056 relationship test instances are never seen in

training). We use the linguistic knowledge extracted from

VG and report predicate prediction results in Table 4.

Not surprisingly, we observe similar behavior as on the

VRD dataset—LK distillation regularizes the deep model

and improves its generalization. We conduct another exper-

iment in which images from Visual Genome dataset aug-

ment the training set of VRD and evaluate on the VRD test

set. From the Part 2 of Tables 1, 2 and 3, we observe that

training with more data leads to only marginal improvement

over almost all baselines and proposed methods. However,

for all experimental settings, our LK distillation framework

still brings significant improvements, and the combination

of the teacher and student networks still yields the best per-

formance. This reveals that incorporating additional knowl-

edge is more beneficial than collecting more data5.

5Details can be found in the supplementary materials.
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Table 4. Predicate Detection on Visual Genome Dataset. Notations

are the same as in Table 1.

Entire Set Zero-shot

R@100/50 R@100 R@50 R@100/50 R@100 R@50

k=1 k=70 k=70 k=1 k=70 k=70

U 37.81 82.05 81.41 7.54 81.00 65.22

U+W+SF 40.92 86.81 84.92 8.66 82.50 67.72

U+W+SF+L: S 49.88 91.25 88.14 11.28 88.23 72.96

U+W+SF+L: T 55.02 94.92 91.47 3.94 62.99 47.62

U+W+SF+L: T+S 55.89 95.68 92.31 - - -

Table 5. Predicate Detection on VRD Testing Set: External Lin-

guistic Knowledge. Part 1 uses the LK from VRD dataset; Part 2

uses the LK from VG dataset; Part 3 uses the LK from both VRD

and VG dataset. Part 4 uses the LK from parsing Wikipedia text;

Part 5 uses the LK from from both VRD dataset and Wikipedia.

Notations are the same as as in Table 1.

Entire Set Zero-shot

R@100/50 R@100 R@50 R@100/50 R@100 R@50

k=1 k=70 k=70 k=1 k=70 k=70

Part 1 LK: VRD

VRD-V only [19] 7.11 37.20 28.36 3.52 32.34 23.95

VRD-Full [19] 47.87 84.34 70.97 8.45 50.04 29.77

U+W+SF+L: S 47.50 86.97 74.98 16.98 74.65 54.20

U+W+SF+L: T 54.13 89.41 82.54 8.80 41.53 32.81

Part 2 LK: VG

U+W+SF+L: S 45.00 81.64 74.76 16.88 72.29 52.51

U+W+SF+L: T 51.54 87.00 79.70 11.01 54.66 45.25

Part 3 LK: VRD+VG

U+W+SF+L: S 48.21 87.76 76.51 17.21 74.89 54.65

U+W+SF+L: T 54.82 90.63 83.97 12.32 47.22 38.24

Part 4 LK: Wiki

U+W+SF+L: S 36.05 77.88 68.16 11.80 64.24 49.19

U+W+SF+L: T 30.41 69.86 60.25 11.12 63.58 44.65

Part 5 LK: VRD+Wiki

U+W+SF+L: S 48.94 87.11 77.79 19.17 76.42 56.81

U+W+SF+L: T 54.06 88.93 81.78 9.65 42.24 34.61

4.3. Distillation with External Knowledge

The above experiments show the benefits of extracting

linguistic knowledge from internal training annotations and

distilling them in a data-driven model. However, training

annotations only represent a small portion of all possible re-

lationships and do not necessarily represent the real world

distribution, which has a long tail. For unseen long-tail

relationships in the VRD dataset, we extract the linguis-

tic knowledge from external sources: the Visual Genome

annotations and Wikipedia, whose domain is much larger

than any annotated dataset. In Table 5, we show predicate

detection results on the VRD test set using our linguistic

knowledge distillation framework with different sources of

knowledge. From Part 2 and Part 4 of Table 5, we ob-

serve that using only the external knowledge, especially

the very noisy one obtained from Wikipedia, leads to bad

performance. However, interestingly, although the external

knowledge can be very noisy (Wikipedia) and has a differ-

ent distribution when compared with the VRD dataset (Vi-

sual Genome), the performance of the teacher network us-
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Figure 3. Performance with varying sizes of training examples.

“Our Method” denotes the student network that absorbs linguistic

knowledge from both VRD training annotations and the Wikipedia

text. “VRD-Full” is the full model in [19].

ing external knowledge is much better than using only the

internal knowledge (Part 1). This suggests that by properly

distilling external knowledge, our framework obtains both

good predictive power on the seen relationships and better

generalization on unseen ones. Evaluation results of com-

bining both internal and external linguistic knowledge are

shown in Part 3 and Part 5 of Table 5. We observe that by

distilling external knowledge and the internal one, we im-

prove generalization significantly (e.g., LK from Wikipedia

boosts the recall to 19.17% on the zero-shot set) while main-

taining good predictive power on the entire test set.

Fig. 3 shows the comparison between our student net-

work that absorbs linguistic knowledge from both VRD

training annotations and the Wikipedia text (denoted as

“Our Method”) and the full model in [19] (denoted as

“VRD-Full”). We observe that our method significantly

outperforms the existing method, especially for the zero-

shot (relationships with 0 training instance) and the few-

shot setting (relationships with few training instances, e.g.,

≤ 10). By distilling linguistic knowledge into a deep model,

our data-driven model improves dramatically, which is hard

to achieve by only training on limited labeled images.

5. Conclusion

We proposed a framework that distills linguistic knowl-

edge into a deep neural network for visual relationship de-

tection. We incorporated rich representations of a visual re-

lationship in our deep model, and utilized a teacher-student

distillation framework to help the data-driven model ab-

sorb internal (training annotations) and external (public text

on the Internet) linguistic knowledge. Experiments on the

VRD and the Visual Genome datasets show significant im-

provements in accuracy and generalization capability.
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