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Abstract

Riding on the waves of deep neural networks, deep met-

ric learning has achieved promising results in various tasks

by using triplet network or Siamese network. Though the

basic goal of making images from the same category closer

than the ones from different categories is intuitive, it is hard

to optimize the objective directly due to the quadratic or

cubic sample size. Hard example mining is widely used to

solve the problem, which spends the expensive computation

on a subset of samples that are considered hard. However,

hard is defined relative to a specific model. Then complex

models will treat most samples as easy ones and vice versa

for simple models, both of which are not good for training.

It is difficult to define a model with the just right complex-

ity and choose hard examples adequately as different sam-

ples are of diverse hard levels. This motivates us to propose

the novel framework named Hard-Aware Deeply Cascaded

Embedding(HDC) to ensemble a set of models with differ-

ent complexities in cascaded manner to mine hard examples

at multiple levels. A sample is judged by a series of mod-

els with increasing complexities and only updates models

that consider the sample as a hard case. The HDC is eval-

uated on CARS196, CUB-200-2011, Stanford Online Prod-

ucts, VehicleID and DeepFashion datasets, and outperforms

state-of-the-art methods by a large margin.

1. Introduction
Deep metric embedding has attracted increasing atten-

tion for various tasks , such as visual product search [6,

18, 23, 27, 35], face recognition [21, 32, 41, 4], local im-

age descriptor learning [9, 2, 12, 24], person/vehicle re-

identification [22, 7, 43, 17], zero-shot image classifica-

tion [19, 45, 5], fine-grained image classification [8, 40, 44]

and object tracking [14, 33]. Although deep metric em-

bedding is modified into different forms for various tasks,

it shares the same objective to learn an embedding space

∗Corresponding author : Chao Zhang.
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Figure 1. Illustration of samples with different hard levels: A

query image is shown at the center, while other images from the

same category (Nissan 240X Coupe 1998 from CARS196 [11])

are used to form positive pairs with the query image.

that pulls similar images closer and pushes dissimilar im-

ages far away. Typically, the target embedding space is

learned with a convolutional neural network equipped with

contrastive/triplet loss.

Different from the traditional classification based mod-

els, the models of deep metric embedding consider two im-

ages (a pair) or three images (a triplet) as a training sample.

Thus N images can generate O(N2) or O(N3) samples. It

becomes impossible to consider all samples even for a mod-

erate number of images. Fortunately, not all samples are

equally informative to train a model, which inspires many

recent works to mine hard examples for training [8, 24, 39].

However, the hard level of a sample is defined relative to

a model. Then samples can be divided into different hard

levels as illustrated in Figure 1. For a complex model, most

samples will be treated as easy ones, and the model con-

verges fast but is prone to overfitting. While for a simple

model, most samples will be treated as hard ones and cannot
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Figure 2. Hard-Aware Deeply Cascaded Embedding : We will train the first model with all the pairs, the second model with the semi-

hard samples which are selected by the above model, the third model with the remained hard samples selected by the second model. Our

framework support any K cascaded models. We plot the case=3 for convenience. G1, G2, G3, F1, F2, F3 are the computation blocks in

Convolutional Neural Networks.

fully benefit from hard example mining. It would be ideal to

define a model with the just right complexity to mine hard

examples adequately, which is an open problem itself.

To alleviate the above problem, we ensemble a set of

models with different complexities in a cascaded manner

and mine hard examples adaptively, which is schematically

illustrated in Figure 2. The most simple model is imple-

mented by a shallow network, while complex models are

implemented by cascading more layers following the sim-

ple ones. During the training phase, a sample will be con-

sidered by a series of models with increasing depth. Specif-

ically, a sample firstly makes its forward pass through the

simple model, the pass will stop if the simple model consid-

ers the sample as an easy one, otherwise the forward pass

continues until a model considers the sample as an easy

one or the deepest model is reached. Then the errors will

be back-propagated to models that consider the sample as

a hard case. We empirically show that the HDC achieves

state-of-the-art results on five benchmarks.

In summary, we make the following contributions:

• We propose the Hard-Aware Deeply Cascaded Embed-

ding to solve the under-fitting and over-fitting problem

when mining the hard samples during training. To the

best of our knowledge, this is the first attempt to inves-

tigate and solve this problem.

• We conduct extensive experiments on five various

datasets and all achieve state-of-the-art results. The

promising results on different datasets demonstrate

that the proposed method has good generalization ca-

pability.

2. Related Work

Deep metric learning attracts great attention in recent

years, and hard negative mining is becoming a common

practice to effectively train deep metric networks [8, 24, 39].

Wang et al. [39] sample triplets during the first 10 train-

ing epoches randomly, and mine hard triplets in each mini-

batch after 10 epoches. Cui et al. [8] leverage human to

label hard negative images from images assigned high con-

fidence scores by the model during each round. Simo-Serra

et al. [24] analyze the influence of both of hard positive min-

ing and hard negative mining, and find that the combination

of aggressive mining for both positive and negative pairs

improves the discrimination. However, these methods mine

the hard images only based on a single model, which cannot

adequately leverage samples with different hard levels.

Our method of ensembling a set of models of different

complexities in a cascaded manner shares the same spirit

as the acceleration technique used in object/face detec-

tion [1, 16, 30, 42]. In the detection task, an image may con-

tain several positive patches and a large number of negative

patches. To reduce the computational cost, the model is bro-

ken down into a set of cascaded computation blocks, where

computation blocks at early stages reject most easy back-

ground patches, while computation blocks at latter stages

focus more on object-like patches.

Our method also shares similar form with deeply-

supervised network (DSN) proposed for image classifica-

tion [15], of which loss functions are added to the output

layers and several middle layers. DSN improves the direct-

ness and transparency of the hidden layer learning process

and tries to alleviate the “gradient vanishing” problem. Sim-

ilar idea is adopted in GoogLeNet [31]. BranchyNet [34]

attempts to speed up image classification by taking advan-

tage of the DSN framework during test phase, where an

image will be predicted using features learned at an early

layer if high confidence score can be achieved. During the

training phase of DSN, all samples are used and intermedi-

ate losses are only used to assist the training of the deepest

model. While in our framework, samples of different hard
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levels are assigned to models with adequate complexities,

and all models are ensembled together as a whole model.

To be noted, ensemble is also a useful technique that has

been widely used in model design to boost performance.

Hinton et al. [29] add dropout into fully-connected layers,

which implicitly ensembles an exponential number of sub-

networks in a single network. He et al. [10] propose ResNet

by adding residual connections into a network and win the

ILSVRC 2015 competition, which is latterly proved by Veit

et al. [36] that ResNet is actually exponential ensembles of

relatively shallow networks.

In addition, there are several works focused on design-

ing new loss functions for deep metric embedding recently.

Rippel et al. [19] design a Nearest Class Multiple Cen-

troids (NCMC) like loss which encourages images from

the same category to form sub-clusters in the embedding

space. Huang et al. [6] propose position-dependent deep

metric to solve the problem that intra-class distance in a

high-density region may be larger than the inter-class dis-

tance in low-density regions. Ustinova et al. [35] propose

a histogram loss, which aims to make the similarity distri-

butions of positive and negative pairs less overlapping. Un-

like other losses used for deep embedding, histogram loss

comes with virtually no parameters that need to be tuned.

K. Sohn et al. [26] proposed multi-class N-pair loss by gen-

eralizing triplet loss by allowing joint comparison among

more than one negative examples. Different from our work,

these works improve deep embedding by designing new

loss functions within a single model. They can benefit from

our method by mining hard examples adaptively using mul-

tiple cascaded models.

3. Hard-Aware Deeply Cascaded Embedding
Hard-Aware Deeply Cascaded embedding(HDC) is

based on a straightforward intuition: handling samples of

different hard levels with models of different complexities.

Based on deep neural networks, models with different com-

plexities can be naturally derived from sub-networks of dif-

ferent depths. For clarity, we will first formulate the general

framework of HDC and then analyze the concrete case for

the contrastive loss.

3.1. Model Formulation

Here are some notations that will be used to describe our

method:

• P = {I+i , I+j } : all the positive image pairs con-

structed from training set, where I+i and I+j are sup-

posed to be similar or share the same label.

• N = {I−i , I−j } : all the negative image pairs con-

structed from training set, where I−i and I−j are sup-

posed to be irrelevant or from different labels.

• Gk : the kth computation block including several con-

volutional layers, pooling layers, and other possible

operations in a network. Suppose there are K blocks

in total, G1 takes an image as input, and Gk, k > 1
takes the outputs of its previous block as input, then

all K blocks are cascaded together as a feed-forward

network.

• {o+i,k, o
+
j,k} : the output of the kth computation block

Gk for the positive pairs {I+i , I+j }.

• {o−i,k, o
−
j,k} : the output of the kth computation block

Gk for the negative pairs {I−i , I−j }.

• Fk : the kth transform function that transforms ok to a

low dimensional feature vector fk for distance calcu-

lation.

• {f+
i,k, f

+
j,k} : the kth computed feature vector after Fk

for the positive pairs {I+i , I+j }.

• {f−
i,k, f

−
j,k} : the kth computed feature vector after Fk

for the negative pairs {I−i , I−j }.

Accordingly, there are K models corresponding to K sub-

networks of different depths. The first model is the simplest

one which uses the first block G1 and generates features for

the pairs {Ii, Ij} by:

{oi,1, oj,1} = G1 ◦ {Ii, Ij} (1)

{fi,1, fj,1} = F1 ◦ {oi,1, oj,1} (2)

If the pair is considered easy by the current model, it will

not be passed to more complex models. Otherwise, the pair

will continue its forward pass until the kth model considers

it as an easy case or the final Kth model is reached. We can

calculate the features of kth model by:

{oi,k, oj,k} = Gk ◦ {oi,k−1, oj,k−1} (3)

{fi,k, fj,k} = Fk ◦ {oi,k, oj,k} (4)

Then the loss of kth model is defined as:

Lk =
X

(i,j)∈Pk

L+
k (i, j) +

X

(i,j)∈Nk

L−
k (i, j) (5)

where Pk denotes all positive pairs that are considered as

hard examples by previous models and Nk indicate nega-

tive ones. The definition of hard will be concretely given in

Section 3.2.

Therefore, the final loss of the HDC is defined as:

L =

KX

k=1

λkLk (6)

where λk is the weight for model k.

The HDC is different from previous deep metric embed-

ding, where only a single model (i.e., model K) is used to

mine hard samples. As samples of a dataset are with di-

verse hard levels, it is difficult to find a single model with
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Figure 3. Data Distribution: (a) Positive Pairs Distribution: Based on the anchor point in the center, P0 contains all the points. P1 contains

red, purple points. P2 only contains red points. (b) Negative Pairs Distribution: N0 contains all the points. N1 contains red, purple points.

N2 only contains red points. Green arrows denote loss from Cascade-Model-1, red arrows denote loss from Cascade-Model-2 and yellow

arrow denote loss from Cascade-Model-3.

the just right complexity to mine hard samples. In contrast,

the HDC framework cascades multiple models with increas-

ing complexities and mines samples of different hard levels

in a seamless way.

The model parameters are distributed in Gk, Fk, 1 
k  K. They can be optimized by the standard SGD, the

gradient of Gk is:

∂L

∂Gk

=
KX

l=k

λl

∂Ll

∂Gk

(7)

where the gradient of Gk is calculated by all the models that

are built on Gk. The gradient of Fk is:

∂L

∂Fk

= λk

∂Lk

∂Fk

(8)

where the gradient of Fk is only calculated by model k since

Fk is only used by model k for feature transformation.

The HDC is general for deep metric embedding with

hard example mining. Here we take contrastive loss as

an example to give the specific loss function. We first in-

troduce the original contrastive loss which penalizes large

distance between positive pairs and negative pairs with dis-

tance smaller than a margin, i.e.,

L+(i, j) = D(f+
i , f+

j ) (9)

L−(i, j) = max{0,M−D(f−
i , f−

j )} (10)

where D(fi, fj) is the Euclidean distance between the two

L2-normalized feature vectors of fi and fj , M is the mar-

gin. By applying the contrastive loss to Eq.(5), we get the

HDC based contrastive loss, i.e.,

Lk =
X

(i,j)∈Pk

D(f+
i,k, f

+
j,k)+

X

(i,j)∈Nk

max{0,M−D(f−
i,k, f

−
j,k)} (11)

3.2. Definition of Hard Example

Given the defined loss function, we follow conventional

hard example mining to define the samples of large loss

values as hard examples except that multiple losses will be

used to mine hard examples for each sample. Because the

loss distributions are different for different models and keep

changing during training, it is difficult to predefine thresh-

olds for each model when mining hard samples. Instead,

we simply rank losses of all positive pairs in a mini-batch

in descending order and take top hk percent samples in the

ranking list as hard positive set for the model k. Similar

strategies are adopted for hard negative example mining.

Then the selected hard samples are forwarded to the later

cascaded models.

Here, we use a toy dataset with positive pairs as illus-

trated in Figure 3(a) and negative pairs as illustrated in Fig-

ure 3(b), together with the model with K = 3 illustrated in

Figure 2 to schematically the process of hard example min-

ing. Cascade Model-1 will forward all pairs in P0 and

N0, and try to push all positive points towards the anchor

point while pushing all negative points away from the an-

chor point, and form P1, N1 (points in the 2nd and 3rd tier)

by selecting hard samples according to its loss. Similarly,

P2 and N2 (points in the 3rd tier) are formed by Cascade

Model-2.
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From the illustrated model in Figure 2, ensembling mod-

els in a cascaded manner brings an additional advantage

of computational efficiency, since lots of computations are

shared during forward pass which is efficient for both train-

ing and testing.

3.3. Implementation Details

We use mini-batch SGD to optimize the loss function

(6), and adopt multi-batch [32] to use all the possible pairs

in a mini-batch for stable estimation of the gradient. Algo-

rithm 1 details the framework of our implementation for the

HDC. Specifically, sampling strategy from [28] is to con-

struct a mini-batch of images as input, e.g., a mini-batch

of 100 images are randomly sampled evenly from 10 dif-

ferent categories. To leverage more training samples, we

further take multi-batch method [32] to construct all im-

age pairs in a mini-batch to calculate the training loss, e.g.,

1002 − 100 = 9900 pairs are constructed for 100 images.

With the cascaded models, an image is represented by con-

catenating features from all models.

Algorithm 1 Hard-Aware Deeply Cascaded Embedding.

1: Given training images set {Ii}
N
i=1.

2: for t = 1; t < T ; t++ do

3: Sample a mini-batch of training images, following

the method in [28] and initialize the P0 and N0

within the mini-batch following the method in [32].

4: for k = 1; k  K; k ++ do

5: Forward all the images in set Pk−1 and Nk−1 to

kth model to compute the features according to

Eq.(3) and Eq.(4).

6: Compute the losses for the all pairs constructed in

the mini-batch according to Eq.(9) and Eq.(10).

7: Get the Pk and Nk by choosing the hard pairs fol-

lowing the method described in Section 3.2.

8: Backward and update the gradients according to

corresponding parts in Eq.(7) and Eq.(8) for all the

pairs in Pk and Nk.

9: end for

10: end for

4. Experimental Evaluation

The proposed HDC is verified on image retrieval tasks

and evaluated by two standard performance metrics, i.e.,

MAP and Recall@K. MAP [17] is the mean of average

precision scores for all query images over the all the re-

turned images. Recall@K is the average recall scores over

all the query images in testing set following the definition

in [27]. Specifically, for each query image, top K nearest

images will be returned based on some algorithm, the recall

score will be 1 if at least one positive image appears in the

returned K images and 0 otherwise.

4.1. Datasets

Five datasets that are commonly chosen in deep metric

embedding are used in our experiments. For fair compari-

son with the existing methods, we follow the standard pro-

tocol of train/test split.

• CARS196 dataset [11], which has 196 classes of cars

with 16,185 images, where the first 98 classes are for

training (8,054 images) and the other 98 classes are for

testing (8,131 images). Both query set and database set

are the test set.

• CUB-200-2011 dataset [37], which has 200 species of

birds with 11,788 images, where the first 100 classes

are for training (5,864 images) and the rest of classes

are for testing (5,924 images). Both query set and

database set are the test set.

• Stanford Online Products dataset [28], which has

22,634 classes with 120,053 products images, where

11,318 classes are for training (59,551 images) and

11,316 classes are for testing (60,502 images). Both

query set and database set are the test set.

• In-shop Clothes Retrieval dataset [18], which contains

11,735 classes of clothing items with 54,642 images.

Following the settings in [18], only 7,982 classes of

clothing items with 52,712 images are used for train-

ing and testing. 3,997 classes are for training (25,882

images) and 3,985 classes are for testing (28,760 im-

ages). The test set are partitioned to query set and

database set, where query set contains 14,218 images

of 3,985 classes and database set contains 12,612 im-

ages of 3,985 classes.

• VehicleID dataset [17] is a large-scale vehicle dataset

that contains 221,763 images of 26,267 vehicles,

where the training set contains 110,178 images of

13,134 vehicles and the testing set contains 111,585

images of 13,133 vehicles. Following the settings in

[17], we use 3 test splits of different sizes constructed

from the testing set. The small test set contains 7,332

images of 800 vehicles. The medium test set contains

12,995 images of 1,600 vehicles. The large test set

contains 20,038 images of 2,400 vehicles.

4.2. Experiment Setup

We choose GoogLeNet [31] as our model for retrieval

tasks. Since GoogLeNet has three output classifiers(two

auxiliary classifiers from intermediate layers), HDC adopts

them as three cascaded sub-networks corresponding to the

three rows illustrated in Figure 2. i.e., G1 contains the lay-

ers from the input to ”Inception(4a)” inclusively before the

first classifier. We initialize the weights from the network

pretrained on ImageNet ILSVRC-2012 [20]. We use the

same hyper parameters in all experiments without specif-

ically tuning. Specifically, K is set to 3, λ1=λ2=λ3=1,
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(a) LDA score = 0.54 (b) LDA score = 0.91 (c) LDA score = 1.99 (d) LDA score = 2.50

Figure 4. Histograms for positive and negative distance distribution on the CARS196 test set: (a) GoogLeNet/pool51024 (b)

Contrastive†128 (c) Hard + Contrastive†128 (d) HDC + Contrastive†384. We can see that the overlap area between the 2 distributions

decreases from left to right. You can check the LDA score of these methods on table 1 increases from left to right.

Table 1. Comparisons of the Statistics of Histograms and Recall@K on CARS196 test set. The mean and variance under the column

named Positive Pairs correspond to m+ and v+. The mean and variance under the column named Negative Pairs correspond to m− and

v−.
Recall@K(%) Positive Pairs Negative Pairs

1 2 4 8 16 32 mean variance mean variance LDA score

GoogLeNet/pool51024 40.5 53.0 65.0 76.3 86.0 93.1 0.804 0.019 0.941 0.016 0.54

Contrastive†128 56.0 67.6 77.0 84.8 90.5 94.5 1.110 0.052 1.350 0.011 0.91

Hard + Contrastive†128 67.6 77.9 85.6 91.2 95.0 97.3 0.786 0.029 1.140 0.034 1.99

HDC + Contrastive-1†128 41.9 55.5 67.6 78.3 86.9 93.2 0.741 0.045 1.200 0.074 1.77

HDC + Contrastive-2†128 58.0 70.4 80.2 87.5 92.9 96.1 0.660 0.023 1.050 0.046 2.20

HDC + Contrastive-3†128 71.4 81.8 88.5 93.4 96.6 98.2 0.792 0.014 1.070 0.020 2.27

HDC + Contrastive†384 73.7 83.2 89.5 93.8 96.5 98.4 0.756 0.015 1.080 0.027 2.50

Table 2. Comparisons of the Statistics of Histograms and Recall@K on CUB-200-2011 test set.
Recall@K(%) Positive Pairs Negative Pairs

1 2 4 8 16 32 mean variance mean variance LDA score

HDC + Contrastive-1†128
⇤

43.4 55.8 69.1 80.4 88.1 93.9 0.709 0.023 1.000 0.026 1.73

HDC + Contrastive-2†128
⇤

51.9 63.8 75.1 84.3 91.2 95.3 0.637 0.016 0.919 0.021 2.15

HDC + Contrastive-3†128
⇤

58.5 71.1 80.8 88.5 93.5 96.5 0.770 0.012 1.000 0.013 2.12

HDC + Contrastive†384
⇤

60.7 72.4 81.9 89.2 93.7 96.8 0.741 0.012 0.989 0.014 2.37

{h1, h2, h3} = {100, 50, 20}, mini-batch size is 100, mar-

gin parameter M is set to 1, the initial learning rate starts

from 0.01 and is divided by 10 every 3-5 epoches, and we

train models for at most 15 epoches. The other settings fol-

low the same protocol in [28]. The embedding dimensions

of all the cascade models in our HDC are 128, so the embed-

ding dimension of the ensembled model is 384. The code

is publicly available at https://github.com/PkuRainBow/

Hard-Aware-Deeply-Cascaded-Embedding_release

4.3. Comparison with Baseline

We name different methods with superscript and sub-

script to denote their specific settings, the number in super-

script denotes the dimension used by the method, the sub-

script ⇤ denotes bounding boxes are used during training

and testing. Different from the original Contrastive128 [3],

we use the Contrastive†128 to denote the contrastive loss

computed with multi-batch [32] method.

To directly verify the effectiveness of HDC, we

first design several baseline methods including: (1)

GoogLeNet/pool51024 uses the feature vector directly out-

putted from pool5 of the pre-trained GoogLeNet, (2)

Contrastive†128 uses contrastive loss without hard exam-

ple mining, (3) Hard + Contrastive†128 combines the con-

trastive loss and hard example mining. In addition to report

our method named as HDC + Contrastive†384, we also re-

port the performance of sub models learned in our method,

i.e., HDC + Contrastive-1†128, HDC + Contrastive-

2†128 and HDC + Contrastive-3†128. Hard+Contrastive

uses the same network architecture as HDC+Contrastive-

3, i.e., {G1,G2,G3,F3}. Only top 50 percent examples

with larger loss are chosen as hard examples to update

the model. The results of these methods on CARS196

are summarized in Table 1. Obviously, training on the

target dataset brings significant performance improvement

comparing with GoogLeNet/pool51024, hard example min-

ing further brings more performance gain, while the hard

aware method achieves the best performance. HDC +

Contrastive-3†128 is much better than the traditional Hard

+ Contrastive†128 as the shallow modules of the model are

also trained by hard samples mined by shallow models. Our

method in the last row achieves the best result comparing

with all baselines, which verifies the effectiveness of the

hard-aware sample mining.
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Table 3. Recall@K(%) on CARS196 and CUB-200-2011.
CARS196 CUB-200-2011

K 1 2 4 8 16 32 1 2 4 8 16 32

Contrastive128 [3] 21.7 32.3 46.1 58.9 72.2 83.4 26.4 37.7 49.8 62.3 76.4 85.3

Triplet128 [21, 38] 39.1 50.4 63.3 74.5 84.1 89.8 36.1 48.6 59.3 70.0 80.2 88.4

LiftedStruct128 [27] 49.0 60.3 72.1 81.5 89.2 92.8 47.2 58.9 70.2 80.2 89.3 93.2

Binomial Deviance512 [35] - - - - - - 52.8 64.4 74.7 83.9 90.4 94.3

Histogram Loss512 [35] - - - - - - 50.3 61.9 72.6 82.4 88.8 93.7

HDC + Contrastive†384 73.7 83.2 89.5 93.8 96.7 98.4 53.6 65.7 77.0 85.6 91.5 95.5

PDDM + Triplet128
⇤

[6] 46.4 58.2 70.3 80.1 88.6 92.6 50.9 62.1 73.2 82.5 91.1 94.4

PDDM + Quadruplet128
⇤

[6] 57.4 68.6 80.1 89.4 92.3 94.9 58.3 69.2 79.0 88.4 93.1 95.7

HDC + Contrastive†384
⇤

83.8 89.8 93.6 96.2 97.8 98.9 60.7 72.4 81.9 89.2 93.7 96.8

Npairs" [26] 71.1 79.7 86.5 91.6 - - 50.9 63.3 74.3 83.2 - -

HDC + Contrastive†384
"

75.0 83.9 90.3 94.3 96.8 98.4 54.6 66.8 77.6 85.9 91.7 95.6

Figure 4 shows the distance distributions of positive pairs

and negative pairs following [35], where green area repre-

sents the distance distributions of positive pairs while red

area for negative pairs. Our method has the smallest over-

lapping area, and better separates positive pairs and nega-

tive pairs in the embedding space. We also calculate the

LDA score which measures the distance between two dis-

tributions to quantitatively compare the difference, i.e.,

score =
|m− −m+|2

v+ + v−
(12)

where m+ and m− are the mean distance of positive pairs

and negative pairs, v+ and v− are the variance of the dis-

tances of positive pairs and negative pairs. The results

on CARS196 are reported in the right part of Table 1. It

can be observed that the retrieval performance measured by

Recall@K positively correlates with LDA score, and our

method achieves the highest LDA score 2.50. We also con-

duct experiment on CUB-200-2011 and report the results in

Table 2, where the conclusion is the same on CARS196.

4.4. Comparison with state-of-the-art
We compare our method with state-of-the-art methods

on the five datasets. On the CARS196, CUB-200-2011 and

Stanford Online Products datasets: (1) LiftedStruct128 [27]

uses a novel structured prediction objective on the lifted

dense pairwise distance matrix. (2) PDDM + Triplet128
⇤

[6]

combines Position-Dependent Deep Metric units (PDDM)

and Triplet Loss. (3) PDDM + Quadruplet128
⇤

[6] com-

bines the PDDM with Quadruplet Losses proposed in [13].

(4) Histogram Loss512 [35] is penalizing the overlap be-

tween distributions of distances of positive pairs and nega-

tive pairs.(5) Binomial Deviance512 [35] is used to evaluate

the cost between similarities and labels, which is proved ro-

bust to outliers. (6)Npairs" [26] uses multi-class N-pair

loss by generalizing triplet loss by allowing joint compari-

son among more than one negative examples. The subscript

" means using multiple crops when testing, while all the

other methods use single crop except Npairs". All these

methods use GoogLeNet as the base model, which is the

same as our method.

Table 4. Recall@K(%) on In-shop Clothes Retrieval Dataset.
K 1 10 20 30 40 50

FashionNet + Joints4096 [18] 41.0 64.0 68.0 71.0 73.0 73.5

FashionNet + Poselets4096 [18] 42.0 65.0 70.0 72.0 72.0 75.0

FashionNet4096 [18] 53.0 73.0 76.0 77.0 79.0 80.0

HDC + Contrastive†384 62.1 84.9 89.0 91.2 92.3 93.1

On VehicleID and In-shop Clothes Retrieval datasets :

(1) CCL + Mixed Diff1024 [17] uses the Coupled Cluster

Loss and Mixed Difference Network Structure. (2) Fash-

ionNet [18] simultaneously learns the landmarks and at-

tributes of the images using VGG-16 [25]. To test the gen-

erality of our method, we use the same hyper-parameters

without specifically tuning on these datasets.

Table 3 quantifies the advantages of our method on

both CARS196 and CUB-200-2011. We conduct three

groups of experiments to ensure fairness as different meth-

ods adopt different settings, i.e., with/without bounding

boxes and with multiple crops when testing. PDDM +

Triplet128
⇤

and PDDM + Quadruplet128
⇤

both use the im-

ages cropped with the annotated bounding boxes as train-

ing set and test set. With bounding boxes, cluttered back-

grounds are removed and better performance is expected.

HDC + Contrastive†384
⇤

shows significant performance gain

both on CARS196 and CUB-200-2011. On CARS196, we

improve the Recall@1 score from 57.4% to 83.8%. CUB-

200-2011 is more challenging than CARS196 as the car is

rigid while birds have more variations. We get 2.4% abso-

lute improvement on CUB-200-2011. Histogram Loss512

and Binomial Deviance512 are trained without bounding

boxes, for fair comparison, we also validate our method

without using bounding boxes. HDC + Contrastive†384

outperforms all methods without using bounding boxes on

both datasets, and has even better results than methods

using bounding boexes on CARS196. Besides, we test

our method when using multiple crops for test. HDC +

Contrastive†384
"

also achieves state-of-the-art performance

compared with Npairs".

Table 5 reports the results on Stanford Online Products.
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(a) (b)

Figure 5. Retrieval Results on CARS196 and Stanford Online Products: (a) CARS196. (b) Stanford Online Products.

Table 5. Recall@K(%) on Stanford Online Products.
K 1 10 100 1000

Contrastive128 [3] 42.0 58.2 73.8 89.1

Triplet128 [21, 38] 42.1 63.5 82.5 94.8

LiftedStruct128 [27] 60.8 79.2 91.0 97.3

LiftedStruct512 [27] 62.1 79.8 91.3 97.4

Binomial Deviance512 [35] 65.5 82.3 92.3 97.6

Histogram Loss512 [35] 63.9 81.7 92.2 97.7

HDC + Contrastive†384 69.5 84.4 92.8 97.7

Npairs" [26] 67.7 83.8 92.9 97.8

HDC + Contrastive†384
"

70.1 84.9 93.2 97.8

Stanford Online Products suffers the problem of large num-

ber of categories and few images per category, which is very

different from CARS196 and CUB-200-2011. Our method

achieves 4% absolute improvements over previous state-of-

the-art methods measured by Recall@1. When testing with

multiple crops, HDC + Contrastive†384
"

further improves the

Recall@1 from 67.7% to 70.1%. Figure 5(a) shows some

retrieval results on Stanford Online Products with features

learned by HDC + Contrastive†384.

Similar to the Stanford Online Products, DeepFashion

In-shop Clothes and VehicleID also suffer the problem of

limited images in each class and large number of classes.

Table 4 and 6 compare the results on the two datasets, where

our method outperforms state-of-the-art methods by a large

margin.

Through extensive empirical comparisons on various

datasets under different settings, we show that our method

is general and can achieve better performance.

5. Conclusions

In this paper, we propose a novel Hard-Aware Deeply

Cascaded Embedding to consider both hard levels of sam-

ples and the complexities of models. Different from training

Table 6. MAP of Vehicle Retrieval Task.
MAP Small Medium Large

VGG + Triplet Loss1024 0.444 0.391 0.373

VGG + CCL1024 ( [17]) 0.492 0.448 0.386

Mixed Diff + CCL1024 ( [17]) 0.546 0.481 0.455

GoogLeNet/pool51024 0.418 0.392 0.347

HDC + Contrastive†384 0.655 0.631 0.575

three separated models, our design ensembles a set of mod-

els with increasing complexities in a cascaded manner and

shares most of the computation among models. Samples

with different hard levels are mined accordingly using the

models with adequate complexities. Controlled experimen-

tal results demonstrate the advantages by the hard-aware de-

sign, and extensive comparisons on five benchmarks further

verify the effectiveness of the proposed method in learning

deep metric embedding.

Currently, the method is verified by three cascaded mod-

els with increasing complexities, in the future, we would

further improve the method by cascading more models and

increasing complexities in a smoother way. And we would

also try to combine our method with other loss functions in

the future work.
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