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Abstract

Riding on the waves of deep neural networks, deep met-
ric learning has achieved promising results in various tasks
by using triplet network or Siamese network. Though the
basic goal of making images from the same category closer
than the ones from different categories is intuitive, it is hard
to optimize the objective directly due to the quadratic or
cubic sample size. Hard example mining is widely used to
solve the problem, which spends the expensive computation
on a subset of samples that are considered hard. However,
hard is defined relative to a specific model. Then complex
models will treat most samples as easy ones and vice versa
for simple models, both of which are not good for training.
It is difficult to define a model with the just right complex-
ity and choose hard examples adequately as different sam-
ples are of diverse hard levels. This motivates us to propose
the novel framework named Hard-Aware Deeply Cascaded
Embedding(HDC) to ensemble a set of models with differ-
ent complexities in cascaded manner to mine hard examples
at multiple levels. A sample is judged by a series of mod-
els with increasing complexities and only updates models
that consider the sample as a hard case. The HDC is eval-
uated on CARS196, CUB-200-2011, Stanford Online Prod-
ucts, VehiclelD and DeepFashion datasets, and outperforms
state-of-the-art methods by a large margin.

1. Introduction

Deep metric embedding has attracted increasing atten-
tion for various tasks , such as visual product search [6,
18, 23, 27, 35], face recognition [21, 32, 41, 4], local im-
age descriptor learning [9, 2, 12, 24], person/vehicle re-
identification [22, 7, 43, 17], zero-shot image classifica-
tion [19, 45, 5], fine-grained image classification [8, 40, 44]
and object tracking [14, 33]. Although deep metric em-
bedding is modified into different forms for various tasks,
it shares the same objective to learn an embedding space
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Figure 1. Illustration of samples with different hard levels: A
query image is shown at the center, while other images from the
same category (Nissan 240X Coupe 1998 from CARS196 [11])
are used to form positive pairs with the query image.

that pulls similar images closer and pushes dissimilar im-
ages far away. Typically, the target embedding space is
learned with a convolutional neural network equipped with
contrastive/triplet loss.

Different from the traditional classification based mod-
els, the models of deep metric embedding consider two im-
ages (a pair) or three images (a triplet) as a training sample.
Thus NN images can generate O(N?) or O(N?) samples. It
becomes impossible to consider all samples even for a mod-
erate number of images. Fortunately, not all samples are
equally informative to train a model, which inspires many
recent works to mine hard examples for training [8, 24, 39].

However, the hard level of a sample is defined relative to
a model. Then samples can be divided into different hard
levels as illustrated in Figure 1. For a complex model, most
samples will be treated as easy ones, and the model con-
verges fast but is prone to overfitting. While for a simple
model, most samples will be treated as hard ones and cannot
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Figure 2. Hard-Aware Deeply Cascaded Embedding : We will train the first model with all the pairs, the second model with the semi-
hard samples which are selected by the above model, the third model with the remained hard samples selected by the second model. Our
framework support any K cascaded models. We plot the case=3 for convenience. G1, G2, G3, F1, F», F3 are the computation blocks in

Convolutional Neural Networks.

fully benefit from hard example mining. It would be ideal to
define a model with the just right complexity to mine hard
examples adequately, which is an open problem itself.

To alleviate the above problem, we ensemble a set of
models with different complexities in a cascaded manner
and mine hard examples adaptively, which is schematically
illustrated in Figure 2. The most simple model is imple-
mented by a shallow network, while complex models are
implemented by cascading more layers following the sim-
ple ones. During the training phase, a sample will be con-
sidered by a series of models with increasing depth. Specif-
ically, a sample firstly makes its forward pass through the
simple model, the pass will stop if the simple model consid-
ers the sample as an easy one, otherwise the forward pass
continues until a model considers the sample as an easy
one or the deepest model is reached. Then the errors will
be back-propagated to models that consider the sample as
a hard case. We empirically show that the HDC achieves
state-of-the-art results on five benchmarks.

In summary, we make the following contributions:

e We propose the Hard-Aware Deeply Cascaded Embed-
ding to solve the under-fitting and over-fitting problem
when mining the hard samples during training. To the
best of our knowledge, this is the first attempt to inves-
tigate and solve this problem.

e We conduct extensive experiments on five various
datasets and all achieve state-of-the-art results. The
promising results on different datasets demonstrate
that the proposed method has good generalization ca-
pability.

2. Related Work

Deep metric learning attracts great attention in recent
years, and hard negative mining is becoming a common
practice to effectively train deep metric networks [8, 24, 39].

Wang et al. [39] sample triplets during the first 10 train-
ing epoches randomly, and mine hard triplets in each mini-
batch after 10 epoches. Cui et al. [8] leverage human to
label hard negative images from images assigned high con-
fidence scores by the model during each round. Simo-Serra
et al. [24] analyze the influence of both of hard positive min-
ing and hard negative mining, and find that the combination
of aggressive mining for both positive and negative pairs
improves the discrimination. However, these methods mine
the hard images only based on a single model, which cannot
adequately leverage samples with different hard levels.

Our method of ensembling a set of models of different
complexities in a cascaded manner shares the same spirit
as the acceleration technique used in object/face detec-
tion [1, 16, 30, 42]. In the detection task, an image may con-
tain several positive patches and a large number of negative
patches. To reduce the computational cost, the model is bro-
ken down into a set of cascaded computation blocks, where
computation blocks at early stages reject most easy back-
ground patches, while computation blocks at latter stages
focus more on object-like patches.

Our method also shares similar form with deeply-
supervised network (DSN) proposed for image classifica-
tion [15], of which loss functions are added to the output
layers and several middle layers. DSN improves the direct-
ness and transparency of the hidden layer learning process
and tries to alleviate the “gradient vanishing” problem. Sim-
ilar idea is adopted in GoogLeNet [31]. BranchyNet [34]
attempts to speed up image classification by taking advan-
tage of the DSN framework during test phase, where an
image will be predicted using features learned at an early
layer if high confidence score can be achieved. During the
training phase of DSN, all samples are used and intermedi-
ate losses are only used to assist the training of the deepest
model. While in our framework, samples of different hard
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levels are assigned to models with adequate complexities,
and all models are ensembled together as a whole model.
To be noted, ensemble is also a useful technique that has
been widely used in model design to boost performance.
Hinton et al. [29] add dropout into fully-connected layers,
which implicitly ensembles an exponential number of sub-
networks in a single network. He et al. [10] propose ResNet
by adding residual connections into a network and win the
ILSVRC 2015 competition, which is latterly proved by Veit
et al. [36] that ResNet is actually exponential ensembles of
relatively shallow networks.

In addition, there are several works focused on design-
ing new loss functions for deep metric embedding recently.
Rippel et al. [19] design a Nearest Class Multiple Cen-
troids (NCMC) like loss which encourages images from
the same category to form sub-clusters in the embedding
space. Huang et al. [6] propose position-dependent deep
metric to solve the problem that intra-class distance in a
high-density region may be larger than the inter-class dis-
tance in low-density regions. Ustinova et al. [35] propose
a histogram loss, which aims to make the similarity distri-
butions of positive and negative pairs less overlapping. Un-
like other losses used for deep embedding, histogram loss
comes with virtually no parameters that need to be tuned.
K. Sohn et al. [26] proposed multi-class N-pair loss by gen-
eralizing triplet loss by allowing joint comparison among
more than one negative examples. Different from our work,
these works improve deep embedding by designing new
loss functions within a single model. They can benefit from
our method by mining hard examples adaptively using mul-
tiple cascaded models.

3. Hard-Aware Deeply Cascaded Embedding

Hard-Aware Deeply Cascaded embedding(HDC) is
based on a straightforward intuition: handling samples of
different hard levels with models of different complexities.
Based on deep neural networks, models with different com-
plexities can be naturally derived from sub-networks of dif-
ferent depths. For clarity, we will first formulate the general
framework of HDC and then analyze the concrete case for
the contrastive loss.

3.1. Model Formulation

Here are some notations that will be used to describe our

method:

o P = {I;L , I;r
structed from training set, where Ij and Ij are sup-
posed to be similar or share the same label.

o NV = {I;,1;} : all the negative image pairs con-
structed from training set, where I;” and I 7_ are sup-
posed to be irrelevant or from different labels.

e G|, : the k" computation block including several con-
volutional layers, pooling layers, and other possible

: all the positive image pairs con-

operations in a network. Suppose there are K blocks
in total, G takes an image as input, and G,k > 1
takes the outputs of its previous block as input, then
all K blocks are cascaded together as a feed-forward
network.

o {O:k, oxk} : the output of the k" computation block
G, for the positive pairs {1, I;r .

 {0;},0;} : the output of the K" computation block
G, for the negative pairs {I;, I }.

e F} : the k" transform function that transforms oy, to a
low dimensional feature vector fj, for distance calcu-
lation.

o { f;,_kv f].‘fk} : the k*" computed feature vector after F,
for the positive pairs {I;", I f }.

o {fik fjp}: the k" computed feature vector after F,

for the negative pairs {/;, I }.

Accordingly, there are K models corresponding to K sub-
networks of different depths. The first model is the simplest
one which uses the first block G; and generates features for
the pairs {I;, I;} by:

{0i1,051} = G1o{I;,I;} ey
{fix, fin} = Fio{oi1,051} @)

If the pair is considered easy by the current model, it will
not be passed to more complex models. Otherwise, the pair
will continue its forward pass until the k" model considers
it as an easy case or the final K*" model is reached. We can
calculate the features of k" model by:

{051,016} = G, 0 {0i k—1,0j -1} (3)
{firs Fik} = Fr o {051,051} 4

Then the loss of k" model is defined as:

Lo= Y Liip)+ D LiGj) 6

(4,5)€Px (4,5) EN

where P, denotes all positive pairs that are considered as
hard examples by previous models and N}, indicate nega-
tive ones. The definition of hard will be concretely given in
Section 3.2.

Therefore, the final loss of the HDC is defined as:

K
L= MLy (6)
k=1

where )\, is the weight for model k.

The HDC is different from previous deep metric embed-
ding, where only a single model (i.e., model K) is used to
mine hard samples. As samples of a dataset are with di-
verse hard levels, it is difficult to find a single model with
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Figure 3. Data Distribution: (a) Positive Pairs Distribution: Based on the anchor point in the center, Py contains all the points. P; contains
red, purple points. P2 only contains red points. (b) Negative Pairs Distribution: N contains all the points. N contains red, purple points.
N> only contains red points. Green arrows denote loss from Cascade-Model-1, red arrows denote loss from Cascade-Model-2 and yellow

arrow denote loss from Cascade-Model-3.

the just right complexity to mine hard samples. In contrast,
the HDC framework cascades multiple models with increas-
ing complexities and mines samples of different hard levels
in a seamless way.

The model parameters are distributed in Gy, Fj, 1 <
k < K. They can be optimized by the standard SGD, the
gradient of Gy is:

K

oL oL,
oG, ; A Flen 7

where the gradient of G, is calculated by all the models that
are built on G. The gradient of Fj is:

oL 0Ly

aiF;C: kTEC (8)

where the gradient of F}, is only calculated by model & since
F}, is only used by model k for feature transformation.

The HDC is general for deep metric embedding with
hard example mining. Here we take contrastive loss as
an example to give the specific loss function. We first in-
troduce the original contrastive loss which penalizes large
distance between positive pairs and negative pairs with dis-
tance smaller than a margin, i.e.,

L¥(i.j) = DU S ©)
L7(i,j) = max{0, M =D(f;, f;)}  (10)
where D(f;, f;) is the Euclidean distance between the two

L2-normalized feature vectors of f; and f;, M is the mar-
gin. By applying the contrastive loss to Eq.(5), we get the

HDC based contrastive loss, i.e.,

Ek: Z D(f:kyka)"'

(4,4)EPx

Z max{0, M — D(f;k’ f;k)} (11
(4,5) EN%

3.2. Definition of Hard Example

Given the defined loss function, we follow conventional
hard example mining to define the samples of large loss
values as hard examples except that multiple losses will be
used to mine hard examples for each sample. Because the
loss distributions are different for different models and keep
changing during training, it is difficult to predefine thresh-
olds for each model when mining hard samples. Instead,
we simply rank losses of all positive pairs in a mini-batch
in descending order and take top h* percent samples in the
ranking list as hard positive set for the model k. Similar
strategies are adopted for hard negative example mining.
Then the selected hard samples are forwarded to the later
cascaded models.

Here, we use a toy dataset with positive pairs as illus-
trated in Figure 3(a) and negative pairs as illustrated in Fig-
ure 3(b), together with the model with K = 3 illustrated in
Figure 2 to schematically the process of hard example min-
ing. Cascade Model-1 will forward all pairs in Py and
Ny, and try to push all positive points towards the anchor
point while pushing all negative points away from the an-
chor point, and form Py, N} (points in the 2"¢ and 37 tier)
by selecting hard samples according to its loss. Similarly,
P, and N> (points in the 37 tier) are formed by Cascade
Model-2.
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From the illustrated model in Figure 2, ensembling mod-
els in a cascaded manner brings an additional advantage
of computational efficiency, since lots of computations are
shared during forward pass which is efficient for both train-
ing and testing.

3.3. Implementation Details

We use mini-batch SGD to optimize the loss function
(6), and adopt multi-batch [32] to use all the possible pairs
in a mini-batch for stable estimation of the gradient. Algo-
rithm 1 details the framework of our implementation for the
HDC. Specifically, sampling strategy from [28] is to con-
struct a mini-batch of images as input, e.g., a mini-batch
of 100 images are randomly sampled evenly from 10 dif-
ferent categories. To leverage more training samples, we
further take multi-batch method [32] to construct all im-
age pairs in a mini-batch to calculate the training loss, e.g.,
1002 — 100 = 9900 pairs are constructed for 100 images.
With the cascaded models, an image is represented by con-
catenating features from all models.

Algorithm 1 Hard-Aware Deeply Cascaded Embedding.
1: Given training images set {I;}¥ ;.
2: fort =1;t<T;t+ +do
3:  Sample a mini-batch of training images, following
the method in [28] and initialize the Py and N
within the mini-batch following the method in [32].
fork=1;k<K;k++do
5: Forward all the images in set P_; and Nj_; to
kt" model to compute the features according to
Eq.(3) and Eq.(4).

6: Compute the losses for the all pairs constructed in
the mini-batch according to Eq.(9) and Eq.(10).

7 Get the Py, and N}, by choosing the hard pairs fol-
lowing the method described in Section 3.2.

8: Backward and update the gradients according to

corresponding parts in Eq.(7) and Eq.(8) for all the
pairs in Py, and Nj.
9:  end for
10: end for

4. Experimental Evaluation

The proposed HDC is verified on image retrieval tasks
and evaluated by two standard performance metrics, i.e.,
MAP and Recall@ K. MAP [17] is the mean of average
precision scores for all query images over the all the re-
turned images. Recall@K is the average recall scores over
all the query images in testing set following the definition
in [27]. Specifically, for each query image, top K nearest
images will be returned based on some algorithm, the recall
score will be 1 if at least one positive image appears in the
returned K images and 0 otherwise.

4.1. Datasets

Five datasets that are commonly chosen in deep metric
embedding are used in our experiments. For fair compari-
son with the existing methods, we follow the standard pro-
tocol of train/test split.

e CARSI196 dataset [11], which has 196 classes of cars
with 16,185 images, where the first 98 classes are for
training (8,054 images) and the other 98 classes are for
testing (8,131 images). Both query set and database set
are the test set.

e CUB-200-2011 dataset [37], which has 200 species of
birds with 11,788 images, where the first 100 classes
are for training (5,864 images) and the rest of classes
are for testing (5,924 images). Both query set and
database set are the test set.

e Stanford Online Products dataset [28], which has
22,634 classes with 120,053 products images, where
11,318 classes are for training (59,551 images) and
11,316 classes are for testing (60,502 images). Both
query set and database set are the test set.

e In-shop Clothes Retrieval dataset [18], which contains
11,735 classes of clothing items with 54,642 images.
Following the settings in [18], only 7,982 classes of
clothing items with 52,712 images are used for train-
ing and testing. 3,997 classes are for training (25,882
images) and 3,985 classes are for testing (28,760 im-
ages). The test set are partitioned to query set and
database set, where query set contains 14,218 images
of 3,985 classes and database set contains 12,612 im-
ages of 3,985 classes.

e VehiclelD dataset [17] is a large-scale vehicle dataset
that contains 221,763 images of 26,267 vehicles,
where the training set contains 110,178 images of
13,134 vehicles and the testing set contains 111,585
images of 13,133 vehicles. Following the settings in
[17], we use 3 test splits of different sizes constructed
from the testing set. The small test set contains 7,332
images of 800 vehicles. The medium test set contains
12,995 images of 1,600 vehicles. The large test set
contains 20,038 images of 2,400 vehicles.

4.2. Experiment Setup

We choose GoogleNet [31] as our model for retrieval
tasks. Since GoogLeNet has three output classifiers(two
auxiliary classifiers from intermediate layers), HDC adopts
them as three cascaded sub-networks corresponding to the
three rows illustrated in Figure 2. i.e., G1 contains the lay-
ers from the input to “Inception(4a)” inclusively before the
first classifier. We initialize the weights from the network
pretrained on ImageNet ILSVRC-2012 [20]. We use the
same hyper parameters in all experiments without specif-
ically tuning. Specifically, K is set to 3, A\j=A2=A3=1,
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Figure 4. Histograms for positive and negative distance distribution on the CARS196 test set: (a) GoogLeNet/pool5'9%* (b)
Contrastive 2% (c) Hard + Contrastive 2% (d) HDC + Contrastive %4, We can see that the overlap area between the 2 distributions
decreases from left to right. You can check the LDA score of these methods on table 1 increases from left to right.

Table 1. Comparisons of the Statistics of Histograms and Recall@ K on CARS196 test set. The mean and variance under the column
named Positive Pairs correspond to m™ and v™. The mean and variance under the column named Negative Pairs correspond to m ™~ and

v
Recall@ K (%) Positive Pairs Negative Pairs
1 2 4 8 16 32 mean variance mean variance | LDA score
GoogLeNet/pool5102% 405 530 650 763 860 93.1 | 0.804 0.019 0.941 0.016 0.54
Contrastive 128 56.0 67.6 770 848 905 945 | 1.110  0.052 1350  0.011 0.91
Hard + Contrastive' 128 676 719 856 912 950 973 | 0.786  0.029 1.140  0.034 1.99
HDC + Contrastive-17128 419 555 67.6 783 869 932 | 0.741 0.045 1200  0.074 1.77
HDC + Contrastive-2t128 580 704 802 875 929 96.1 | 0.660  0.023 1.050  0.046 2.20
HDC + Contrastive-37128 714  81.8 885 934 96.6 982 | 0.792  0.014 1.070  0.020 227
HDC + Contrastive! 384 737 832 895 938 965 984 | 0.756 0.015 1.080  0.027 2.50

Table 2. Comparisons of the Statistics of Histograms and Recall@ K on CUB-200-2011 test set.

Recall@ K (%) Positive Pairs Negative Pairs
1 2 4 8 16 32 mean  variance mean  variance | LDA score
HDC + Contrastive»l“m28 434 558 69.1 804 88.1 939 | 0.709 0.023 1.000 0.026 1.73
HDC + Contrastive-2f128 519 638 751 843 912 953 | 0.637 0.016 0.919 0.021 2.15
HDC + Contrastive-SfD28 585 71.1 80.8 885 935 96.5 | 0.770 0.012 1.000 0.013 2.12
HDC + Contrastive 354 60.7 724 819 892 937 968 | 0741 0012 0989 0014 2.37

{ht, 2, h3} = {100,50, 20}, mini-batch size is 100, mar-
gin parameter M is set to 1, the initial learning rate starts
from 0.01 and is divided by 10 every 3-5 epoches, and we
train models for at most 15 epoches. The other settings fol-
low the same protocol in [28]. The embedding dimensions
of all the cascade models in our HDC are 128, so the embed-
ding dimension of the ensembled model is 384. The code
is publicly available at https://github.com/PkuRainBow/

Hard-Aware-Deeply-Cascaded-Embedding_release

4.3. Comparison with Baseline

We name different methods with superscript and sub-
script to denote their specific settings, the number in super-
script denotes the dimension used by the method, the sub-
script [J denotes bounding boxes are used during training
and testing. Different from the original Contrastive'2® [3],
we use the Contrastive’'?® to denote the contrastive loss
computed with multi-batch [32] method.

To directly verify the effectiveness of HDC, we
first design several baseline methods including: (1)
GoogLeNet/pool5'924 uses the feature vector directly out-
putted from pool5 of the pre-trained GoogleNet, (2)

Contrastive'2® uses contrastive loss without hard exam-
ple mining, (3) Hard + Contrastive’!?® combines the con-
trastive loss and hard example mining. In addition to report
our method named as HDC + Contrastive!384, we also re-
port the performance of sub models learned in our method,
ie., HDC + Contrastive-11128, HDC + Contrastive-
27128 and HDC + Contrastive-3712%, Hard+Contrastive
uses the same network architecture as HDC+Contrastive-
3, ie., {G1,G2,G3,F3}. Only top 50 percent examples
with larger loss are chosen as hard examples to update
the model. The results of these methods on CARS196
are summarized in Table 1. Obviously, training on the
target dataset brings significant performance improvement
comparing with GoogLeNet/pool5'°%4, hard example min-
ing further brings more performance gain, while the hard
aware method achieves the best performance. HDC +
Contrastive-3712% is much better than the traditional Hard
+ Contrastive'2® as the shallow modules of the model are
also trained by hard samples mined by shallow models. Our
method in the last row achieves the best result comparing
with all baselines, which verifies the effectiveness of the
hard-aware sample mining.
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Table 3. Recall@ K(%) on CARS196 and CUB-200-2011.

CARS196 CUB-200-2011

K i 2 4 8 16 32 1 2 4 8 16 32
Contrastive28 [3] 217 323 461 589 722 834 | 264 377 498 623 764 853
Triplet'28 [21, 38] 39.1 504 633 745 841 898 | 361 486 593 700 802 884
LiftedStruct!28 [27] 490 603 721 815 892 928 | 472 589 702 802 893 932
Binomial Deviance®12 [35] - - - - - - 528 644 747 839 904 943
Histogram Loss®'? [35] - - - - - - 503 619 726 824 888 937
HDC + Contrastive 384 737 832 895 938 967 984 | 536 657 770 856 915 955
PDDM + Triplet?% [6] 464 582 703 80.1 886 926 | 509 621 732 825 911 944
PDDM + Quadruplett?® [6] 574 686 80.1 894 923 949 | 583 692 790 884 931 957
HDC + Contrastive 254 838 898 936 962 978 989 | 60.7 724 819 892 937 968
Npairsg [26] 711 797 865 91.6 - - 509 633 743 832 - -
HDC + Contrastive 354 750 839 903 943 968 984 | 546 668 776 859 91.7 956

Figure 4 shows the distance distributions of positive pairs
and negative pairs following [35], where green area repre-
sents the distance distributions of positive pairs while red
area for negative pairs. Our method has the smallest over-
lapping area, and better separates positive pairs and nega-
tive pairs in the embedding space. We also calculate the
LDA score which measures the distance between two dis-
tributions to quantitatively compare the difference, i.e.,

m”= —m*?

score =
vt + o~

12)
where m™ and m ™ are the mean distance of positive pairs
and negative pairs, v and v~ are the variance of the dis-
tances of positive pairs and negative pairs. The results
on CARS196 are reported in the right part of Table 1. It
can be observed that the retrieval performance measured by
Recall@ K positively correlates with LDA score, and our
method achieves the highest LDA score 2.50. We also con-
duct experiment on CUB-200-2011 and report the results in
Table 2, where the conclusion is the same on CARS196.

4.4. Comparison with state-of-the-art

We compare our method with state-of-the-art methods
on the five datasets. On the CARS196, CUB-200-2011 and
Stanford Online Products datasets: (1) LiftedStruct!® [27]
uses a novel structured prediction objective on the lifted
dense pairwise distance matrix. (2) PDDM + Triplet?® [6]
combines Position-Dependent Deep Metric units (PDDM)
and Triplet Loss. (3) PDDM + Quadruplet!?® [6] com-
bines the PDDM with Quadruplet Losses proposed in [13].
(4) Histogram Loss®!? [35] is penalizing the overlap be-
tween distributions of distances of positive pairs and nega-
tive pairs.(5) Binomial Deviance®'2 [35] is used to evaluate
the cost between similarities and labels, which is proved ro-
bust to outliers. (6)Npairsg [26] uses multi-class N-pair
loss by generalizing triplet loss by allowing joint compari-
son among more than one negative examples. The subscript
B means using multiple crops when testing, while all the
other methods use single crop except Npairsg. All these
methods use Googl.eNet as the base model, which is the

same as our method.

Table 4. Recall@ K (%) on In-shop Clothes Retrieval Dataset.
K 1 10 20 30 40 50

FashionNet + Joints™76 [18] 410 640 680 71.0 73.0 735
FashionNet + Poselets®®%0 [18] 42.0 650 700 720 72.0 75.0
FashionNet*?% [18] 53.0 730 760 77.0 79.0 80.0
HDC + ContrastiveT>> 62.1 849 89.0 912 923 93.1

On VehicleID and In-shop Clothes Retrieval datasets :
(1) CCL + Mixed Diff'°?* [17] uses the Coupled Cluster
Loss and Mixed Difference Network Structure. (2) Fash-
ionNet [18] simultaneously learns the landmarks and at-
tributes of the images using VGG-16 [25]. To test the gen-
erality of our method, we use the same hyper-parameters
without specifically tuning on these datasets.

Table 3 quantifies the advantages of our method on
both CARS196 and CUB-200-2011. We conduct three
groups of experiments to ensure fairness as different meth-
ods adopt different settings, i.e., with/without bounding
boxes and with multiple crops when testing. PDDM +
Triplet'?® and PDDM + Quadruplet!?® both use the im-
ages cropped with the annotated bounding boxes as train-
ing set and test set. With bounding boxes, cluttered back-
grounds are removed and better performance is expected.
HDC + Contrastive 24 shows significant performance gain
both on CARS196 and CUB-200-2011. On CARS196, we
improve the Recall@1 score from 57.4% to 83.8%. CUB-
200-2011 is more challenging than CARS196 as the car is
rigid while birds have more variations. We get 2.4% abso-
lute improvement on CUB-200-2011. Histogram Loss®'2
and Binomial Deviance®'? are trained without bounding
boxes, for fair comparison, we also validate our method
without using bounding boxes. HDC + Contrastivef3%4
outperforms all methods without using bounding boxes on
both datasets, and has even better results than methods
using bounding boexes on CARS196. Besides, we test
our method when using multiple crops for test. HDC +
ContrastiveTga84 also achieves state-of-the-art performance
compared with Npairsg.

Table 5 reports the results on Stanford Online Products.
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Figure 5. Retrieval Results on CARS196 and Stanford Online Products: (a) CARS196. (b) Stanford Online Products.

Table 5. Recall@ K (%) on Stanford Online Products.

K 1 10 100 1000
Contrastive 28 [3] 420 582 738 89.1
Triplet'28 [21, 38] 42.1 635 825 948
LiftedStruct!28 [27] 608 792 910 973
LiftedStruct®12 [27] 62.1 798 913 974
Binomial Deviance®? [35] 65.5 823 923 97.6
Histogram Loss®1? [35] 639 817 922 977
HDC + Contrastive 384 69.5 844 928 977
Npairsg [26] 677 838 929 978
HDC + Conrastive 254 701 849 932 9738

Stanford Online Products suffers the problem of large num-
ber of categories and few images per category, which is very
different from CARS196 and CUB-200-2011. Our method
achieves 4% absolute improvements over previous state-of-
the-art methods measured by Recall@1. When testing with
multiple crops, HDC + Contrastive'33* further improves the
Recall@1 from 67.7% to 70.1%. Figure 5(a) shows some
retrieval results on Stanford Online Products with features
learned by HDC + Contrastive 334,

Similar to the Stanford Online Products, DeepFashion
In-shop Clothes and VehicleID also suffer the problem of
limited images in each class and large number of classes.
Table 4 and 6 compare the results on the two datasets, where
our method outperforms state-of-the-art methods by a large
margin.

Through extensive empirical comparisons on various
datasets under different settings, we show that our method
is general and can achieve better performance.

5. Conclusions

In this paper, we propose a novel Hard-Aware Deeply
Cascaded Embedding to consider both hard levels of sam-
ples and the complexities of models. Different from training

Table 6. MAP of Vehicle Retrieval Task.

MAP Small Medium Large
VGG + Triplet Loss™0?% 0.444  0.391 0.373
VGG + CCL924 ([17]) 0.492 0.448 0.386
Mixed Diff + CCL1924 ([17])  0.546 0.481 0.455
GoogLeNet/pool5102% 0.418 0.392 0.347
HDC + Contrastive 384 0.655 0.631 0.575

three separated models, our design ensembles a set of mod-
els with increasing complexities in a cascaded manner and
shares most of the computation among models. Samples
with different hard levels are mined accordingly using the
models with adequate complexities. Controlled experimen-
tal results demonstrate the advantages by the hard-aware de-
sign, and extensive comparisons on five benchmarks further
verify the effectiveness of the proposed method in learning
deep metric embedding.

Currently, the method is verified by three cascaded mod-
els with increasing complexities, in the future, we would
further improve the method by cascading more models and
increasing complexities in a smoother way. And we would
also try to combine our method with other loss functions in
the future work.

Acknowledgements

This work is partially supported by the National Key Ba-
sic Research Project of China (973 Program) under Grant
2015CB352303 and the National Nature Science Founda-
tion of China under Grant 61671027.

References

[1] A. Angelova, A. Krizhevsky, V. Vanhoucke, A. Ogale, and
D. Ferguson. Real-time pedestrian detection with deep net-
work cascades. 2015.

821



(2]

(3]

(4]

(5]

(6]

(7]

(8]

[91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

V. Balntas, E. Johns, L. Tang, and K. Mikolajczyk. Pn-net:
Conjoined triple deep network for learning local image de-
scriptors. arXiv:1601.05030, 2016.

S. Bell and K. Bala. Learning visual similarity for product
design with convolutional neural networks. TOG, 2015.

B. Bhattarai, G. Sharma, and F. Jurie. Cp-mtml: Coupled
projection multi-task metric learning for large scale face re-
trieval. arXiv:1604.02975,2016.

M. Bucher, S. Herbin, and F. Jurie. Improving semantic em-
bedding consistency by metric learning for zero-shot classif-
fication. In ECCYV, 2016.

C. C. L. Chen Huang and X. Tang. Local similarity-aware
deep feature embedding. In NIPS, 2016.

D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng. Per-
son re-identification by multi-channel parts-based cnn with
improved triplet loss function. In CVPR, 2016.

Y. Cui, F. Zhou, Y. Lin, and S. Belongie. Fine-grained cate-
gorization and dataset bootstrapping using deep metric learn-
ing with humans in the loop. arXiv:1512.05227, 2015.

X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.
Matchnet: Unifying feature and metric learning for patch-
based matching. In CVPR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CVPR, 2016.

J. D. L. E-F. Jonathan Krause, Michael Stark. 3d object rep-
resentations for fine-grained categorization. In /CCV, 2013.
V. Kumar B G, G. Carneiro, and I. Reid. Learning local im-
age descriptors with deep siamese and triplet convolutional
networks by minimising global loss functions. In CVPR,
2016.

M. T. Law, N. Thome, and M. Cord. Quadruplet-wise image
similarity learning. In /CCV, 2013.

L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler. Learn-
ing by tracking: Siamese cnn for robust target association.
arXiv:1604.07866, 2016.

C.-Y. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu.
Deeply-supervised nets. In AISTATS, 2015.

H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolu-
tional neural network cascade for face detection. In CVPR,
2015.

H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang. Deep rel-
ative distance learning: Tell the difference between similar
vehicles. In CVPR, 2016.

Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. Deepfashion:
Powering robust clothes recognition and retrieval with rich
annotations. In CVPR, 2016.

O. Rippel, M. Paluri, P. Dollar, and L. Bourdev. Metric learn-
ing with adaptive density discrimination. arXiv:1511.05939,
2015.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
1JCV, 2015.

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. In CVPR,
2015.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

822

H. Shi, Y. Yang, X. Zhu, S. Liao, Z. Lei, W. Zheng, and S. Z.
Li. Embedding deep metric for person re-identification: A
study against large variations. In ECCV. Springer, 2016.

E. Simo-Serra and H. Ishikawa. Fashion Style in 128 Floats:
Joint Ranking and Classification using Weak Data for Fea-
ture Extraction. In CVPR, 2016.

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and
F. Moreno-Noguer. Discriminative learning of deep convo-
lutional feature point descriptors. In /ICCV, 2015.

K. Simonyan and A. Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv:1409.1556, 2014.

K. Sohn. Improved deep metric learning with multi-class
n-pair loss objective. In NIPS, 2016.

H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep
metric learning via lifted structured feature embedding.
arXiv:1511.06452,2015.

H. O. Song, X. Yu, J. Stefanie, and S. Savarese. Deep metric
learning via lifted structured feature embedding. In CVPR,
2016.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. JMLR, 2014.

C. Sun, M. Paluri, R. Collobert, R. Nevatia, and L. Bour-
dev. Pronet: Learning to propose object-specific boxes for
cascaded neural networks. arXiv:1511.03776, 2015.

C. Szegedy, W. Liu, Y. Jia, and P. Sermanet. Going deeper
with convolutions. 2015.

O. Tadmor, Y. Wexler, T. Rosenwein, S. Shalev-Shwartz, and
A. Shashua. Learning a metric embedding for face recogni-
tion using the multibatch method. arXiv:1605.07270, 2016.
R. Tao, E. Gavves, and A. W. Smeulders. Siamese instance
search for tracking. arXiv:1605.05863, 2016.

S. Teerapittayanon, B. McDanel, and H. Kung. Branchynet:
Fast inference via early exiting from deep neural networks.
ICPR, 2016.

E. Ustinova and V. Lempitsky. Learning deep embeddings
with histogram loss. In NIPS, 2016.

A. Veit, M. Wilber, and S. Belongie. Residual networks are
exponential ensembles of relatively shallow networks. NIPS,
2016.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The caltech-ucsd birds-200-2011 dataset. 2011.

J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang,
J. Philbin, B. Chen, and Y. Wu. Learning fine-grained im-
age similarity with deep ranking. In CVPR, 2014.

X. Wang and A. Gupta. Unsupervised learning of visual rep-
resentations using videos. In /ICCV, 2015.

Y. Wang, J. Choi, V. I. Morariu, and L. S. Davis. Mining dis-
criminative triplets of patches for fine-grained classification.
arXiv:1605.01130, 2016.

Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative fea-
ture learning approach for deep face recognition. In ECCV.
Springer, 2016.

F. Yang, W. Choi, and Y. Lin. Exploit all the layers: Fast and
accurate cnn object detector with scale dependent pooling
and cascaded rejection classifiers. In CVPR, 2016.



[43] J. You, A. Wu, X. Li, and W.-S. Zheng. Top-push video-
based person re-identification. arXiv:1604.08683, 2016.

[44] X.Zhang, F. Zhou, Y. Lin, and S. Zhang. Embedding label
structures for fine-grained feature representation. In CVPR,
2016.

[45] Z. Zhang and V. Saligrama. Zero-shot learning via joint la-
tent similarity embedding. In CVPR, 2016.

823



