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Abstract

Object-to-camera motion produces a variety of appar-

ent motion patterns that significantly affect performance of

short-term visual trackers. Despite being crucial for de-

signing robust trackers, their influence is poorly explored

in standard benchmarks due to weakly defined, biased and

overlapping attribute annotations. In this paper we pro-

pose to go beyond pre-recorded benchmarks with post-hoc

annotations by presenting an approach that utilizes omni-

directional videos to generate realistic, consistently anno-

tated, short-term tracking scenarios with exactly param-

eterized motion patterns. We have created an evaluation

system, constructed a fully annotated dataset of omnidirec-

tional videos and generators for typical motion patterns. We

provide an in-depth analysis of major tracking paradigms

which is complementary to the standard benchmarks and

confirms the expressiveness of our evaluation approach.

1. Introduction

Single-target visual object tracking has made signif-

icant progress in the last decade. To a large extent

this can be attributed to the adoption of benchmarks,

through which common evaluation protocols, datasets

and baseline algorithms have been established. Starting

with PETS initiative [28], several benchmarks on gen-

eral single-target short-term tracking have been devel-

oped since, most notably OTB50 [25], VOT2013 [15],

ALOV300+ [21], VOT2014 [16, 14], VOT2015 [13]

OTB100 [26], TC128 [17] and VOT2016 [12].

The recent benchmarks [12, 18] report that, apart from

the obvious situations like full occlusions, the trackers’ per-

formance is largely affected by the apparent motion, i.e.,

object motion with respect to the camera. The complex-

ity of apparent motion patterns varies in realistic applica-

tions. An automated video-conferencing system largely ob-

serves translational motions, a drone circling over a tar-

Figure 1: By re-parameterizing camera trajectory, a single

360° video produces various 2D viewpoint sequences with

unique apparent motion patterns.

get induces a large off-center rotational pattern, while wa-

ter movement induces periodic scale changes in underwater

robotic vessels. In some trackers, the translational motions

are addressed by motion models. But compositions of scale

changes, rotations and off-center translations are often as-

sumed to be addressed by the visual models and localiza-

tion techniques. This aspect is left largely unexplored in

standard benchmarks, which are dominated by a handful of

motion patterns and cannot fully expose the limitations of

existing trackers. Advances in short-term tracking there-

fore call for accurate parametrization of apparent motion

patterns in test sequences.

Dataset variation, systematic organization and low re-

dundancy are crucial for practical evaluation, as argued

by the recent work on test-data validation in computer

vision [29]. Established benchmarks in visual tracking

approach this requirement by increasing the number of

sequences [21], applying advanced dataset construction

methodologies [12] and by annotating entire sequences or
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even individual frames with visual attributes [26, 14]. While

such bottom-up approach is suitable for determining overall

ranking of algorithms it is insufficient to study the perfor-

mance of modern trackers along different motion patterns.

Benchmarks contain annotated frames (or entire sequences)

with only few attributes that correspond to motion patterns,

which are only binary, non-parameterized and subject to hu-

man annotator bias. Additionally, accurate attribute-wise

analysis is difficult due to the attribute cross-talk, meaning

that multiple attributes occur at the same interval in a se-

quence (e.g., object rotation and rapid translation), which

prohibits establishing a clear causal relation between a sin-

gle motion pattern and tracker design performance. In prin-

ciple, computer graphics generated sequences [9, 18] offer

full camera control, however the level of realism in object

motion and appearance in such sequences still presents a

limitation for performance evaluation of general tracking

methods.

Our work addresses the limitations of the traditional

benchmarks by proposing a framework for top-down con-

struction of test sequences through parametrization of ap-

parent motion patterns. A virtual camera model that utilizes

omnidirectional videos is introduced to generate photo-

realistic, consistently annotated short-term tracking scenar-

ios (Figure 1). The exact specification of parameterized

motion patterns guarantees a clear causal relation between

the generated apparent motion and the tracking performance

change. This enables fine-grained performance analysis and

can be used complementary to the existing benchmarks to

offer an in-depth analysis of tracking approaches.

Contributions. Our contributions are three-fold. (1)

We propose a new performance evaluation paradigm based

on generation of realistic sequences with high degree of

motion pattern parametrization from annotated omnidirec-

tional videos. (2) We have constructed a new apparent

motion benchmark for short-term single-target trackers. A

new dataset with per-frame target annotation in omnidirec-

tional videos adding up to 17537 frames and generators of

twelve motion patterns are introduced. (3) We have eval-

uated 17 state-of-the-art trackers from recent benchmarks

categorized in major tracking paradigms [26, 12] and pro-

vide insights not available in standard benchmarks. The

new benchmark, the results and the corresponding software

will be made publicly available and are expected to signifi-

cantly affect future developments in single-target tracking.

Structure. The paper is organized as follows, in Sec-

tion 2 we review related work, in Section 3 we describe

our sequence parameterization framework, in Section 4 we

present the proposed benchmark, in Section 5 we present

experimental results, and in Section 6 we discuss our find-

ings and make concluding remarks.

2. Related work

Modern short-term tracking benchmarks [26, 15, 14,

13, 12, 21, 18] acknowledge the importance of motion re-

lated attributes and support evaluation with respect to these.

However, the evaluation capability significantly depends on

the attribute presence and distribution, which is often re-

lated to the sequence acquisition. In application-oriented

benchmarks like [18] the attribute distribution is necessar-

ily skewed by the application domain. Some general bench-

marks [26, 21] thus include a large number of sequences

from various domains. But since the sequences are post-

hoc annotated, the dataset diversity is hard to achieve. A

recent benchmark [12] addressed this by considering the at-

tributes already at the sequence collection stage and applied

an elaborate methodology for automatic dataset construc-

tion.

The strength of per-attribute evaluation depends on the

annotation approach. In most benchmarks [26, 21, 18] all

frames are annotated by an attribute even if it occupies

only a part of the sequence. Kristan et al. [14] argued that

this biases per-attribute performance towards average per-

formance and proposed a per-frame annotation to reduce

the bias. However, a single frame might still contain several

attributes, resulting in the attribute cross-talk bias.

The use of computer graphics in training and evaluation

has recently been popularized in computer vision. Mueller

et al. [18] propose online virtual worlds creation for drone

tracking evaluation, but using only a single type of the ob-

ject, without motion parametrization, produces a low level

of realism. Vig et al. [9] address the virtual worlds realism

levels, ambient parametrization learning and performance

evaluation, however, only for vehicle detection.

Our work is positioned between the standard bench-

marking approaches and the synthetic sequence generation.

By using real imagery we retain photo-realism of standard

benchmarks. Our approach simultaneously enables parame-

terization of apparent motion thus opening new possibilities

for in-depth evaluation that is complementary to existing

benchmarks.

3. Sequence parametrization

Two key concepts are introduced by our apparent-motion

evaluation methodology: a source sequence and a viewpoint

sequence. A source sequence is an omnidirectional video

that simultaneously captures 360 degree field of view. The

video is stored as a projection onto a spectator-centered

sphere, i.e., S = {St}t=1∶N , where St is a projection at

frame t. Such representation allows to generate arbitrary

views of a 3D scene from the point of observation.

A viewpoint sequence is a sequence of images obtained

from a spherical representation by projection into a pinhole

camera, i.e., I = {It}t=1∶N . The camera model has ad-
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justable rotation and focal length parameters, thereby defin-

ing the state of the camera at time t as

Ct = [αt, βt, γt, ft], (1)

where the first three parameters are the Euler angles and

ft denotes the focal length. Each frame in a viewpoint

sequence is therefore the result of the corresponding im-

age in the source sequence and the camera parameters, i.e.

It = pcam(St;Ct).

The ground truth object state in each frame is speci-

fied in a viewpoint-agnostic spherical coordinate system,

i.e., A = {At}t=1∶N . Following the VOT Challenge proto-

col [14] the state is defined as a rectangle using four-points

At = {θ
i
t, ρ

i
t}i=1∶4. Given a pinhole camera viewpoint pa-

rameters Ct, the ground truth At is projected into the image

plane by projective geometry, i.e., Gt = pgt(At;Ct).

The camera parameters Ct are continually adjusted dur-

ing the creation of the viewpoint sequence to keep the pro-

jected object within the field of view, thus satisfying the

short-term tracking constraint. The camera viewpoint is ad-

justed via a camera controller pcon(⋅, ⋅) that applies a pre-

scribed motion pattern E and maps the object ground truth

state into camera parameters while satisfying the short-term

tracking constraint, i.e.,

pcon(At, E, t) ↦ Ct. (2)

Depending on the pattern type specification, the controller

continually adjusts camera-to-object position and generates

various apparent object motions.

3.1. Evaluation framework

The evaluation framework implements the VOT super-

vised evaluation mode [6] and the VOT [14, 12] perfor-

mance evaluation protocol, which allows full use of long

sequences. In this evaluation mode, a tracker is initialized

and re-set upon drifting off the target. Stochastic trackers

are run multiple times and the results are averaged.

The following functionality is required by the super-

vised experiment mode: (1) reproducible sequence gener-

ation and (2) bi-directional tracker-evaluator communica-

tion. The viewpoint sequence and the 2D ground truth are

therefore generated on the fly during the evaluation and are

reproducible for each time-step. The communication be-

tween the evaluator and the tracker is implemented through

the state-of-the-art TraX [22] communication protocol. Our

evaluation framework is summarized in Figure 2.

4. Apparent-motion patterns benchmark

Our motion parametrization framework is demonstrated

on a novel single-target visual object tracking benchmark

for isolated apparent-motion patterns (AMP). The bench-

mark contains fifteen very long omnidirectional sequences

Figure 2: The evaluation framework. The sequence gen-

erator constructs a viewpoint sequence with corresponding

ground truths according to the motion pattern. Tracker re-

ports predicted region in each frame to the evaluator for au-

tomatic failure detection.

(adding up to 17537 frames) and specifies twelve motion

types.

4.1. Dataset acquisition

The new dataset contains fifteen omnidirectional videos

with an average video length of 1169 frames, amounting

to 17537 frames. The videos were mostly selected from a

large collection of 360 degree videos available on YouTube.

To maximize the target diversity, we recorded additional se-

quences using Ricoh Theta 360 degree camera. Videos were

converted to a cube-map projection and encoded with MP4

H.264 codec. Each frame of the video was manually anno-

tated by a rectangular region encoded in spherical coordi-

nates using an annotation tool specifically designed for this

use case. Some of the viewpoint frame examples of individ-

ual source sequences are shown in Figure 3.

4.2. Motion patterns specification

We consider six motion pattern classes that reflect typical

dynamic relations between an object (target) and a camera:

Stabilized setup, denoted as Eb, keeps the object position

at image center and adjusts the camera distance to keep the

object diagonal constant at 70 pixels. A variant with a di-

agonal constant at 35 pixels is considered as well to test

tracking objects from far away, E
s
b.

Centered rotation setup, denoted as Er, fixes the object

center and the scale as Eb and then rotates the camera

around the optical axis. Two variants, with low and high

rotation speeds, E
s
r and E

f
r, respectively, are considered.
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Figure 3: A preview of 360 degree sequences in the dataset

from the view that centers the target. The number in brack-

ets is the number of frames, the letter denotes if the camera

was Stationary or Moving).

Figure 4: The twelve apparent-motion patterns in the AMP

benchmark.

Displaced rotation setup, denoted as Ed, displaces the ob-

ject center and then rotates the camera around its optical

axis.

Scale change setup, denoted as Es, fixes the center and then

periodically changes the scale by a cosine function with am-

plitude oscillation around the nominal scale of Eb. Two

variants, i.e., with a low, E
s
s, and a high frequency, E

f
s, but

equally moderate amplitude are considered. Another vari-

ant with a moderate frequency but large amplitude, E
w
s , is

considered as well.

Planar motion setup, denoted as Em, displaces the cam-

era from the object center and performs circular motion in

the image plane. A variant with low – E
s
m and high – E

f
m

frequency are considered.

Translation noise setup, denoted as En, fixes the center

and the scale as in Eb then randomly displaces the center by

drawing a displacement vector from a normal distribution.

Two variants, one with small, E
s
n, and one with large, E

l
n,

noise are considered.

The variations of six motion classes result in 12 different

motion patterns, which are illustrated in Figure 4. While

these patterns may seem synthetic, they actually occur in

many active-camera robotics scenarios, e.g., a drone cir-

cling over an observed target (rotation) or an autonomous

boat being swayed by the sea (scale change). Note that each

omnidirectional video in our dataset creates a sequence with

specific motion parameters. Thus the effect of each motion

pattern is evaluated on all frames without being influenced

by the presence of other patterns, establishing clear casual

relationships between the patterns and the tracker’s perfor-

mances.

4.3. Benchmark comparison

A comparison of our proposed AMP with most popular

standard benchmarks is summarized in Table 1. The values

under MAC indicate the percentage of frames in the dataset

with at least a single motion attribute. The motion at-

tributes are most frequent in the AMP (100% coverage) and

UAV123 [18] (96% coverage). To reflect the dataset size

in motion evaluation, we compute the number of effective

frames per attribute (FPA). This measure counts the number

of frames that contain a particular motion attribute, where

each frame contributes with weight inversely proportional

to the number of motion attributes it contains. The FPA is

highest for an application-specific UAV123 [18] (27107).

Among the general tracking benchmarks, this value is high-

est for the proposed AMP (17537), which exceeds the sec-

ond largest (OTB100 [26]) by over 30%.

The FPA alone does not fully reflect the evaluation

strength since it does not account for the attribute cross-talk.

A lower bound on the cross-talk is reflected by the INTER

measure that shows a percentage of motion-annotated

frames with at least two motion attributes. The measure

shows that well over half of the frames in UAV123 [18]

(78%) and OTB100 [26] (63%) suffer from the attribute

cross-talk. The cross-talk is lowest for the proposed AMP

(0%), ALOV [21] (0%) and VOT2016 [12] (32%).

Most existing benchmarks are annotated by four motion

pattern types. The proposed AMP benchmark contains ap-

proximately three times more motion pattern types than ex-

isting benchmarks. The existing benchmarks lack motion

pattern quantification (e.g., the extent of speed in attribute

fast motion), which results in inconsistent definitions across

benchmarks. In contrast, the motion patterns are objectively

defined through their parametrization in the proposed AMP

benchmark.

4.4. Performance measures

The tracking performance is measured by the VOT [13]

measures: tracker accuracy (A), robustness (R) as well as

the expected average overlap (EAO). The accuracy mea-
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▽ ASLA

× ASMS

◇ CMT

▷ CT

◁ DSST

+ FoT

⭐ FragTrack

× IVT

○ KCF

□ L1APG

○ LGT

◆ MEEM

▽ MIL

◇ SRDCF

✵ SiamFC

△ Staple

◆ Struck

Figure 5: A-R plots for each experiment in the benchmark. The vertical axis denotes accuracy and the horizontal axis denotes

robustness. The sensitivity visualization parameter was set to 100 frames in all plots.

Table 1: Comparison of AMP with popular recent tracking

benchmarks: ALOV300+ [21], OTB100 [26], UAV123 [18]

and VOT2016 [12]. Best, second best and third best values

are shown in red, blue and green, respectively.

Dataset [21] [26] [18] [12] AMP

MAC (%) 19 88 96 61 100

FPA 4275 12929 27107 4366 17537

INTER (%) 0 63 78 32 0

Motion classes 3 3 3 3 6

Motion patterns 4 4 4 3 12

Parameterized no no no no yes

Per-frame no no no yes yes

sures the overlap between the output of the tracker and

the ground truth bounding box during periods of successful

tracking, while the robustness measures the number of times

a tracker failed and required re-initialization [6]. The ex-

pected average overlap score is an estimator of the average

overlap on a typical short-term sequence a tracker would

obtain without reset [13]. All scores are calculated on per-

sequence basis and averaged with weights proportional to

the sequence length.

The VOT methodology allows us to use longer se-

quences since the tracker is restarted after the object is lost

which lowers the variance of the results due to after-failure

drift [14]. Longer sequences also reduce the chance of sat-

uration (a chance that many trackers track an object for the

entire sequence with only minor differences in accuracy).

5. Evaluation and results

To demonstrate the verbosity of the AMP benchmarks

we have evaluated 17 trackers. Each tracker was evaluated

on a total of 210444 frames, which makes this the largest

fine-grained motion-related tracker evaluation to date.

5.1. Trackers tested

A set of 17 trackers was constructed by considering base-

line and top-performing representatives on recent bench-

marks [26, 12] from the following 6 broad classes of track-

ers. (1) Baselines include standard discriminative and gen-

erative trackers MIL [2], CT [31], IVT [20], and Frag-

Trac [1], a state-of-the-art mean-shift tracker ASMS [24],

and Struck SVM tracker [10]. (2) Correlation filters include

the standard KCF [11] and three top-performing correla-

tion filters on VOT2016 [12] – DSST [7], Staple [4] and

SRDCF [8]. (3) Sparse trackers include top-performing

sparse trackers L1APG [3] and ASLA [27]. (4) Part-

based trackers include the recent state-of-the-art CMT [19],

LGT [32], FoT [23]. In addition the set comprises a state-

of-the-art (5) Hybrid tracker MEEM [30] and (6) ConvNet

tracker SiamCF [5].

5.2. Experimental results

The results are summarized by A-R plots (Figure 5), gen-

eral performance graphs (Figure 6, Figure 7) and in Table 2.

In the following we discuss the performance with respect to

various motion pattern classes and instances.

Figure 6: EAO values for all motion patterns over tested

trackers.

Scale adaptation: Slow scale changes (E
s
s , Figure 6) are
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addressed best by correlation filters that apply scale adapta-

tion (i.e., KCF, DSST, Staple, SRDCF). Their performance

is not significantly affected as long as the change is grad-

ual enough, even for large amplitudes (E
w
s ). However, fast

changes (E
f
s ) significantly reduce performance, implying

that the number of scales explored should be increased in

these trackers. The ConvNet tracker SiamCN does not suf-

fer from this discrepancy, which is likely due to a large

set of scales it explores. The difference in performance

drop for fast (E
f
s ) and large (E

w
s ) scale change is low for

scale-adaptive mean shift ASMS and part-based trackers

(i.e., CMT, FoT and LGT). In contrast to correlation filters,

these trackers do not greedily explore the scale space but

apply blob size estimation (ASMS) or apply key-point-like

matching approaches (CMT, FoT, LGT). The average per-

formance at moderate scale change is better for correlation

filters than part-based trackers. Struck and MEEM are least

affected by the scale change among the trackers that do not

adapt their scale. From the AR plots in Figure 5 it is appar-

ent that the performance drops are due to a drop in accuracy,

but not in failures.

Rotation: Rotation (Er) significantly affects the perfor-

mance of all classes of the trackers. Figure 7 and the AR

plots in Figure 5 show that the drop comes from a reduced

accuracy as well as increased number of failures across

most trackers. The drop is least apparent with ASMS, FoT

and LGT which is likely due to their object visual mod-

els. The visual model in ASMS is rotation invariant since

it is based on color histograms, while FoT and LGT ex-

plicitly address rotation by geometric matching. Rotation

most significantly affects performance of correlation filters

and ConvNets (Figure 6). These trackers apply templates

for tracking and since rotation results in significant discrep-

ancies between the template and object, the trackers fail.

In particular, from the AR plots in Figures 5 we see that

slow rotation (E
s
r ) only results in decreased accuracy, but

fast rotation (E
f
r ) results in increased failures as well (e.g.,

SRDCF). On the other hand, the performance of correla-

tion filters, ConvNet tracker (SiamFC) and hybrid tracker

(MEEM) surpasses the part-based models when no rotation

is observed (Eb in Figures 5 and Figure 6).

Motion: From the AR plots in Figure 5 we see that slow

planar motion (E
s
m) only slightly reduces performance in

general, but this reduction is significant for most trackers

in case of fast motion (E
f
m). LGT is the only tracker re-

silient to fast motion. A likely reason is the use of nearly-

constant-velocity motion model in the LGT. However, the

performance significantly drops for this tracker when exten-

sive random motion is observed (E
f
n in Figure 6). Trackers

like SiamFC and MEEM are least affected by all patterns of

fast motions. The reason is likely in their very large search

region for target localization. The AR plots in Figure 5 in-

dicate that SiamCF fails much more often at fast motions

(E
f
m) than MEEM implying that MEEM is more robust at

local search.

Figure 7: Motion patterns difficulty levels according to ro-

bustness, accuracy, and EAO. Motion patterns are grouped

by motion classes: stabilized (Eb), centered rotation (Er),

displaced rotation (Ed), scale change (Es), planar motion

(Em) and noise (En).

Object size: All trackers perform very well in the baseline

setup (Eb) in which the object is kept centered and of con-

stant size (Figure 7 and Figure 6). In fact, top performance

is achieved by the correlation filter trackers. The reason is

that the visual model assumptions that these trackers make

exactly fit this scenario. When considering smaller ob-

jects (E
s
b ) the following trackers appear unaffected: ASMS,

KCF, SRDCF, L1APG, CMT, FoT, LGT and MEEM. This

implies that the level of detail of target representation in

these trackers is unaffected by the reduced object size. Note

that these trackers come from different classes. The AR

plots in Figure 5 show that performance drop in tracking

small objects is most significant for baselines like CT, IVT,

MIL and Fragtrac as well as a sparse tracker ASLA and

the Struck tracker. The performance drop comes from in-

creased failures, which means that their representation is

not discriminative enough on this scale which leads to fre-

quent drifts.

General observations: All trackers exhibit a large perfor-

mance variance across the apparent-motion patterns (Fig-

ure 6). The variance appears lowest over most motion pat-

terns for the part-based trackers, although their average per-

formance is moderate. Table 2 shows the average perfor-

mance over the motion patterns without the baseline mo-

tion pattern (Eb). Among the trackers whose average EAO

is within 70% of best EAO are three out for four correla-
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tion filters, a hybrid tracker (MEEM), a ConvNet tracker

(SiamFC), two out of three part-based trackers and two

baselines (ASMS and Struck). The top three trackers in av-

erage performance are Staple (0.470 EOA), MEEM (0.468

EAO) and SiamCF (0.448 EAO). These trackers are also

performing well on the recent benchmarks, however, our

analysis shows that the weak spot of these trackers are tar-

get rotations, as well as fast movements and shaky videos.

Motion class difficulty: Considering the average EAO

in Figure 7, the most difficult classes are rotation (both

patterns—central and displaced) as well as planar motion

and translation noise, but the distribution of difficulty within

individual classes as well as the degradation modes vary.

The AR plots in Figure 5 show that performance drops in ro-

tation are due to inaccurate bounding box estimation, lead-

ing to reduced accuracy but not to complete failure. This

figure also shows that trackers generally well address pla-

nar motion, but tend to fail at fast nonlinear motions due to

large inter-frame displacement.

5.3. Relation to existing benchmarks

A relation of AMP to the existing tracking benchmarks

was established by comparing the ranks of common trackers

on a well known OTB100 [26] and the recent UAV123 [18]

benchmark.

Comparison with OTB100: The OTB100 contains rel-

atively old trackers, therefore the intersection is in the fol-

lowing six trackers: ASLA, CT, FoT, IVT, L1-APG, MIL,

and Struck. Figure 8 shows the ranking differences be-

tween these trackers for the different ranking modes. The

ranking by average performance differs mainly for L1-APG

and FoT trackers. The possible reasons for this are dif-

ferent implementations, algorithm parameters, as well as

different evaluation methodology
1
. Three motion patterns

in OTB100 are compatible with AMP: scale variation, fast

motion and in-plane rotation. The performance over three

scale changing motion patterns on AMP was averaged to

obtain a scale change ranking. While the FoT achieves

top performance on AMP it is positioned relatively low on

OTB100, which is likely due to different implementations

(ours is from the authors) and interaction of other attributes

on OTB100. Both rankings place Struck at the top, while

ranks of other trackers vary. The fast motion ranking on

AMP was obtained by averaging fast motions, i.e., E
f
m and

E
w
n . Both benchmarks rank Struck as top performing and

IVT as worst performing. The in-plane rotation attribute

was compared with combined ranking of center and dis-

placed rotation (Er and Ed). The situation is similar to scale

change, where FoT, which explicitly addresses rotation, is

ranked much lower according to OTB100.

1
The OTB100 methodology does not restart a tracker on failure which

can lead to large differences between trackers that support re-detection and

those that do not.

Figure 8: Tracker ranking comparison of AMP with

OTB100 (left) and UAV123 (right). The trackers are sorted

from left (best) to right. Attribute abbreviations: SV – Scale

Variation, FM – Fast Motion, IPT – In-Plane Rotation, CM

– Camera Motion.

Comparison with UAV123: The AMP and UAV123 in-

tersect in the following seven trackers: ASLA, DSST, IVT,

KCF, MEEM, SRDCF, and Struck. The comparison of av-

erage performance as well as with respect to three types of

motion patterns: scale variation, camera motion and fast

motion is shown in Figure 8. The ranks are mostly con-

sistent with the best two trackers mostly being SRDCF and

MEEM. A discrepancy is observed for the MEEM tracker

at scale change attribute. MEEM does not adapt the scale,

which results in a low rank at AMP. However, it is ranked

high on UAV123, which is likely due to attribute cross-

talk. The discrepancy in KCF is due to implementation –

our KCF adapts the scale. Notice that the UAV123 ranks

on camera motion are equal to scale variation ranks. We

therefore compare both with ranks obtained by averaging

fast in-plane motion (E
f
m) and large translation noise (E

w
n )

performance on AMP. The ranks match very well, which

means that AMP offers a significant level of granularity in

analysis.

6. Discussion and conclusions

We have proposed a novel approach for single-target

tracker evaluation on parameterized motion-related at-

tributes. At the core of our approach is the use of 360 degree

videos to generate annotated realistically-looking tracking

scenarios. We have presented a novel benchmark AMP,

composed of an annotated dataset of fifteen such videos and

the results of 17 state-of-the-art trackers. We have experi-

mentally verified the realism of the generated sequences by

reproducing partial ranks available in standard benchmarks.

The results of our experiments provide a detailed

overview of strengths and limitations of modern short-term

visual trackers. The scale change appears to be well ad-

dressed by many tracking approaches. Even trackers that do

not adapt scale do not fail often. Nevertheless, in practice

scale change is often accompanied by appearance change or
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Table 2: Overview of the EAO scores and their relative differences according to the baseline score. The top value in each cell

represents the absolute EAO score while the bottom one represents the EAO difference in relation to the baseline experiment.

Green text denotes relative increase, orange text relative decrease, and red and bold red text decrease greater than 25% and

50% of the baseline score. The baseline experiment is not used for computing the average tracker score.

Eb E
s
b E

s
r E

f
r Ed E

s
s E

f
s E

w
s E

s
m E

f
m E

s
n E

w
n Average

△ Staple
0.633 0.718

0.085

0.367

-0.266

0.329

-0.304

0.356

-0.277

0.627

-0.006

0.479

-0.154

0.563

-0.070

0.558

-0.075

0.055

-0.578

0.646

0.013

0.315

-0.318

0.456

-0.177

◆ MEEM
0.610 0.609

-0.001

0.375

-0.235

0.310

-0.300

0.367

-0.243

0.434

-0.176

0.380

-0.230

0.408

-0.202

0.535

-0.075

0.358

-0.252

0.664

0.054

0.562

-0.048

0.455

-0.155

✵ SiamFC
0.603 0.525

-0.078

0.346

-0.257

0.305

-0.298

0.334

-0.269

0.546

-0.057

0.433

-0.170

0.482

-0.120

0.487

-0.116

0.296

-0.307

0.538

-0.065

0.477

-0.126

0.433

-0.169

○ KCF
0.644 0.640

-0.004

0.339

-0.305

0.257

-0.387

0.306

-0.338

0.618

-0.026

0.524

-0.120

0.603

-0.041

0.459

-0.185

0.069

-0.575

0.640

-0.005

0.191

-0.453

0.422

-0.222

◇ SRDCF
0.539 0.542

0.002

0.320

-0.219

0.141

-0.398

0.214

-0.326

0.562

0.022

0.420

-0.119

0.548

0.009

0.467

-0.073

0.267

-0.272

0.610

0.071

0.440

-0.099

0.412

-0.128

○ LGT
0.540 0.550

0.010

0.467

-0.074

0.429

-0.111

0.432

-0.109

0.486

-0.055

0.455

-0.085

0.435

-0.105

0.448

-0.092

0.271

-0.270

0.456

-0.085

0.030

-0.510

0.405

-0.135

× ASMS
0.498 0.491

-0.007

0.375

-0.123

0.390

-0.107

0.415

-0.082

0.458

-0.040

0.409

-0.089

0.410

-0.088

0.490

-0.008

0.206

-0.292

0.514

0.016

0.178

-0.320

0.394

-0.104

+ FoT
0.442 0.430

-0.011

0.422

-0.020

0.297

-0.145

0.417

-0.024

0.437

-0.005

0.462

0.021

0.437

-0.004

0.381

-0.060

0.228

-0.213

0.395

-0.046

0.342

-0.100

0.386

-0.055

◆ Struck
0.562 0.390

-0.172

0.308

-0.254

0.160

-0.403

0.311

-0.251

0.433

-0.129

0.418

-0.144

0.414

-0.148

0.425

-0.137

0.167

-0.395

0.524

-0.038

0.456

-0.106

0.364

-0.198

◁ DSST
0.662 0.595

-0.066

0.361

-0.301

0.278

-0.384

0.170

-0.492

0.465

-0.197

0.423

-0.238

0.468

-0.193

0.303

-0.359

0.038

-0.624

0.516

-0.146

0.093

-0.568

0.337

-0.324

▽ MIL
0.513 0.402

-0.110

0.362

-0.151

0.249

-0.264

0.341

-0.172

0.452

-0.060

0.366

-0.147

0.378

-0.135

0.423

-0.089

0.006

-0.506

0.522

0.009

0.061

-0.452

0.324

-0.189

▽ ASLA
0.533 0.461

-0.072

0.324

-0.209

0.237

-0.296

0.271

-0.262

0.433

-0.100

0.385

-0.148

0.416

-0.117

0.336

-0.196

0.009

-0.524

0.514

-0.019

0.069

-0.464

0.314

-0.219

⭐ FragTrack
0.590 0.514

-0.076

0.274

-0.316

0.259

-0.331

0.052

-0.538

0.426

-0.164

0.491

-0.099

0.434

-0.157

0.123

-0.467

0.003

-0.587

0.539

-0.052

0.136

-0.454

0.296

-0.295

▷ CT
0.422 0.245

-0.177

0.291

-0.131

0.166

-0.256

0.269

-0.153

0.331

-0.091

0.308

-0.114

0.326

-0.096

0.366

-0.056

0.008

-0.413

0.437

0.015

0.086

-0.335

0.258

-0.164

× IVT
0.458 0.427

-0.032

0.269

-0.190

0.083

-0.376

0.151

-0.308

0.442

-0.016

0.327

-0.131

0.419

-0.039

0.273

-0.186

0.004

-0.455

0.353

-0.106

0.030

-0.428

0.252

-0.206

□ L1APG
0.495 0.491

-0.004

0.230

-0.265

0.192

-0.303

0.135

-0.360

0.332

-0.163

0.264

-0.231

0.272

-0.223

0.289

-0.206

0.005

-0.490

0.421

-0.074

0.058

-0.437

0.244

-0.251

◇ CMT
0.316 0.297

-0.019

0.178

-0.139

0.125

-0.191

0.148

-0.168

0.304

-0.012

0.280

-0.036

0.277

-0.039

0.194

-0.122

0.053

-0.264

0.327

0.011

0.192

-0.124

0.216

-0.100

Average
0.533 0.490

-0.043

0.330

-0.203

0.247

-0.286

0.276

-0.257

0.458

-0.075

0.401

-0.131

0.429

-0.104

0.386

-0.147

0.120

-0.413

0.507

-0.026

0.219

-0.314

fast motion, which increase chances of failures. We believe

that this is the reason why scale change is perceived as a

challenging attribute in related benchmarks. The state-of-

the-art trackers perform reasonably well in tracking small

targets. Rotation and abrupt motion are two of the most

challenging motion classes. Due to their scarcity on existing

benchmarks they remain poorly addressed by most modern

trackers. Our results have shown that non-random motions

are well addressed by motion models, which have also be-

come quite rare in modern trackers. We believe that future

research in tracker development should focus on these top-

ics to make further improvements.

We have demonstrated the usefulness of the proposed ap-

proach for evaluating trackers in a controlled, yet realistic

environment. The approach is complementary to existing

benchmarks allowing better insights into tracking behavior

on various apparent-motion patterns. Moreover, capturing

omnidirectional videos is nowadays possible with commod-

ity equipment. Therefore our dataset adaptation to a specific

tracking scenario may in fact be easier than in traditional

approaches since it does not require careful planning before

the acquisition to cover all possible motion patterns. Our

framework allows a straightforward quantified simulation

of arbitrary attribute crosstalk across a sequence. Our future

work will therefore focus on evaluation of complex motion

patterns and their effects on tracking performance. We also

plan to explore adaptation of our evaluation methodology to

active tracking.
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Leonardis was supported in part by MoD/Dstl and EPSRC MURI

project.

3330



References

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust Fragments-

based Tracking using the Integral Histogram. In Comp.

Vis. and Patt. Recognition, volume 1, pages 798–805. IEEE

Computer Society, jun 2006. 5

[2] B. Babenko, M.-H. Yang, and S. Belongie. Robust object

tracking with online multiple instance learning. IEEE Trans.

Pattern Anal. Mach. Intell., 33(8):1619–1632, Aug. 2011. 5

[3] C. Bao, Y. Wu, H. Ling, and H. Ji. Real time robust l1 tracker

using accelerated proximal gradient approach. In Comp. Vis.

Patt. Recognition, pages 1830–1837, June 2012. 5

[4] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and

P. H. S. Torr. Staple: Complementary learners for real-time

tracking. In Comp. Vis. Patt. Recognition, pages 1401–1409,

June 2016. 5

[5] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. Torr. Fully-convolutional siamese networks for object

tracking. arXiv preprint arXiv:1606.09549, 2016. 5
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