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Abstract

Fully convolutional neural networks (FCNs) have shown

outstanding performance in many dense labeling problems.

One key pillar of these successes is mining relevant infor-

mation from features in convolutional layers. However, how

to better aggregate multi-level convolutional feature maps

for salient object detection is underexplored. In this work,

we present Amulet, a generic aggregating multi-level con-

volutional feature framework for salient object detection.

Our framework first integrates multi-level feature maps in-

to multiple resolutions, which simultaneously incorporate

coarse semantics and fine details. Then it adaptively learns

to combine these feature maps at each resolution and pre-

dict saliency maps with the combined features. Finally, the

predicted results are efficiently fused to generate the final

saliency map. In addition, to achieve accurate boundary

inference and semantic enhancement, edge-aware feature

maps in low-level layers and the predicted results of low

resolution features are recursively embedded into the learn-

ing framework. By aggregating multi-level convolutional

features in this efficient and flexible manner, the proposed

saliency model provides accurate salient object labeling.

Comprehensive experiments demonstrate that our method

performs favorably against state-of-the-art approaches in

terms of near all compared evaluation metrics.

1. Introduction

Salient object detection, which aims to identify the most

conspicuous objects or regions in an image, has received

considerable amount of attention in recent years. As a pre-

processing step in computer vision, saliency detection has

shown a great success in ranges of visual applications, e.g.

object retargeting [7, 38, 40], scene classification [35, 33],

visual tracking [4, 29], image retrieval [14, 11] and seman-

tic segmentation [8]. Despite decades of valuable research,

salient object detection still remains an unsolved research
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problem because there are large variety of aspects that can

contribute to define visual saliency, and it’s hard to combine

all hand-tuned factors or cues in an appropriate way.

Inspired by human visual attention mechanisms, many

early existing methods [17, 12, 10, 19, 46, 47] in salient

object detection leverage low-level visual features (e.g. col-

or, texture and contrast) with heuristic priors to model and

approximate human saliency. These generic techniques are

known to be useful for keeping fine image structures and

reducing computation. Representative methods have set the

benchmark on several saliency detection datasets. However,

such low-level features and priors can hardly capture high-

level semantic knowledge about the object and its surround-

ings. Thus, these low-level feature based methods are very

far away from distinguishing salient objects from the clutter

background and can not generate satisfied predictions.

In recent years, fully convolutional networks (FCNs),

adaptively extracting high-level semantic information from

raw images, have shown impressive results in many dense

labeling tasks, such as image segmentation [28, 31, 6],

generic object extraction [25, 13], pose estimation [48] and

contour detection [45]. Motivated by these achievements,

several attempts to utilize high-level features of FCNs, have

been performed and delivered superior performance in pre-

dicting saliency maps [20, 21, 27, 41, 50]. Nevertheless,

these state-of-the-art models mainly focus on the non-linear

combination of high-level features extracted from the last

convolutional layers. Due to the lack of low-level visual in-

formation such as object edge, the predicted results of these

methods tend to have poorly localized object boundaries.

From above discussions, we note that 1) how to simul-

taneously utilize multi-level potential saliency cues, 2) how

to conveniently find the optimal multi-level feature aggre-

gation strategy, and 3) how to efficiently preserve salient

objects’ boundaries should become the most intrinsic prob-

lems in salient object detection. To resolve these problems,

in this paper, we propose a generic aggregating multi-level

convolutional feature framework, namely Amulet, which

effectively utilizes multi-level features of FCNs for salient

object detection.
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Our main contributions are summarized as follows:

• We propose a multi-level feature aggregation network,

dubbed AmuletNet, which utilizes convolutional fea-

tures from multiple levels as saliency cues for salient

object detection. AmuletNet integrates multi-level fea-

tures into multiple resolutions, learns to combine these

features at each resolution and predicts saliency maps

in a recursive manner.

• We propose a deeply recursive supervision learning

framework. It effectively incorporates edge-aware fea-

ture maps in low-level layers and the predicted results

from low resolution features, to achieve accurate ob-

ject boundary inference and semantic enhancement.

The resulting framework can be trained by end-to-end

gradient learning, which uses single-resolution ground

truth without additional annotations.

• The proposed model (only trained on the MSRA10K

dataset [5]) achieves new state-of-the-art performance

on other large-scale salient object detection datasets,

including the recent DUTS [42], DUT-OMRON [47],

ECSSD [46], HKU-IS [50], PASCAL-S [26], SED [2]

and SOD [46]. In addition, the model is fast on modern

GPUs, achieving a near real-time speed of 16 fps.

2. Related Work

In this section, we briefly review existing representative

models for salient object detection. We also discuss the

multi-level feature aggregation methods based on FCNs.

2.1. Salient object detection

Over the past decades, lots of salient object detection

methods have been developed. The majority of salient ob-

ject detection methods are based on low-level hand-crafted

features, e.g., image contrast [10, 19], color [26, 2], tex-

ture [46, 47]. A complete survey of these methods is be-

yond the scope of this paper and we refer the readers to a

recent survey paper [3] for details.

Recently, deep learning based approaches, in particular

the convolutional neural networks (CNNs), have delivered

remarkable performance in many recognition tasks. A lot

of research efforts have been made to develop various deep

architectures for useful features that characterize salient ob-

jects or regions. For instance, Wang et al. [41] first propose

two deep neural networks to integrate local pixel estimation

and global proposal search for salient object detection. Li

et al. [21] predict the saliency degree of each superpixel by

taking multi-scale features in multiple generic CNNs. Zhao

et al. [50] also predict the saliency degree of each superpixel

by taking global and local context into account, and detect

salient objects in a multi-context deep CNN. Though these

methods achieve better results than traditional counterparts,

none of them handle low-level details perfectly, and all of

their models include several fully connected layers, which

are computationally expensive and drop spatial information

of input images. To remedy above problems, Lee et al. [20]

propose to encode low-level distance map and high-level

sematic features of deep CNNs for salient object detection.

Liu et al. [27] propose a deep hierarchical saliency network

to learn enough global structures and progressively refine

the details of saliency maps step by step via integrating lo-

cal context information. In addition, Li et al. [22] design a

pixel-level fully convolutional stream and a segment-level

spatial pooling stream to produce pixel-level saliency pre-

dictions. Wang et al. [44] develop deep recurrent FCNs

to incorporate the coarse predictions as saliency priors and

stage-wisely refine the generated predictions. In contrary

to the above methods only used specific-level features, we

observe that features from all levels are potential saliency

cues and helpful for salient object detection. In light of this

observation, we develop a new multi-level feature aggrega-

tion approach based on deep FCNs, and show that beyond

refining the predicted saliency map, the approach can also

jointly learn to preserve object boundaries.

2.2. Feature aggregation in FCNs

Several works on visualizing deep CNNs [36, 49, 30, 43]

indicate that convolutional features at different levels de-

scribe the object and its surroundings from different views.

High-level semantic features helps the category recognition

of image regions, while low-level visual features help to

generate sharp, detailed boundaries for high-resolution pre-

diction. However, how to effectively and efficiently exploit

multi-level convolutional features remains an open ques-

tion. To this end, several valuble attempts have been per-

formed. The seminal FCN method [28] introduces skip-

connections and adds high-level prediction layers to inter-

mediate layers to generate pixel-wise prediction results at

multiple resolutions. The Hypercolumn method [13] also

integrates convolutional features from multiple middle lay-

ers and learns high-level dense classification layers. The

SegNet [1] and DeconvNet [31] employ a convolutional

encoder-decoder network with pooling index guided decon-

volution modules to exploit the features from multi-level

convolutional layers. Similarly, the U-Net [34] apply multi-

ple skip-connections to construct a contracting path to cap-

ture context and a symmetric expanding path that enables

precise localization. The HED model [45] employs deeply

supervised structures, and automatically learns rich hierar-

chical representations that are fused to resolve the challeng-

ing ambiguity in edge and object boundary detection.

Our proposed approach clearly differs from the above-

mentioned methods in three aspects. Firstly, our method

aggregates multi-level features at multiple resolutions. We

use a pre-trained FCN and integrate all level features into

multiple resolutions at once. Our method can simultaneous-
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Figure 1. The overall architecture of our proposed Amulet model. Each colorful box is considered as a feature block. The arrows between

blocks indicate the information stream. Given an input image (256×256×3), multi-level features are first generated by the feature extraction

network (VGG-16 [37]). Then feature integration is performed by resolution-based feature combination modules (RFCs). After that, deep

recursive supervision (DRS) is employed to improve the interaction of multiple predictions. Finally, boundary preserved refinements

(BPRs) are used to refine the predicted saliency maps. The final saliency map is the fused output of multiple predicted saliency maps.

ly incorporate coarse semantics and fine details. Although

all above methods seem to be useful for aggregating multi-

level features, their aggregation is carried out in a stage-

wise manner rather than jointly integrating. Secondly, our

method employs a bidirectional information stream, which

facilitates complement effect in prediction. In contrary, all

above-mentioned methods simply aggregate multiple level

features from one direction, i.e., low to high or high to low.

Thirdly, our method is able to refine the coarse high-level

semantic predictions by exploiting low-level visual features.

In particular, our method employs edge-aware feature maps

of low-level layers into the prediction modules which help

to preserve objects’ boundaries.

3. Aggregating Convolutional Feature Model

In this section, we begin by describing the components of

our proposed AmuletNet architecture in Section 3.1. Then

we give the detailed formulas of our bidirectional informa-

tion aggregating learning method in Section 3.2. In the end,

we construct saliency inference based on the multi-level

predictions of the proposed Amulet.

3.1. AmuletNet architecture

Our proposed AmuletNet consists of four components:

multi-level feature extraction, resolution-based feature inte-

gration, recursive saliency map prediction and boundary

preserved refinement. The four main components are joint-

ly trained to optimize the output saliency detection quality.

The overall architecture is illustrated in Fig. 1.

Multi-level feature extraction. The first component of

our architecture is a deep feature extraction network, which

takes the input image and produces feature maps for con-

volutional feature integration. We build our architecture on

the VGG-16 model from [37], which is well known for its

elegance and simplicity, and at the same time yields nearly

state-of-the-art results in image classification and good gen-

eralization properties. In the VGG-16 model there are five

max-pooling stages with kernel size 2 and stride 2. Given

an input image with size W × H , the output feature maps

have size ⌊W
25
, H
25
⌋, thus a FCN model built upon the VGG-

16 would output feature maps reduced by a factor of 32.

To balance the semantic context and fine image details, we

remove the last pooling stage and enlarge the size of the in-

put image. This way, the output feature maps of our feature

extraction network are rescaled by a factor of 16 with re-

spect to the input image. We take feature maps at five levels

from the VGG-16 model: conv1-2 (which contains 64 fea-

ture maps), conv2-2 (128 feature maps), conv3-3 (256 fea-

ture maps), conv4-3 (512 feature maps) and conv5-3 (512

feature maps). Note that our feature extraction network is

extremely flexible in that it can be replaced and modified

in various ways, such as using different layers or networks,

e.g. VGG-19 [37] and ResNet [16].

Resolution-based feature integration. Considering the in-

consistent resolution of multi-level convolutional features,

we propose a novel resolution-based feature combination

structure, named RFC. The RFC structure consists of both

shrink and extend branches. Assume I is the input image;
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Figure 2. Details of the RFC module. The RFC first takes feature

maps with different resolutions and channels as input. Then shrink

and extend operators resize the feature maps to the same spatial

resolution and equal channels. Finally, the concatenation and 1×1

convolution are used to generate the integrated features.

τ = ⌊W
2l
, H
2l
⌋ is the target resolution of integrated feature

maps, and identified by feature level l(= 0, 1, ..., L); Fn(I)
denotes a 3D tensor, i.e., the feature maps generated by the

feature extraction network with n× τ resolution. Thus, the

proposed RFC generates the integrated feature maps by

Fτ = Wτ ∗ Cat(Sn(Fn(I);ψn), ..., S1(F1(I);ψ1),

E1(F1(I);ϕ1), ..., Em(Fm(I);ϕm)),
(1)

where ∗ represents convolution operation;Sn(·;ψn) denotes

the shrink operator parameterized by ψn that aims to down-

sample the input high-resolution feature maps by a factor of

n, while the extend operator Em(·;ϕm) aims to up-sample

the low-resolution ones by a factor of m. The shrink opera-

tors can be convolution or pooling. The extend operators

can be deconvolution or interpolation. Cat is the cross-

channel concatenation. Wτ is the parameter for combin-

ing the concatenated feature maps. The details of RFC are

shown in Fig. 2. For our proposed AmuletNet, we take fea-

ture maps at five different levels (L = 4) from the above

feature extraction network. We utilize RFCs to resize all

level feature maps into the five spatial resolution by per-

forming 64 convolution or deconvolution operations. The

generated features are concatenated into a tensor with 320

channels at each resolution. Then we use a convolutional

layer with 1×1 kernel size to weight the importance of each

feature map. For computational efficiency, 64 convolutional

kernels are used to combine each tensor into 64 integrated

feature maps. This way, each integrated feature map will si-

multaneously incorporate coarse semantics and fine details.

Recursive saliency map prediction. The integrated fea-

ture maps already contains various saliency cues, so we can

use them to predict the saliency map. A direct method is

to deconvolute the integrated feature maps at each level in-

to the size of the input image, and add a new convolutional

layer to produce the predicted saliency map. Although this

method can detect salient objects from different levels, the

inner connection of different-level predictions is missing.

As a result, the independent prediction is not satisfactory

enough, both quantitatively and visually, and further post-

processing is needed [24, 44]. To facilitate the interaction of

multiple predictions, we propose a recursive prediction ar-

chitecture, i.e. Deep Recursive Supervision (DRS) in Fig. 1,

to hierarchically and progressively absorb high-level pre-

dictions and render pixel-wise supervised information. The

proposed DRS includes saliency map prediction modules

(SMP) and the deeply supervised learning mechanism [45].

The SMP incorporates autoregressive recurrent connections

into the predictions from high-level to low. In each level l,
the SMP takes integrated feature maps Fτ and the high-level

prediction Pl+1 as input, and produces the new prediction

of this level as

Pl =

{

Wr ∗ σ(WF τ ⋆s Fτ + WP l+1 ∗ Pl+1 + b), l < L

WF τ ⋆s Fτ + b, l = L

(2)

where ⋆s represents deconvolution operation with stride s to

ensure the same spatial size of the output prediction. WF τ

and WP l+1 are the integrated feature weight and the output

prediction weight, respectively. b is the bias parameter. σ is

the ReLU activation function. Wr is the recursive weight.

From Eq.(2) and Fig. 1, we can see that multiple autoregres-

sive recurrent connections ensure that the new prediction

has multiple paths from the input to the output, which facil-

itates effective information exchanges. Besides, we employ

deeply supervised learning into the SMPs. This way, the

pixel-wise supervised information from ground truth will

guide the recursive saliency map prediction at each level,

making the SMPs be able to propagate fine details back to

the predictions of large contexts. Thus, DRS can build a

bidirectional information stream aggregation, which facili-

tates complement effect in prediction. We will fully elab-

orate the bidirectional information aggregating learning in

Section 3.2. The experiments in Section 4.4 show the supe-

riority of DRS over the deeply supervised learning in [45].

Boundary preserved refinement. To further improve the

detection accuracy, we add boundary refinements by in-

troducing short connections to the predicted results. Our

approach bases on the observation that low-level feature

maps in the conv1-2 layer have edge-preserving proper-

ties [49, 30]. We expect that these low-level features help to

predict objects’ boundary. Besides, the features also have

the same spatial resolution with respect to the input im-

age. For boundary refinement, a convolutional layer with

1× 1 kernel size is first applied to the conv1-2 layer, yield-

ing boundary predictions Bl. Then Bl are added to the raw

prediction for better aligned object boundaries,

Pl
b = Wb ∗ σ(B

l + Pl), (3)

where Wb is the refinement parameter. ReLU is used so that

the boundary prediction is in the range of zero to infinity.

Based on the boundary preserved refinements Pb, a addi-

tional convolutional layer is applied and learned to produce

the fusion saliency prediction (FSP) as the final output.
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3.2. Bidirectional information aggregating learning

Given the salient object detection training dataset S =
{(Xn, Yn)}

N
n=1 with N training pairs, where Xn =

{xn
j , j = 1, ..., T} and Yn = {ynj , j = 1, ..., T} are the

input image and the binary ground-truth image with T pix-

els, respectively. ynj = 1 denotes the foreground pixel and

ynj = 0 denotes the background pixel. For notional sim-

plicity, we subsequently drop the subscript n and consider

each image independently. We denote W as the parameters

of the feature extraction network and RFCs. Supposing the

network has M predictions, including one fused prediction

and M −1 specific-level predictions. In our AmuletNet, we

have M = 6. For the fused prediction, the loss function can

be expressed as

Lf (W, wf ) = −β
∑

j∈Y+

log Pr(yj = 1|X;W, wf )

−(1− β)
∑

j∈Y
−

log Pr(yj = 0|X;W, wf ),
(4)

where wf is the classifier parameter for the fused predic-

tion. Y+ and Y− denote the foreground and background

label sets, respectively. The loss weight β = |Y+|/|Y |, and

|Y+| and |Y−| denote the foreground and background pixel

number, respectively. Pr(yj = 1|X;W;wf ) ∈ [0, 1] is the

confidence score of the fused prediction that measures how

likely the pixel belong to the foreground.

For the prediction at level l, the loss function can be rep-

resented by

Ll(W, θl, wl) = −β
∑

j∈Y+

log Pr(yj = 1|X;W, θl, wl)

−(1− β)
∑

j∈Y
−

log Pr(yj = 0|X;W, θl, wl),

(5)

where θl = (wr
l , w

b
l ) is the parameter of the recursive pre-

diction component and boundary refinement component in

the prediction module. wl is the classifier parameter for the

prediction at level l. Thus, the joint loss function for all

predictions is obtained by

L(W, θ, w) = αfLf (W, wf ) +

L
∑

l=0

αlLl(W, θl, wl), (6)

where αf and αl are the loss weights to balance each loss

term. For simplicity and fair comparison, we set αf = αl =
1 as used in [45]. The above loss function is continuously

differentiable, so we can use the stochastic gradient descent

(SGD) method to obtain the optimal parameters,

(W∗, θ∗, w∗) = arg min L(W, θ, w). (7)

Our aggregating learning method has several significant

differences with other deeply supervised implementations,

i.e., DHS [27] and HED [45]. In DHS and HED, the deep

supervision is directly applied on side-outputs, while in our

method the deep supervision is applied on multiple same

resolution predictions. According to Eq.(2), each recursive

prediction contains the information of two predictions at

least, endowing our method the capability to propagate the

supervised information across deep layers in a bidirectional

manner. The bold black arrows in Fig. 1 illustrate the bidi-

rectional information stream. Besides, DHS needs to speci-

fy scales for side-outputs to minimize the multi-scale error,

which requires additional annotation for each scale. In con-

trast, the proposed method adaptively unify the scale infor-

mation into the size of input images, without using multi-

scale annotations. In addition, different from the methods

used sigmoid classifiers in [27, 45], we use the following

softmax classifier to evaluate the prediction scores:

Pr(yj = 1|X;W, θ, w) =
ez1

ez0 + ez1
, (8)

Pr(yj = 0|X;W, θ, w) =
ez0

ez0 + ez1
, (9)

where z0 and z1 are the score of each label of training data.

In this way, each prediction of the AmultNet is composed

of a foreground excitation map (Mfe) and a background ex-

citation map (Mbe). We utilize Mfe and Mbe of all-level

predictions to generate the final fusion. This strategy not

only increases the pixel-level discrimination but also cap-

tures context contrast information.

3.3. Saliency inference

Although the architecture we use in this work can pro-

duce M predictions computed by Eq.(8) with the optimal

parameters (W∗, θ∗, w∗), we observe that the quality of the

predictions at different levels varies widely. The more low-

er level, the better they are. The fused prediction generally

appears much better than other predictions. For saliency in-

ference, we can simply use the fused prediction as our final

saliency map. However, saliency inference emphasize the

contrast between foreground and background. Therefore,

more biologically we utilize the mean contrast of different

predictions to further improve the detection accuracy during

saliency inference. Formally, let M
fe
l (Mfe

f ) and Mbe
l (Mbe

f )
denote the foreground excitation map and background exci-

tation map at level l (of the fused prediction), respectively.

They can be computed by Eq.(8) and Eq.(9). Thus, the final

saliency map can be obtained by

S = σ(Mean(

L
∑

l=0

(Mfe
l − Mbe

l )) + (Mfe
f − Mbe

f )), (10)

where Mean is the pixel-wise mean and σ is the ReLU ac-

tivation function for clipping the negative values.

206



4. Experiments

4.1. Experimental Setup

Datasets: For the training, we utilize the MSRA10K

dataset [5], which includes 10,000 images with high quality

pixel-wise annotations. Most of the images in this dataset

contain only one salient object. To improve the varieties,

we simply augment this dataset by mirror reflection and

rotation techniques (0◦, 90◦, 180◦, 270◦), producing 80,000

training images totally.

For the performance evaluation, we adopt seven public

saliency detection datasets as follows.

DUT-OMRON [47]. This dataset has 5,168 high quality

images. Images of this dataset have one or more salient ob-

jects and relatively complex background. Thus this dataset

is more difficult and challenging, and provides more space

of improvement for related research in saliency detection.

DUTS [50]. This dataset is currently the largest saliency

detection benchmark, and contains 10,553 training images

(DUTS-TR) and 5,019 test images (DUTS-TE) with high

quality pixel-wise annotations. Both the training and test set

contain very challenging scenarios for saliency detection.

ECSSD [46]. This dataset contains 1,000 natural im-

ages, which include many semantically meaningful and

complex structures in their ground truth segmentation.

HKU-IS [50]. This dataset has 4,447 images with high

quality pixel-wise annotations. Images of this dataset are

well chosen to include multiple disconnected salient objects

or objects touching the image boundary.

PASCAL-S [26]. This dataset is generated from the

PASCAL VOC dataset [9] and contains 850 natural images.

SED [2]. This dataset contains two subsets: SED1 and

SED2. The SED1 has 100 images each containing only

one salient object, while the SED2 has 100 images each

containing two salient objects.

SOD [46]. This dataset has 300 images, and it was orig-

inally designed for image segmentation. Pixel-wise annota-

tion of salient objects was generated by [19]. This dataset

is challenging since many images contain multiple objects

either with low contrast or touching the image boundary.

Implementation Details: We implement our approach

based on the MATLAB R2014b platform with the Caffe

toolbox [18]. We run our approach in a quad-core PC

machine with an i7-4790 CPU (with 16G memory) and

a NVIDIA Titan X GPU (with 12G memory). We train

our model using augmented images from the MSRA10K

dataset. We do not use validation set and train the model

until its training loss converges. The parameters of multi-

level feature extraction layers are initialized from the VGG-

16 model [37]. For other convolutional layers, we initialize

the weights by the “msra” method [15]. We use the SGD

method to train our network with a momentum 0.9 and a

weight decay 0.0001. We set the base learning rate to 1e-8

and decrease the learning rate by 10% when training loss

reaches a flat. The training process takes almost 16 hours

and converges after 200k iterations with mini-batch size 8.

When testing, the proposed salient object detection algo-

rithm runs at about 16 fps with 256 × 256 resolution. The

source code can be found at http://ice.dlut.edu.cn/lu/.

Evaluation Metrics: We utilize three main metrics to

evaluate the performance of different salient object detec-

tion algorithms, including the precision-recall (PR) curves,

F-measure and mean absolute error (MAE) [3]. The pre-

cision and recall are computed by thresholding the pre-

dicted saliency map, and comparing the binary map with

the ground truth. The PR curve of a dataset demonstrates

the mean precision and recall of saliency maps at different

thresholds. The F-measure is a harmonic mean of average

precision and average recall, and can be calculated by

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision×Recall
. (11)

We set β2 to be 0.3 to weigh precision more than recall as
suggested in [46] [41] [3] [47].

We report the performance when each saliency map is bi-

narized with an image-dependent threshold. The threshold

is determined to be twice the mean saliency of the image:

T =
2

W ×H

W
∑

x=1

H
∑

y=1

S(x, y), (12)

where W and H are width and height of an image, S(x, y)
is the saliency value of the pixel at (x, y). We report the

average precision, recall and F-measure over each dataset.

The above overlapping-based evaluations usually give

higher score to methods which assign high saliency score

to salient pixel correctly. However, the evaluation on non-

salient regions can be unfair especially for the methods

which successfully detect non-salient regions, but miss the

detection of salient regions. Therefore, we also calculate

the mean absolute error (MAE) for fair comparisons as sug-

gested by [3]. The MAE evaluates the saliency detection

accuracy by

MAE =
1

W ×H

W
∑

x=1

H
∑

y=1

|S(x, y)−G(x, y)|, (13)

where G is the binary ground truth mask.

4.2. Performance Comparison with State-of-the-art

We compare our algorithm with other 11 state-of-the-art

ones including 7 deep learning based algorithms (DCL [22],

DHS [27], DS [24], ELD [20], LEGS [41], MDF [50], RFC-

N [44]) and 4 conventional algorithms (BL[39], BSCA [32],

DRFI [19], DSR [23]). For fair comparison, we use either

the implementations with recommended parameter settings

or the saliency maps provided by the authors.
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DUT-OMRON DUTS-TE ECSSD HKU-IS PASCAL-S SOD

Methods Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE
Amulet 0.6471 0.09761 0.7365 0.08517 0.8684 0.05874 0.8542 0.05214 0.7632 0.09824 0.7547 0.13998

Amulet-1/1 0.6413 0.10161 0.7320 0.08796 0.8678 0.05997 0.8460 0.05416 0.7634 0.09948 0.7512 0.14169

Amulet-1/2 0.6408 0.10178 0.7210 0.08807 0.8675 0.05998 0.8456 0.05421 0.7629 0.09965 0.7509 0.14177

Amulet-1/4 0.6392 0.10219 0.7169 0.08851 0.8659 0.06039 0.8439 0.05465 0.7615 0.10001 0.7503 0.14204

Amulet-1/8 0.6356 0.10282 0.6942 0.08933 0.8625 0.06137 0.8397 0.05570 0.7584 0.10067 0.7492 0.14262

Amulet-1/16 0.6266 0.10280 0.6891 0.09110 0.8523 0.06477 0.8327 0.05821 0.7469 0.10273 0.7421 0.14495

AmuletBPR− 0.6301 0.12062 0.6912 0.09761 0.8647 0.06572 0.8402 0.06302 0.7533 0.1240 0.7201 0.15340

DCL [22] 0.6842 0.15726 0.7141 0.14928 0.8293 0.14949 0.8533 0.13587 0.7141 0.18073 0.7413 0.19383

DHS [27] - - 0.7301 0.06578 0.8675 0.05948 0.8541 0.05308 0.7741 0.09426 0.7746 0.12840

DS [24] 0.6028 0.12038 0.6323 0.09070 0.8255 0.12157 0.7851 0.07797 0.6590 0.17597 0.6981 0.18894

ELD [20] 0.6109 0.09240 0.6277 0.09761 0.8102 0.07955 0.7694 0.07414 0.7180 0.12324 0.7116 0.15452

LEGS [41] 0.5915 0.13335 0.5846 0.13793 0.7853 0.11799 0.7228 0.11934 - - 0.6834 0.19548

MDF [50] 0.6442 0.09156 0.6732 0.09986 0.8070 0.10491 0.8006 0.09573 0.7087 0.14579 0.7205 0.16394

RFCN [44] 0.6265 0.11051 0.7120 0.09003 0.8340 0.10690 0.8349 0.08891 0.7512 0.13241 0.7426 0.16919

BL [39] 0.4988 0.23881 0.4897 0.23794 0.6841 0.21591 0.6597 0.20708 0.5742 0.24871 0.5798 0.26681

BSCA [32] 0.5091 0.19024 0.4996 0.19614 0.7048 0.18211 0.6544 0.17480 0.6006 0.22286 0.5835 0.25135

DRFI [19] 0.5504 0.13777 0.5407 0.17461 0.7331 0.16422 0.7218 0.14453 0.6182 0.20651 0.6343 0.22377

DSR [23] 0.5242 0.13886 0.5182 0.14548 0.6621 0.17837 0.6772 0.14219 0.5575 0.21488 0.5962 0.23394

Table 1. The F-measure and MAE of different saliency detection methods on six large-scale saliency detection datasets. The best three

results are shown in red, green and blue. The proposed methods rank first or second on these datasets.
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(a) DUTS-TE (b) ECSSD (c) HKU-IS (d) PASCAL-S

Figure 3. The PR curves of the proposed algorithm and other state-of-the-art methods.

Quantitative Evaluation. As shown in Tab. 1 and

Fig. 3, the Amulet model can largely outperform other com-

pared counterparts across all the datasets in terms of near

all evaluation metrics, which convincingly demonstrates the

effectiveness of the proposed method. Results on the SED

dataset and PR curves on the DUT-OMRON, SED and SOD

datasets appear in the supplemental material due to the lim-

itation of space. From the results, we have other fundamen-

tal observations: (1) Our model improves the F-measure

with a considerable margin on most of datasets, especially

on large-scale datasets, such as DUTS-TE, ECSSD, HKU-

IS. And at the same time, our model generally decreases the

MAE. This indicates that our model is more convinced of

the predicted regions and provides more accurate saliency

maps. (2) Although only trained on the MSRA10K dataset,

our model significantly outperforms other algorithms that

pre-trained on specific saliency datasets, such as LEGS and

RFCN on PASCAL-S, MDF on HKU-IS. The superior per-

formance confirms that our model have good generalization

abilities on other large-scale datasets. (3) Our method is in-

ferior to DHS on several datasets. However, these datasets

are relatively small compared to the era of deep learning.

Qualitative Evaluation. Fig. 4 provides a visual com-

parison of our approach and other methods. It can be seen

that our method generates more accurate saliency maps in

various challenging cases, e.g., low contrast between the

objects and backgrounds (the first two rows), objects near

the image boundary (the 3-4 rows) and multiple disconnect-

ed salient objects (the 5-6 rows). What’s more, with our

BPR component, our saliency maps provide more accurate

boundaries of salient objects (the 1, 3, 4, 6 rows).

4.3. Ablation Studies

Feature resolution effects. To verify the importance of

resolutions of integrated features, we additionally evaluate

several variants of the proposed Amulet model with differ-

ent scales. Amulet-1/n denotes the model that takes the in-

tegrated features reduced by a factor not larger than n, with

respect to the input image. The corresponding performance

are also reported in Tab. 1. The results suggest that features

of all levels are helpful for saliency detection, and with the

increment of resolutions, our approach gradually achieves
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 4. Comparison of saliency maps. (a) Input images; (b) Ground truth; (c) Our method; (d) RFCN; (e) DCL; (f) DHS; (g) DS; (h)

LEGS; (i) MDF; (j) ELD; (k) DRFI. The top four row and bottom two row images are from the ECSSD and SED dataset, respectively.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5. Visual comparison of the Amulet algorithm with /without BPRs. (a)(d)(g) Input images; (b)(e)(h) Predictions of the Amulet;

(c)(f)(i) Predictions of the AmuletBPR− . High resolution to see better.

better performance. In addition, even our simplest model

(i.e., Amulet-1/16) can achieve better results than most of

existing methods. This fact further verifies the strength of

our proposed methods.

Boundary refinements. To verify the contributions of

our proposed BPR, we also implement our proposed ap-

proach without BPRs, named AmuletBPR− , and report the

performance in Tab. 1. It can be observed that without

BPRs, our approach decreases the performance but not too

much in F-measure. But it leads to a large drop in MAE.

This indicates that our proposed BPR is capable of detecting

and localizing the boundary of most salient objects, while

other methods often fail at this fact. Several visual exam-

ples are illustrated in Fig. 5.

4.4. Comparison with Other Aggregation Methods

For fair comparison, we perform additional evaluations

to verify the detection ability of different aggregation meth-

ods. Specifically, we use the same augmented MSRA10K

dataset to train the FCN-8s [28], Hypercolumn (HC) [13],

SegNet (SN) [1], DeconvNet(DN) [31] and HED [45] for

saliency detection task. All compared methods are based

on the same VGG-16 model pre-trained on the ImageNet

classification task [37]. We drop the unnecessary compo-

Methods FCN-8s HC SN DN HED Ours

Fβ 0.8116 0.8187 0.8145 0.8264 0.8321 0.8521

MAE 0.1343 0.1193 0.0947 0.1435 0.1022 0.0662

Table 2. The performance of different aggregations on ECSSD

dataset. Other datasets have the similar performance trend.

nents in each model and only focus on the feature aggrega-

tion part. For our model, we use the simplest model (i.e.,

Amulet-1/16) without BPRs. For each method, we find the

optimal parameters to achieve its’ best results. The perfor-

mance on the ECSSD dataset is listed in Tab. 2. As can be

seen from Tab. 2, with the aggregation of multi-level fea-

tures, our approach achieves better performance.

5. Conclusion

In this paper, we propose a generic aggregating multi-
level convolutional feature framework for salient object de-
tection. Our framework can integrate multi-level feature
maps into multiple resolutions, learn to combine feature
maps, and predict saliency maps with the integrated fea-
tures. In addition, edge-aware maps and high-level pre-
dictions are embedded into the framework. Experiments
demonstrate that our method performs favorably against
state-of-the-art approaches in saliency detection.
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