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Abstract

3D context has been shown to be extremely important

for scene understanding, yet very little research has been

done on integrating context information with deep neural

network architectures. This paper presents an approach to

embed 3D context into the topology of a neural network

trained to perform holistic scene understanding. Given a

depth image depicting a 3D scene, our network aligns the

observed scene with a predefined 3D scene template, and

then reasons about the existence and location of each object

within the scene template. In doing so, our model recog-

nizes multiple objects in a single forward pass of a 3D con-

volutional neural network, capturing both global scene and

local object information simultaneously. To create training

data for this 3D network, we generate partially synthetic

depth images which are rendered by replacing real objects

with a repository of CAD models of the same object cate-

gory1. Extensive experiments demonstrate the effectiveness

of our algorithm compared to the state of the art.

1. Introduction

Understanding indoor scene in 3D space is critically

useful in many applications, such as indoor robotics, aug-

mented reality. To support this task, the goal of this paper

is to recognize the category and the 3D location of furniture

from a single depth image.

Context has been successfully used to handle this chal-

lenging problem in many previous works. Particularly,

holistic scene context models, which integrate both the bot-

tom up local evidence and the top down scene context, have

achieved superior performance [6, 23, 24, 48, 49]. How-

ever, they suffer from a severe drawback that the bottom up

and top down stages are run separately. The bottom up stage

using only the local evidence needs to generate a large quan-

tity of noisy hypotheses to ensure a high recall, and the top

down inference usually requires combinatorial algorithms,

such as belief propagation or MCMC, which are compu-

1Code and dataset are available at http://deepcontext.cs.princeton.edu.

Part of this work is done when Yinda Zhang was an intern at Microsoft

Research, Jianxiong Xiao was at Princeton University, Pushmeet Kohli and

Shahram Izadi were at Microsoft Research.

Sleeping Area Office Area Lounging Area Table & Chairs

bed dresser dresser with mirror lamp garbage bin coffee table

nightstand ottoman table chair endtable speaker monitor

Figure 1. Example of canonical scene templates (top view) and

the natural images they represent. We learn four scene tem-

plates from SUN-RGBD[32]. Each scene template encodes the

canonical layout of a functional area.

tationally expensive in a noisy solution space. Therefore,

the whole combined system can hardly achieve a reason-

ably optimal solution efficiently and robustly.

Inspired by the success of deep learning, we propose

a 3D deep convolutional neural network architecture that

jointly leverages local appearance and global scene context

efficiently for 3D scene understanding.

Designing a deep learning architecture to encode con-

text for scene understanding is challenging. Unlike an ob-

ject whose location and size can be represented with a fixed

number of parameters, a scene could involve unknown num-

ber of objects and thus requires variable dimensionality to

represent, which is hard to incorporate with convolutional

neural network with a fixed architecture. Also, although

holistic scene models allow flexible context, they require

common knowledge to manually predefine relationship be-

tween objects, e.g. the relative distance between bed and

nightstands. As a result, the model may unnecessarily en-

code weak context, ignore important context, or measure

context in an over simplified way.

To solve these issues, we propose and learn a scene rep-

resentation encoded in scene templates. A scene template

contains a super set of objects with strong contextual corre-

lation that could possibly appear in a scene with relatively

constrained furniture arrangements. It allows a prediction
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Figure 2. Our deep 3D scene understanding pipeline. Given a 3D volumetric input derived from a depth image, we first aligns the scene

template with the input data. Given the initial alignment, our 3D context network estimates the existence of an object and adjusts the object

location based on local object features and holistic scene feature, to produce the final 3D scene understanding result.

of “not present” for the involved objects so that a variety of

scenes can be represented with a fixed dimensionality. A

scene can be considered as a scene template with a subset

of objects activated. Scene template also learns to only con-

sider objects with strong context, and we argue that context-

less objects, such as a chair can be arbitrarily placed, should

be detected by a local appearance based object detector.

Each template represents a functional sub-region of an

indoor scene, predefined with canonical furniture arrange-

ments and estimated 3D anchor positions of possible ob-

jects with respect to the reference frame of the template.

We incorporate these template anchors as priors in the neu-

ral architecture by designing a transformation network that

aligns the input 3D scene (corresponding to the observed

depth image) with the template (i.e. the canonical furniture

arrangement in 3D space). The aligned 3D scene is then

fed into a 3D context neural network that determines the

existence and location of each object in the scene template.

This 3D context neural network contains a holistic scene

pathway and an object pathway using 3D Region Of Inter-

est (ROI) pooling in order to classify object existence and

regress object location respectively. Our model learns to

leverage both global and local information from two path-

ways, and can recognize multiple objects in a single forward

pass of a 3D neural network. It is noted that we do not man-

ually define the contextual relationships between objects,

but allow the network to automatically learn context in ar-

bitrary format across all objects.

Data is yet another challenging problem for training our

network. Holistic scene understanding requires the 3D Con-

vNet to have sufficient model capacity, which needs to be

trained with a massive amount of data. However, existing

RGB-D datasets for scene understanding are all small. To

overcome this limitation, we synthesize training data from

existing RGB-D datasets by replacing objects in a scene

with those from a repository of CAD models from the same

object category, and render them in place to generate par-

tially synthesized depth images. Our synthetic data exhibits

a variety of different local object appearances, while still

keeping the indoor furniture arrangements and clutter as

shown in the real scenes. In experiments, we use these syn-

thetic data to pretrain and then finetune our network on a

small amount of real data, whereas the same network di-

rectly trained on real data can not converge.

The contributions of this paper are mainly three aspects.

1) We propose a scene template representation that enables

the use of a deep learning approach for scene understanding

and learning context. The scene template only encodes ob-

jects with strong context, and provides a fixed dimension of

representation for a family of scenes. 2) We propose a 3D

context neural network that learns scene context automati-

cally. It leverages both global context and local appearance,

and detects all objects in context efficiently in a single for-

ward pass of the network. 3) We propose a hybrid data aug-

mentation method, which generates depth images keeping

indoor furniture arrangements from real scenes but contain-

ing synthetic objects with different appearance.

Related Work The role of context has been studied ex-

tensively in computer vision [1, 3, 4, 5, 8, 10, 11, 13, 18,

19, 20, 21, 25, 27, 29, 30, 36, 37, 38, 40, 41, 42, 43, 44].

While most existing research is limited to 2D, there are

some works on modeling context for total scene understand-

ing from RGB-D images [15, 23, 31, 39, 48]. In term of

methodology, most of such approaches take object detec-

tion as the input and incorporate context models during a

post-processing. We aim to integrate context more tightly

with deep neural network for object detection.

There are some efforts incorporating holistic context

model for scene understanding, which is closely related to

our work. Scene context is usually manually defined as a

unary term on a single object, pairwise term between a pair

of objects to satisfy certain functionality [23, 46], or a more

complicated hierarchy architecture [6, 24, 49]. The learned

context models are usually applied on a large set of object

hypotheses generated using local evidence, e.g. line seg-

ments [49] or cuboid [23], by energy minimization. There-

fore high order context might be ignored or infeasible to op-

timize. Context can be also represented in a non-parametric

way [48], which potentially enables high order context but

is more computationally expensive to infer during the test-

ing time. In contrast, our 3D context network does not re-

quire any heuristic intervene on the context and learns con-

text automatically. We also require no object hypothesis

generation, which is essential in making our method more

computationally efficient.

Deep learning has been applied to 3D data, but most of
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these works focus on modeling objects [45] and object de-

tection [26, 34]. Recently, some successes have been made

on applying deep learning for inverse graphics [16, 17]. Our

approach goes one step further to embrace the full com-

plexity of real-world scenes to perform holistic scene un-

derstanding. Related to our transformation network, Spatial

Transformation Networks [14] can learn the transformation

of an input data to a canonical alignment in an unsupervised

fashion. However, unlike MNIST digits (which were con-

sidered in [14]) or an individual object where an alignment

to a canonical viewpoint is quite natural, it is not clear what

transforms are needed to reach a canonical configuration for

a 3D scene. We define the desired alignment in template

coordinates and use supervised training by employing the

ground truth alignments available from our training data.

While many works have considered rendering synthetic

data for training (a.k.a, graphics for vision, or synthesis for

analysis), these efforts mostly focus on object rendering,

either in color [22, 35] or depth [33]. There is also work

rendering synthetic data from CAD model of complicated

scenes for scene understanding [12, 47]. However, the gen-

erated depth is overly clean, and the scene layouts generated

by either by algorithm or human artists are not guaranteed

to be correct. In contrast, we utilize both the CAD mod-

els and real depth maps to generate more natural data with

appropriate context and real-world clutter.

2. Algorithm Overview

Our approach works by first automatically constructing

a set of scene templates from the training data (see Sec-

tion 3.1). Rather than a holistic model for everything in

the scene, each scene template only represents objects with

context in a sub-area of a scene performing particular func-

tionality. Each template defines a distribution of possible

layouts of one or more instances of different object cate-

gories in a fixed dimensionality.

Given a depth map of a scene as input2, we convert it into

a 3D volumetric representation of the scene and feed it into

the neural network. The neural network first infers the scene

template that is suitable to represent the scene, or leaves it

to a local appearance based object detector if none of the

predefined scene templates is satisfied. If a scene template

is chosen, the transformation network estimates the rotation

and translation that aligns the scene to the inferred scene

template. With this initial alignment, the 3D context net-

work extracts both the global scene feature encoding scene

context and the local object features pooled for each anchor

object defined in the template, as shown in Fig.2. These

features are concatenated together to predict the existence

of each anchor object in the template and an offset to adjust

its bounding box for a better object fit. The final result is an

2Note that while all the figures in the paper contain color, our system

relies only on depth as input without using any color information.
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Figure 3. 3D context network. The network consists of two path-

ways. The scene pathway takes the whole scene as input and ex-

tracts spatial feature and global feature. The object pathway pools

local feature from the spatial feature. The network learns to use

both the local and global features to perform object detection, in-

cluding wall, ceiling, and floor.

understanding of the scene with a 3D location and category

for each object in the scene, as well as room layout elements

including wall, floor, and ceiling, which are represented as

objects in the network.

3. Learning Scene Template

Objects with context in a functional area are usually at

relatively fixed locations. For example, a sleeping area is

usually composed of a bed with one or two nightstands on

the side, with optional lamps on the top. Object detection is

likely to succeed by searching around these canonical loca-

tions. We learn the categories of object instances and their

canonical sizes and locations in the template, from the train-

ing data. Examples of each template can be seen in Fig. 1.

3.1. Data­driven Template Definition

We learn to create scene templates using the SUN-

RGBD dataset consisting of 10,335 RGB-D images with 3D

object bounding box annotations. These RGB-D images are

mostly captured from household environments with strong

context. As a first experiment of combining 3D deep learn-

ing with context, we choose four scene templates: sleeping

area, office area, lounging area, and table & chair set, be-

cause they represent commonly seen indoor environments

with relatively larger numbers of images provided in SUN-

RGBD. Our approach can be extended to other functional

areas given sufficient training data. For SUN-RGBD, 75%
of the images from household scene categories can be de-

scribed, fully or partially, using these four scene templates.

Our goal is to learn layouts of the scene, such that each

template summarizes the bounding box location and cate-

gory of all objects appearing in the training set. To enable

the learning of the template, we select the images that con-

tain a single functional area, and label them with the scene

type they belong to. Other images containing arbitrary ob-

jects or multiple scene templates are not used in learning

scene templates. The ground truth scene categories are used

not only for learning the aforementioned templates, but also

for learning the scene template classification, the transfor-
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mation networks, and the 3D context networks in the fol-

lowing sections.

To obtain the anchor positions (i.e. common locations)

for each object type in a template, we take all 3D scenes be-

longing to this scene template and align them with respect to

the center and orientation of a major object3. After that, we

run k-means clustering for each object type and use the top

k cluster centroids as the anchor positions and size, where

k is user-defined. We also include room layout elements,

including wall, floor, ceiling, which are all represented as

regular objects with predefined thickness. Each scene tem-

plate has tens of object anchors in total for various object

categories (Fig. 1).

3.2. Generating Template­Based Ground Truth

To train a 3D context network using scene templates, we

need to convert the original ground truth data from SUN

RGB-D dataset to a template representation. Specifically,

we need to associate each annotated object in the original

ground truth with one of the objects defined in the scene

template. Similar to above, we first align the training im-

ages with their corresponding scene templates using the

center and rotation of the major object. For the rest of the

objects, we run a bipartite matching between the dataset an-

notation and the template anchors, using the difference of

center location and size as the distance, while ensuring that

the objects of the same category are matched.

4. 3D Scene Parsing Network

Given a depth image as input, we first convert it into a 3D

volumetric representation, using the Truncated Signed Dis-

tance Function (TSDF) [34, 28]. We use a 128× 128× 64
grid for the TSDF to include a whole scene, with a voxel

unit size of 0.05 meters and a truncation value of 0.15 me-

ters. This TSDF representation is fed into the 3D neural

network such that the model runs naturally in 3D space and

directly produces output in 3D.

4.1. Scene Template Classification Network

We first train a neural network to estimate the scene tem-

plate category for the input scene (Fig. 3, Scene pathway).

The TSDF representation of the input scene is firstly fed

into 3 layers of 3D convolution + 3D pooling + ReLU, and

converted to a spatial feature map. After passing through

two fully connected layers, the 3D spatial feature is con-

verted to a global feature vector that encodes the informa-

tion from the whole scene. The global feature is used for

scene template classification with a classic softmax layer.

During testing, we choose the scene template with the high-

est score for the input scene if the confidence is high enough

(> 0.95). Otherwise, we do not run our method because

3We manually choose bed for sleeping area, desk for office area, sofa

for lounging area, and table for table&chair set as the major objects.

Input Scene Rotation Estimation Translation Estimation Initial Alignment

Figure 4. Transformation estimation. Our transformation net-

work first produces global rotation and then translation to align the

input scene with its scene template in 3D space. Both the rotation

and translation are estimated as classification problems.

none of the scene templates fits the input scene. Such scenes

are passed to a local appearance based object detector for

object detection. In practice, the four scene templates can

match with more than half of the images in the SUN-RGBD

dataset captured from various of indoor environments.

4.2. Transformation Network

Given the scene template category, our method estimates

a global transformation consisting of a 3D rotation and

translation that aligns the point cloud of the input scene to

the target predefined scene-template (Fig. 4). This is essen-

tially a transformation that aligns the major object in the

input scene with that from the scene template. This makes

the result of this stage invariant to rotations in the input, and

the wall and bounding box of objects are globally aligned to

three main directions. The next part of our architecture, the

3D context network, relies on this alignment to obtain the

object orientation and the location to pool feature based on

3D object anchor locations from the scene template.

We first estimate the rotation. We assume that the grav-

ity direction is given, e.g. from an accelerometer. In our

case, this gravity direction is provided by the SUN RGB-D

dataset used in our experiments. Therefore, we only need

to estimate the yaw, which rotates the input point cloud in

horizontal plane to the scene template viewpoint shown in

Fig.1. We divide the 360-degree range of rotation into 36

bins and cast this problem into a classification task (Fig. 4).

We train a 3D ConvNet using the same architecture as the

scene template classification network introduced in Sec. 4.1

except generating a 36 channel output for softmax. During

training, we align each training input scene to the center of

the point cloud and add noise for rotations (+/- 10 degrees)

and translations (1/6 of the range of the point cloud).

For translation, we apply the same network architecture

to identify the translation after applying the predicted rota-

tion. The goal is to predict the 3D offset between the centers

of the major objects of the input point cloud and its corre-

sponding scene template. To achieve this goal, we discretize

the 3D translation space into a grid of 0.5m3 resolution with

dimensions of [−2.5, 2.5]× [−2.5, 2.5]× [−1.5, 1], and for-

mulate this task again as a 726-way classification problem

(Fig. 4). We tried direct regression with various loss func-

tions, but it did not work as well as classification. We also

tried an ICP-based approach, however it could not produce

good results.
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Figure 5. Hybrid data synthesis. We first search for similar CAD

model for each object. Then, we randomly choose models from

good matches, and replace the points in annotated bounding box

with the rendered CAD model.

4.3. 3D Context Network

We now describe the context neural network for indoor

scene parsing using scene templates. For each scene tem-

plate defined in the previous section, a separate prediction

network is trained. As shown in Fig. 3, the network has

two pathways. The global scene pathway, given a 3D volu-

metric input in a coordinate system that is aligned with the

template, produces both a spatial feature that preserves the

spatial structure in the input data and a global feature for

the whole scene. For the object pathway, we take the spatial

feature map from the scene pathway as input, and pool the

local 3D Region Of Interest (ROI) based on the 3D scene

template for the specific object. The 3D ROI pooling is a

max pooling at 6×6×6 resolution, inspired by the 2D ROI

pooling from [9]. The 3D pooled features are then passed

through 2 layers of 3D convolution + 3D pooling + ReLU,

and then concatenated with the global feature vector from

the scene pathway. After two more fully connected layers,

the network predicts the existence of the object (a binary

classification task) as well as the offset of the 3D object

bounding box (3D location and size) related to the anchor

locations learned in Sec. 3.1 (a regression task using L1-

smooth loss [34]). Including the global scene feature vector

in the object feature vector provides holistic context infor-

mation to help identify if the object exists and its location.

4.4. Training Schema

Our 3D scene parsing network contains a series of com-

ponents with a large number of parameters. We perform

careful training strategy to avoid bad local optima. We first

train the scene pathway alone to perform a 4-way scene

classification task. After this training converges, we fine-

tune the classification network to estimate the transforma-

tion for each individual scene template. An alternative ap-

proach is to jointly train a network for classification and

transformation, however this does not perform well in prac-

tice. The object pathway is then enabled, and the two path-

ways are jointly finetuned to perform object detection. We

found that this form of pretraining, from easy to hard task,

is crucial in our experiments. Otherwise, training the four

networks independently from scratch cannot produce mean-

ingful models.

5. Synthesizing Hybrid Data for Pre-training

In contrast to existing deep architectures for 3D [34, 45],

our model takes the whole scene with multiple objects as

input. As such, during training, it needs to model the dif-

ferent variations in the scene layout. We found the RGB-

D images from the existing SUN RGB-D [32] dataset are

far from sufficient. Furthermore, capturing and annotating

RGB-D images on the scale of ImageNet [7] was impracti-

cal. To overcome the data deficiency problem, we increase

the size of the training data by replacing the annotated ob-

jects from SUN RGB-D with CAD models of same cate-

gory from ShapeNetCore dataset [2] (Fig. 5). This allows us

to generate context-valid scenes, as the context still comes

from a real environment, while changing the shapes of the

objects. By replacing the annotated objects while keep-

ing the full complexity of the areas outside the annotated

bounding boxes, we could generate more realistic hybrid

data partially maintaining sensor noise. This is in contrast

to images generated from purely synthetic models which do

not contain clutter caused by the presence of small objects.

To search for similar CAD models for annotated objects

in RGB-D images, we need to define the distance between

a CAD model M, and the 3D point cloud P representing

the object. In order to get a symmetric definition, we first

put the model in the annotated 3D box, scale it to fit, ren-

der M with the camera parameter of the depth image, and

convert the rendered depth image to a point cloud V . This

is to mimic the partial view due to self occlusion. Then, we

define the distance between P and S as:

D(P,S) =
1

|P|

∑

p∈P

(

min
q∈V

d(p, q)
)

+
1

|V|

∑

p∈V

(

min
q∈P

d(p, q)
)

,

where d(p, q) is the distance between two 3D points p and

q. After acquiring a short list of similar CAD models for

each object, we randomly choose one and render the depth

image with the original annotation as training data.

We generate a hybrid training set that is 1,000 times big-

ger than the original RGB-D training set. For both of the

pathways in the 3D context network, we have to train the

models on this large hybrid dataset first, followed by fine-

tuning on the real depth maps. Otherwise, the training can-

not converge.

6. Experiments

We use the SUN RGB-D dataset [32] because they pro-

vide high quality 3D bounding box annotations of objects.

As described in Section 3.1, we manually select images that

can be perfectly represented by one of the scene templates,

and choose 1,863 RGB-D images from SUN RGB-D. We

use 1,502 depth images to learn scene templates and train

the 3D scene parsing network, and the remaining 361 im-

ages for testing. We also evaluate our model for object de-

tection on a testing set containing images that cannot be per-

51196



fectly represented, e.g. containing arbitrary objects or mul-

tiple scene templates, to demonstrate that our scene tem-

plates have a good generalization capability and a high im-

pact on real scenes in the wild.

Our model uses the half data type, which represents a

floating point number by 2 bytes, to reduce the memory

usage. We train the model with a mini-batch of 24 depth

images requiring 10GB, which nearly fills a typical 12GB

GPU. However, this mini-batch size was too small to obtain

reliable gradients for optimization. Therefore, we accumu-

late the gradients over four iterations of forward and back-

ward without weight update, and only update the weights

once afterwards. Using this approach, the effective mini-

batch size is 24× 4 or 96.

6.1. 3D object detection.

Our model recognizes major objects in a scene, which

can be evaluated by 3D object detection. Qualitative parsing

results are shown in Fig. 8. Our model finds most of the ob-

jects correctly and produces decent scene parsing results for

challenging cases, e.g. heavy occlusion and missing depth.

3D context enables long range regression when initial align-

ment is far from correct, as shown in the 5th row. The last

row shows a failure case, where our model recognizes it as a

sleeping area misled by the futon with blankets. Therefore,

our model overlooks the coffee table, but still predicts the

wall and floor correctly and find a proper place to sleep.

Table 1 shows quantitative comparison to the local ap-

pearance based 3D object detector Deep Sliding Shape

(DSS) [34] and also the cloud of gradient feature based con-

text model from Ren et al. (COG) [31]. Our average preci-

sion (3rd row) is comparable to state-of-the-art, but only

takes about 0.5 seconds to process an image for all object

categories, which is about 40 times faster than DSS which

takes 20 seconds per image.

Context complements local evidence. Fig. 6 shows

some qualitative comparisons between our context model

and the local object detector DSS [34]. We can see that our

context model works significantly better in detecting objects

with missing depth (the monitor in 1st and 3rd examples)

and heavy occlusion (the nightstand in 2nd example). 3D

context also helps to remove objects in incorrect arrange-

ments, such as the table on top of another table, and the

nightstand at the tail of the bed or in office, as shown in

the result of DSS. Comparatively, DSS works better for ob-

jects that are not constrained, e.g. chairs on the right of 3rd

example.

We integrate the result from DSS and our context model.

The combined result achieves significantly better perfor-

mance than each of the models individually, increasing the

mean average precision from the 43.76% for DSS stand-

alone to 50.50%. This significant improvement demon-
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monitor

table
chair

lamp lamp

nightstand

bed

ottoman

table

chair

monitor

Figure 6. Comparison between our context model and the lo-

cal object detector DSS [34]. Our context model works well for

objects with missing depth (monitors in 1st, 3rd row), heavy occlu-

sion (nightstand in 2nd row), and prevents detections with wrong

arrangement (wrong table and nightstand in DSS result).
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Figure 7. Precision recall curves for some object categories. We

compare our algorithm with the 3D object detector DSS [34] and

the cloud of gradient feature based context model Ren et al. [31].

strates that our context model provides complementary in-

formation with a local appearance based object detector.

Fig. 7 shows the Precision-Recall (PR) curves for some

of the object categories. We can clearly see that our (green)

recalls are not as high as DSS (blue) that runs in a slid-

ing window fashion to exhaustively cover the search space.

This is because our model only detects objects within the

context. However, our algorithm maintains a very high pre-

cision, which applies to a broader range of working situa-

tions, with slightly lower recall. Nevertheless, combining

the result of our method and DSS (red) obtains the best per-

formance in terms of both precision and recall.

Generalization to imperfect scene template images.

Our method can work not only on perfect scene template

images, but also images in the wild. Thanks to the tem-

plate classification and alignment component, our method

can find the right place in the input scene to apply the con-

text model. To evaluate, we randomly pick 2,000 images

that are not used for training from the SUN-RGBD dataset.

This uniformly sampled testing set reflects the scene distri-

bution from the dataset, and contains many images that can-

not be perfectly represented by any of the scene templates.

We test DSS on this test set and achieve 26.80% mAP (Ta-
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bed
night-

dresser
coffee mirror end

lamp monitor ottoman sofa chair table
stand table dresser table

COG [31] 79.8 48.1 1.70 - - - - - - 55.8 72.9 58.4

DSS [34] 90.3 52.3 7.60 52.7 4.40 13.3 40.2 15.0 23.7 71.3 79.1 75.2

Ours 89.4 63.3 19.7 40.5 16.8 27.9 41.6 18.2 13.3 50.3 44.5 65.9

Ours + DSS 91.8 66.7 23.4 50.1 10.0 35.3 53.6 23.2 31.5 62.8 80.2 77.4

GT Align 92.4 64.4 19.7 49.3 23.4 25.0 31.4 16.0 15.8 63.6 46.1 70.4

GT Align+Scene 94.1 66.3 19.4 48.9 23.4 21.7 31.4 16.1 15.8 74.6 50.2 74.0

DSS, Full 75.7 30.0 7.14 19.5 0.64 11.7 20.9 1.80 8.49 51.7 52.9 41.1

Ours, Full 75.8 44.1 15.7 25.8 4.99 12.4 22.4 3.47 10.7 49.0 53.2 30.5

Table 1. Average precision for 3D object detection. We (row 3) achieve comparable performance with DSS [34] (row 2). Combining two

methods (row 4) achieves significantly better performance, which shows our model learns context complementary to local appearance. Our

model can further achieve better performance with better alignment and scene classification. The last row shows our superior performance

on extended testing set where images might not be perfectly represented by any single scene template.

Layout Estimation Sleeping Office Lounging Table

(Mean/Median) Area Area Area &Chair

Ceiling Initial 0.57/0.56 - - 0.84/0.71

Ceiling Estimate 0.45/0.40 - - 0.72/0.44

Floor Initial 0.30/0.25 0.28/0.24 0.25/0.23 0.22/0.20

Floor Estimate 0.10/0.09 0.09/0.06 0.22/0.16 0.08/0.05

Wall Initial 0.40/0.30 0.70/0.60 - -

Wall Estimate 0.22/0.08 0.60/0.21 - -

Table 2. Error (in meter) for room layout estimation. Our net-

work reduces the layout error upon initialization from the transfor-

mation network. Note that for some scene categories, the ceiling

and wall may not be visible from the images and therefore there

are no annotations (marked with “-”).

ble 1, the 2nd last row), which is similar to the performance

reported in [34]. We further run our method on testing im-

ages with the template classification confidence higher than

0.95, which ends up choosing 1,260 images. We combine

our result with DSS, and the performance is shown in the

last row of Table 1. As can be seen, our model successfully

wins in 10 out of 12 categories, and improves the mAP to

29.00%. This improvement shows that our model can be

applied to a variety of indoor scenes. It is also extremely

effective in improving the scene understanding result in the

aligned sub-area.

6.2. Room Layout and Total Scene Understanding

Layout estimation. As part of our model, we can esti-

mate the existence and location of the ceiling, floor, and the

wall directly behind the camera view. Table 2 shows quan-

titative evaluation. We can see that the 3D context network

can successfully reduce the error and predict a more accu-

rate room layout. Note that for some scene categories, the

ceiling and wall are usually not visible from the images.

These cases are marked as “-”.

Scene understanding. We use the metrics proposed in

[32] to evaluate total 3D Scene Understanding accuracy.

These metrics favor algorithms producing correct detections

for all categories and accurate estimation of the free space.

We compare our model with Ren et al. (COG) [31]. For

geometry precision (Pg), geometry recall (Rg), and seman-

Method Sym.
Sleeping Office Lounging Table

Area Area Area &Chair

ICP No 75.6% 69.2% 58.5% 38.1%

ICP Yes 96.3% 89.0% 92.5% 75.3%

Network No 92.7% 87.9% 71.7% 44.3%

Network Yes 100.0% 93.4% 94.3% 73.2%

(a) Rotation Estimation Accuracy↑

Method Rot.
Sleeping Office Lounging Table

Area Area Area &Chair

ICP - 0.473 0.627 1.019 0.558

Network GT 0.278 0.246 0.336 0.346

Network Est 0.306 0.278 0.606 0.332

(b) Translation Error (in meters) ↓
Table 3. Evaluation of the transformation networks. Our trans-

formation network outperforms direct point cloud matching in the

accuracies of both rotation and translation.

tic recall (Rr), we achieve 71.02%, 54.43%, and 52.96%,

which all clearly outperform 66.93%, 50.59%, and 47.99%
from COG. Note that our algorithm uses only the depth map

as input, while COG uses both color and depth.

6.3. System Component Analysis

Our 3D context network relies on the initial alignment

produced by scene template classification and transforma-

tion estimation model. We also investigate how these fac-

tors affect our performance.

Transformation Prediction. Table 3 reports the evalua-

tion of template alignment. For rotation, we show the per-

centage of data within a 10 degree range to the ground truth.

For translation, we show the distance between the estimated

translation and the ground truth.

For rotation, since some scenes (especially for lounging

area and table&chair set) are symmetric with respect to the

horizontal plane, a correct estimation of the main direction

would be enough for our purposes. Therefore, we report the

accuracies both with and without symmetry [Sym.].

To compare with our neural network-based approach, we

design an ICP approach based on point cloud alignment as a

baseline. Given a point cloud from a testing depth map, we

align it with the point cloud of each image in the training set,
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nightstand ottoman table

lamp
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garbage bin
endtable speaker monitor

coffee table

Depth + Truth Initial Alignment Initial Alignment (Top View) Result in 2D Result in 3D

Figure 8. Visualization of the qualitative results on the testset.

by exhaustively searching for the best rotation and transla-

tion, using the measurement in Section 5. We choose the

alignment with the best aligned training depth map as our

transformation. We can see that our neural network based

approach significantly outperforms this baseline.

To see how sensitive our model is to the initial alignment,

we evaluate our model with the ground truth alignment, and

the result is shown in Table 1 [GT Align]. We can see that

the 9 out of 12 categories are improved in terms of AP, com-

pared to that with estimated transformation, and the overall

mAP improves 2.19%.

Template Classification. The accuracy of the scene tem-

plate classification is 89.5%. In addition to the ground truth

transformation, we test our model with truth template cate-

gory. This further improves the mAP by 1.52%.

7. Conclusion

We propose a 3D ConvNet architecture that directly en-

codes context and local evidence leveraging scene template.

The template is learned from training data to represent the

functional area with relatively strong context evidence. We

show that context model provides complementary informa-

tion with a local object detector, which can be easily in-

tegrate. Our system has a fairly high coverage on real

datasets, and achieves the state of the art performance for

3D object detection on the SUN-RGBD dataset.
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