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Abstract

Deep Convolutional Neural Networks (CNNs) achieve

substantial improvements in face detection in the wild.

Classical CNN-based face detection methods simply stack

successive layers of filters where an input sample should

pass through all layers before reaching a face/non-face de-

cision. Inspired by the fact that for face detection, filters in

deeper layers can discriminate between difficult face/non-

face samples while those in shallower layers can efficiently

reject simple non-face samples, we propose Inside Cascad-

ed Structure that introduces face/non-face classifiers at d-

ifferent layers within the same CNN. In the training phase,

we propose data routing mechanism which enables differ-

ent layers to be trained by different types of samples, and

thus deeper layers can focus on handling more difficult sam-

ples compared with traditional architecture. In addition, we

introduce a two-stream contextual CNN architecture that

leverages body part information adaptively to enhance face

detection. Extensive experiments on the challenging FD-

DB and WIDER FACE benchmarks demonstrate that our

method achieves competitive accuracy to the state-of-the-

art techniques while keeps real time performance.

1. Introduction

Face detection is essential to many face applications (e.g.

face recognition, facial expression analysis). However, the

large visual variations of face, such as occlusion, large pose

variation, and extreme illumination impose great challenges

for face detection in unconstrained environments. Recently,

deep convolutional neural networks (DCNNs) achieve re-

markable progresses in a variety of computer vision tasks,

such as image classification [8], object detection [5], and

face recognition [19]. Inspired by this, several studies

[13, 14, 25, 27, 29, 23, 26] utilize deep CNNs for face de-

*Corresponding author

(a)

(b)

(c)

Figure 1. (a) An example of face detection result using our pro-

posed method. It leverages Inside Cascaded Structure (ICS) to

encourage the CNN to handle difficult samples at deep layers, and

utilizes the two-stream contextual CNN to exploit the body part

information adaptively. (b) Illustration of the proposed ICS and

Data Routing (DR) training. (c) Illustration of two-stream contex-

tual CNN and Body Part Sensitive Learning (BPSL). Solid arrows

denote the samples processed in the forward pass, while the dashed

arrows are for backward propagation. Best viewed in color.

tection and achieve the leading detection performance.

The key part of recent CNN-based face detection meth-

ods is to train a powerful CNN as a face/non-face classifier.

Previous works formulate the feature extractor and classifier

in an end-to-end learning framework to obtain high accura-
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cy. For an arbitrary sample, the feature is extracted through

a forward pass of all the layers. However, this is inefficien-

t because the filters in deeper layers should focus on dis-

criminating difficult non-face samples while easy non-face

samples can be rejected in shallower layers.

Different from previous works, we notice that differen-

t layers of CNN can learn features of different perceptions

that are suitable for discriminating face/non-face examples

of different difficulties. This insight inspires us to treat C-

NN as a cascade of layer classifiers and use them to han-

dle samples of various difficulties. In our approach, filters

in different layers are optimized for different types of sam-

ples in the training process. More specially, we construct

cascaded classifiers inside the CNN, and introduce a data

routing strategy to guide the data flow for optimizing layer

parameters (see Fig. 1(b)). This architecture allows deeper

layers to focus on discriminating faces and difficult non-

face samples while easy non-face samples are rejected in

shallower layers. Experiments show that this method not

only reduces the computation cost in testing stage but also

increases detection accuracy.

Contextual information yields effective cues for object

detection [28]. In this paper, we propose to leverage body

information to enhance face detection accuracy. However,

roughly cropping body region cannot perform well in prac-

tice, since there may exist large visual variations of body

regions in real-world, caused by various pose, body occlu-

sions, or even body absence. To relieve this difficulty, we

propose a two-stream contextual CNN that joint body part-

s localization and face detection in an optimal way. This

network can automatically predict the existence of the body

part and thus exploit the contextual information adaptively.

We call this process Body Part Sensitive Learning (BPSL,

see Fig. 1(c)).

The main contributions of this paper are as summarized

following: (1) We propose a novel deep architecture with a

cascade of layer classifies for face detection and introduce

data routing strategy to train this architecture in an end-to-

end way. This architecture encourages layers to focus on

rejecting non-face samples of different types. (2) We pro-

pose to jointly optimize body part localization and face de-

tection in a two-stream contextual CNN that exploits body

information to assist face detection by learning filters sensi-

tive to the body parts. (3) Extensive experiments show that

our method achieves competitive accuracy to the state-of-

the-art techniques on the challenging FDDB and WIDER

FACE benchmarks while keeps real time performance.

2. Related Works

Face detection attracts extensive research interests and

remarkable progresses have been made in the past decade.

The cascaded face detector [20] utilizes Haar-Like features

and AdaBoost algorithm to train a cascade of face/non-face

classifiers which achieves a good accuracy with real-time

efficiency. A few works [17, 22, 30] improve this cascad-

ed detector using more advanced features and classifiers.

Besides the cascade structure, [21, 31, 16] introduce de-

formable part models (DPM) for face detection and achieve

remarkable performance. However, they are computation-

ally expensive and usually require expensive annotation in

the training stage.

Recently, several CNN-based face detection techniques

show state-of-the-art performance. Faceness [25] uses some

CNNs trained for facial attribute recognition to obtain re-

sponse map of face regions that further yield candidate face

windows. It shows impressive performance on the face with

partial occlusion. Zhang et al. [29] propose to jointly solve

face detection and alignment using multi-task CNNs. Con-

vnet [14] integrates a CNN and a 3D mean face model in an

end-to-end multi-task learning framework. UnitBox [27]

introduces a new intersection-over-union loss function.

How to use CNN with cascade structure is widely stud-

ied. Cascaded CNN based methods [13, 29, 18] treat C-

NN as a face/non-face classifier and use hard sample min-

ing scheme to construct a cascade structure outside CNNs.

However, filters inside a CNN are stacked layer by layer and

these methods ignore the correlation among these cascaded

filters. [24] proposes to train cascaded classifiers using Ad-

aBoost algorithm and features from different fixed layers

for higher testing speed. However, it separates the CNN op-

timization and cascaded classifiers optimization. Therefore,

the filters from different layers do not specialize in handling

in different kinds of data which is adverse for cascaded clas-

sifiers performance. In this work, we propose the inside

cascade structure to feed different layers with different da-

ta. This method can encourage deeper layers to focus on

discriminating faces and difficult non-face samples. There-

fore, it can produce data-specific features in different layers

and also handle different data in different layers properly.

On the other hand, the effectiveness of using contextual

information for object detection has been demonstrated in

[28]. It crops regions of different sizes from convolutional

feature maps using ROI pooling and makes a classification

based on these features.

3. Overall Framework

We use a cascaded CNN framework as our basic due to

its good performance and runtime efficiency [13, 29, 18].

Different from these works, for the CNN-based face/non-

face classifier, we introduce the Inside Cascaded Structure

(ICS) and combine contextual CNN for more robust face

detection. In general, the framework has three stages as

shown in Fig. 2 (a). It contains three successive CNNs: Pro-

posal Net (P-Net), and two Refinement Nets (R-Net-1 and

R-Net-2). P-Net is a fully convolutional CNN that quickly

produces candidate windows through a sliding scan on the
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Figure 2. (a) The pipeline of our overall face detection framework, which contains three stages. Face proposals are generated from the

input image in the first stage and refined in the next two stages. (b) An example of inside cascaded two-stream contextual CNN structure.

It is a combination of Inside Cascaded Structure (ICS) and two-stream contextual CNN.

whole image in different scales (image pyramid). R-Net-1

and R-Net-2 are the inside cascaded two-stream contextu-

al CNN (shown in Fig. 2 (b)), which will be discussed in

the following text. These two networks will refine the can-

didates from P-Net (i.e., patch cropped from input image)

by bounding box regression and reject the remaining false

alarms.

4. Inside Cascaded Structure

In most CNN-based face detectors, the key part is to train

a powerful face and non-face classifier. In this section, we

present the Inside Cascaded Structure (ICS) that is capable

of learning more effective filters and achieving faster run-

ning speed. Compared to traditional CNNs structure, ICS

has two extra components, Early Rejection Classifier (ER-

C) and Data Routing (DR) layer. Illustrations of ICS and its

data flow are given in Fig. 1 (b).

Each pooling layer of the CNN is connected to an ER-

C that predicts the probability of a sample being a face for

each sample. These probabilities will be passed to the DR

layer to determine what samples should be passed to the fol-

lowing layers. Faces and hard non-face samples will retain

in deeper layers while easy non-face samples will be reject-

ed in the shallower layer. This strategy allows deeper layers

to focus on discriminating faces and difficult non-face sam-

ples while easy negative samples are addressed in shallower

layers. Therefore, deeper layers can focus on handling more

difficult samples compared to traditional CNN. In addition,

easy negative samples are rejected quickly and testing com-

putation cost can be reduced. The ERC and DR layer will

be presented in the following text.

4.1. Early Rejection Classifier

The ERC is a small classifier for face and non-face clas-

sification. The probability of being a face predicted from

ERC will be passed to the next DR layer to determine

whether the sample should be passed to the following lay-

ers or not. The ERC can be introduced to one or multiple

layers of the neural network (a simple example is shown in

Fig. 3). In particular, for a sample i in the j-th ERC, we

first compute a vector zij ∈ R
2 by:

zij = φj(fea
i
j), (1)

where feaij is the features in j-th pooling layer, φj(·) de-

notes the non-linear transformation of the j-th ERC.

Then we use the softmax function to compute the proba-

bility pij for sample i being a face:

pij =
ez

i
j,1

ez
i
j,1 + ez

i
j,2

, (2)

where zij,1 is the first element in zij , similar for zij,2.

We use the cross-entropy loss for training ERC to dis-

criminate face and non-face regions:

Li
j = −(ydeti log (pij) + (1− ydeti )(log (1− pij))), (3)

where Li
j denotes cross-entropy loss for sample i in the j-th

ERC and ydeti ∈ {0, 1} denotes the ground-truth label.

4.2. Data Routing Layer

The DR layer receives the probabilities from last ERC

for the samples. If the probability of a sample being a face

is lower than a preset threshold θ, the sample will be reject-

ed as non-face sample and stop being processed in forward
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Figure 3. An example of neural network in ERC and CNN architectures of P-Net, R-Net-1 and R-Net-2. ERC denotes Early Reject

Classifier. DR denotes data routing layer. MP denotes max pooling. PReLU [6] is used as activation function.

pass. The remaining samples will continue in the following

layers. In other words, DR layer will change the sample set

for the following network components. Let Ωj be the set of

samples retained in j-th DR layer (Ω0 is the whole training

set), we have:

Ωj = Ωj−1 − ΩR
j , (4)

where ΩR
j denotes the set of samples rejected in the j-th DR

layer. We have a sample i ∈ ΩR
j if pij < θ. The experimen-

t and evaluation on θ’s sensitiveness are presented in Sec.

6.2.

4.3. Training Process

In addition to ERC classifiers, there is a final face and

non-face classifier and a bounding box regressor after the

last convolutional layer. The CNN with ICS can be opti-

mized using regular stochastic gradient descent [10] and the

optimization of different layers are different due to the dif-

ferent training samples sets selected by the DR layers. In

this way, deeper layers’ optimization is guided by difficult

samples.

4.4. Testing Process

In the testing process, each sample will go through the

forward pass of the network until it is rejected by one of the

DR layers. Easy non-face samples will be rejected in shal-

lower layers while faces and difficult non-faces samples will

be discriminated in the deeper layers or the final classifier

with bounding box regression. This strategy actually accel-

erates the detection process since the easy non-face samples

(huge numbers in practice) can be rejected in early layers.

5. Two-stream Contextual CNN

In this section, we will introduce the proposed two-

stream contextual CNN and Body Part Sensitive Learning

(BPSL) that jointly optimizes body parts localization and

face detection to help the CNN to exploit body information

adaptively in large visual variations.

5.1. Network Architectures

The network architectures of R-Ne1 and R-Net2 are

shown in Fig. 3. In the two-stream contextual CNN, we

use two images (face and body regions) as input. The body

region is roughly cropped according to the face location pre-

dicted in the previous stage. These two inputs are fed to face

CNN and body CNN separately. Then we concatenate the

features from the last fully-connected layers in these two

CNNs and pass them to a classifier to make face/non-face

classification and a regressor for bounding box regression.

In this way, CNN can exploit not only the face but also body

information.

5.2. Body Part Sensitive Learning

As above, the body region is roughly cropped according

to face location predicted in last stage. However, there may

exist large visual variations of this additional region, such

as occlusions for the body, large human pose change, or

even the absence of the body. Hence, we propose to use a

body CNN to model the appearance of the body parts. In

particular, we aim to learn the CNN filters that are sensitive

to the body parts and showing discriminative appearance

in convolutional features. Such that the extracted features

can assist face detection adaptively. This is different from

the existing method [28] that simply uses a larger exterior
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region for classification.

For body part localization, using CNN to generate body

part score map is very prevalent [3, 1, 2] and thus we use

the body part score map as supervision signal in our meth-

ods. It will encourage CNN to learn visual body appearance

related filters and naturally formulates the cases where the

body parts are occluded or even whole body region is absen-

t. Specifically, in training processing, after the last convolu-

tional layer in body CNN, there is a deconvolutional layer

that generates multiple body part score maps (each score

map indicates a kind of body part, see Fig. 3). The score

maps are defined as Gaussian distributions around the anno-

tated body joint location. For the predicted score maps and

ground truths, we use Euclidean loss as the loss function

E =

n∑

i=1

m∑

j=1

∣∣∣∣ŷij − yij
∣∣∣∣2
2
, (5)

where n denotes the number of score maps (i.e., body

joints), m denotes the number of pixels in each score map,

and ŷij and yij denote the predicted score and ground-truth

of j-th pixel in i-th map being a body part, respectively.

In the training process, only examples annotated with

body part location will be passed to deconvolutional layer

for the prediction of body part score maps. The face CNN

and body CNN are trained jointly.

6. Experiments

In the experiments, we will first present the implementa-

tion details (Sec. 6.1) and discuss the impact of threshold θ

(Sec. 6.2) and the loss weight λ (Sec. 6.3) of body part lo-

calization (Eq. (5)). Then, we evaluate the effectiveness of

body part sensitive learning in variant body poses or closed

up faces without body region in Sec. 6.4. Furthermore, we

evaluate the effectiveness of jointly using inside cascaded

structure and body part sensitive learning in Sec. 6.5. In

Sec. 6.6 and 6.7, extensive experiments are conducted on

two challenging face detection benchmarks (FDDB [7] and

WIDER FACE [26]) to verify the effectiveness of the pro-

posed approach over the state-of-the-art methods. In Sec.

6.8, we compare the runtime efficiency of our method and

other state-of-the-art methods.

Dataset statistics. FDDB contains the annotations for

5,171 faces in a set of 2,845 images. WIDER FACE dataset

consists of 393,703 labeled face in 32,203 images. In

WIDER FACE, 50% of the images are used for testing, 40%

for training and the remaining for validation. The valida-

tion and testing set is divided into three subsets according to

their detection rates on EdgeBox [32]. COCO [15] contains

105,968 person instances labeled with 17 kinds keypoints

(e.g. eyes, knees, elbows, and ankles).

6.1. Implementation details

The architectures of the three CNNs are shown in Fig.

3. P-Net, R-Net-1, and R-net-2 are trained with the batch

size of 6000, 1000, and 500 respectively. For P-Net and

R-Net-1, the learning rate starts from 0.1, and divided by 5

at the 20K, 40K, and 60K iterations. A complete training

is finished at 70K iterations. For R-net-2, the learning rate

starts 0.01, and divided by 5 at the 25K, 40K, 50K, and 60K

iterations. A complete training is finished at 70K iterations.

For face/non-face classification and bounding box re-

gression, we construct training and validation data set from

WIDER FACE in our experiments. For the P-Net, we

randomly collect positive samples with Intersection-over-

Union (IoU) ratio above 0.65 to a ground-truth face and

negative samples with IoU ratio less than 0.3 to any ground-

truth faces. In particular, there are 4,000,000 training im-

ages and 1,000,000 validation images collected from the

WIDER FACE training and validation images, respective-

ly. And the negative/positive ratio is 3:1. For R-Net-1, we

use stage1 in our detection framework as an initial face de-

tector to collect training images from WIDER FACE. For

R-Net-2, we use a similar way with stage1 and stage2 to

collect training images from WIDER FACE.

For body part sensitive learning, we first use MTCNN

[29] to detect faces in COCO [15]. Then we generate the

body part score maps from all person instances labeled with

keypoints as training data. In each mini batch, the number

of images for body part localization is equal to 25% num-

bers of images for face/none-face classification.

6.2. Experiments on the threshold θ

Parameter θ denotes the threshold probability of being a

face used in DR layer. If the probability is lower than θ, the

sample will be rejected as a negative sample and stop being

processed in forward pass. As discussed above, ICS helps

to train a more powerful face/non-face classifier. Therefore

we evaluate the classification accuracy on the validation set

(for details about the validation set see Sec. 6.1).

In this experiment, to remove the effect of body part sen-

sitive learning, we fix the loss weight λ to 0 and vary θ from

0 to 0.02 to learn different R-Net-2 models. The accuracies

of these models on constructed validation set are shown in

Fig. 4. It is clear that the accuracy first increases and then

decreases along with θ raising. It is a trade-off to set proper

θ to keep high recall in DR layer and utilize ICS to reject

negatives as early as possible. In addition, please be noted

that if we set θ as 0, it is equivalent to deeply supervised net

[11] that gets lower accuracy.

Finally, we set θ as 0.01 for both R-Net-1 and R-Net-

2. Though 0.01 seems small, it can help DR layer to reject

nearly 70% negative samples before the last classifier.
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Figure 4. Comparison of face/non-face classification accuracy of

models (λ = 0) trained with different θ on validation set. Note

that when θ = 0, it is equivalent to deeply supervise [11].

6.3. Experiments on the loss weight λ

Parameter λ is the loss weight of body part localization

(Eq. (5)). It is used to balance the body part localization

loss, face/non-face classification loss, and bounding box re-

gression loss. In body part localization, the loss is the sum

of all Euclidean loss computed in each pixel of the score

maps (Eq. (5)) and thus its scale is much larger than that

of face/non-face classification and bounding box regression,

Hence we have to set a relatively small λ to normalize such

a large-scale loss. The contribution of BPSL is also to train

a more powerful face/non-face classifier. So, we use the

same experiment setting as Sec. 6.2.

In this experiment, we do not use ICS (i.e., ERC and DR

layer) and vary λ from 0 to 0.04 to learn different R-Net-2

models. The accuracies of these models on validation set

are shown in Fig. 6. The accuracy first increases and then

decreases. This is because the body CNN will focus more

on localizing body part and less on exploiting contextual

information for face detection. Therefore, we fix λ to 0.015

for both R-Net-1 and R-Net-2 in other experiments.

6.4. Effectiveness of body part sensitive learning in
variant body poses or without body region

Our method learned both the body parts locations and

whether the body parts are presented or not to adaptively

exploit the contextual body information. Thus, our method

also performs well for variant body poses and faces without

Figure 5. Evaluation of BPSL on face detection with large vari-

ant body poses (left) and faces without body region (right). Best

viewed in color.

Figure 6. Comparison of face/non-face classification accuracy of

models (without ICS) trained with different λ on validation set.

body region. To verify this, we select 400 faces with variant

body poses (e.g, lying, doing sport) and another 400 faces

without body region (i.e. absent or occluded) from the FD-

DB dataset for evaluation. The evaluation results of only

using face CNN and using two-stream CNNs with/without

BPSL (i.e., localize body part in training) are shown in Fig.

5. These results indicate that using BPSL can achieve sig-

nificant performance improvement in large body pose vari-

ation and is robust to faces without body region.

6.5. Effectiveness of jointly using inside cascaded
structure and body part sensitive learning

To evaluate the contribution of jointly using the insid-

e cascaded structure (ICS) and body part sensitive learning

(BPSL), we train four R-Net-2 networks with and without

ICS (i.e., ERC and DR layer) and BPSL (i.e., localize body

part in training). We use the same experiment setting as

Sec. 6.2 and 6.3. Table 1 shows the accuracy of four d-

ifferent R-Net-2 networks on the validation set (’Baseline’

denotes neither use ICS nor BPSL ). It is obvious that joint-

ly using ICS and BPSL significantly improve the accuracy.

In particular, ICS significantly improves positives accuracy.

It demonstrates that the last classifier can handle more dif-

ficult faces since most faces and only a few very difficult

non-face samples are passed to the last classifier.

We also evaluate the overall detection performance im-

provement of using ICS and BPSL. We first train four R-

Net-1 networks and four R-Net-2 networks with and with-

out ICS and BPSL. Then we compare the overall perfor-

mance of our framework on FDDB shown in Fig. 7. It is

obvious that jointly using ICS and BPSL can significantly

improve overall detection performance.

6.6. Evaluation on FDDB

We evaluate the performance of our face detection

method on FDDB against the state-of-the-art methods [14,

18, 29, 25, 16, 9, 23, 13, 4, 21, 12, 27]. The results of perfor-

mance comparison are shown in Fig. 7, which demonstrate

the state-of-the-art performance of the proposed method.
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Figure 7. Receiver Operating Characteristic curves (ROC) obtained by our proposed method (with different proposed components) and

other techniques on FDDB. ICS denotes inside the cascaded structure (i.e., ERC and DR layer). BPSL denotes body part sensitive learning

(i.e., localize body part in training). ’Baseline’ denotes neither use ICS nor BPSL. Best viewed in color.

Method Overall Positives Negatives

Baseline 95.92% 90.78% 97.63%

BPSL 96.67% 91.23% 98.48%

ICS 97.12% 92.18% 98.76%

ICS+BPSL 97.43% 92.52% 99.06%

Table 1. Comparison of face/non-face classification accuracy of

different proposed components on validation set. ”Baseline” de-

notes neither use ICS nor BPSL.

Some examples of face detection results are shown in Fig.

8 (a).

6.7. Evaluation on WIDER FACE

WIDER FACE is a more challenging benchmark than

FDDB in face detection. It is divided into three subsets

(Easy set, Medium set, and Hard set) based on their de-

tection rates with EdgeBox [32]. We compare our proposed

method against the state-of-the-art methods [26, 25, 29] on

the three subsets. Fig. 8 (a) shows some examples of face

detection results and Fig. 9 shows the comparison result.

It is very encouraging to see that our model consistently

achieves the competitive performance across the three sub-

sets. Especially on the hard set, our method can achieve a

significant performance improvement over the state-of-the-

art. Interestingly, our method gets significant improvement

on hard set but is just comparable to the best-performing

one on easy and medium sets. A major reason is that our

method successfully detects many very hard faces, but some

of which are miss-labeled ones in the three sets (i.e, the an-

notators miss these faces). These miss-labeled faces with

high detection scores (some examples are shown in Fig.

8) will decrease the recall in high precision areas of the

precision-recall curves.

6.8. Runtime Efficiency

Given the inside cascade structure, our method can

achieve high speed by rejecting many negative samples in

early stages. We compare our method with several state-of-

the-art techniques for typical 640×480 VGA images with

20×20 minimum face size and the results are shown in Ta-

ble 2. We achieve about 40 FPS on GPU and 12 FPS on

CPU. Such computation speed is quite fast among the state-

of-the-art. It is noted that our current implementation is

based on un-optimized MATLAB codes.

Method GPU Speed CPU Speed

UnitBox [27] 12 FPS (Tesla K40) -

Faceness [25] 20 FPS (Titan Black) -

MTCNN [29] 99 FPS (Titan Black) 16 FPS

Ours 40 FPS (Titan Black) 12 FPS

Table 2. Speed comparison with other state-of-the-art methods.

CPU speed is based on Intel-4770K.

7. Conclusion

In this paper, we develop two new strategies to improve

the performance of cascaded CNN for face detection. First,

we propose the inside cascaded structure (ICS) that con-

structs cascaded layer classifies inside a CNN to rejects

negative samples layer wise. It encourages deeper layers
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(a)

(b)

Figure 8. (a) Examples of face detection results on FDDB (first row) and WIDER FACE (second row). (b) Examples of some false positives

(green) obtained by our proposed method and ground-truths (red) on WIDER FACE validation set. The red number is the probability of

being a face obtained by R-Net-2. The cases in the first row fail because of miss-labeling and the cases in the second row fail due to the

large variations of bounding box annotation.

(a) (b) (c)

Figure 9. Precision-Recall curves obtained by our proposed method and the other strong baselines on WIDER FACE. (a) Easy set, (b)

Medium set and (c) Hard set. Best viewed in color. All methods above use the same training and testing protocol. Our method achieves

the state-of-the-art results on hard set by a large margin and competitive result on other two sets. Best viewed in color.

to focus on handling difficult samples, while utilizes shal-

lower layers to reject easy non-faces quickly. In particular,

we propose the data routing training approach to end-to-end

train ICS. In addition to ICS, we propose to jointly optimize

body part localization and face detection in a two-stream

contextual CNN to improve the robustness of our model.

Finally, we develop a unified framework to combine these t-

wo components which achieve the competitive performance

on the challenging FDDB and WIDER FACE face detection

benchmarks while keeps real time performance.
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