
Distributed Very Large Scale Bundle Adjustment by Global Camera Consensus

Runze Zhang

rzhangaj@cse.ust.hk

Siyu Zhu1

szhu@cse.ust.hk

Tian Fang2

fangtian@altizure.com

Long Quan

quan@cse.ust.hk

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

Abstract

The increasing scale of Structure-from-Motion is funda-

mentally limited by the conventional optimization frame-

work for the all-in-one global bundle adjustment. In this

paper, we propose a distributed approach to coping with

this global bundle adjustment for very large scale Structure-

from-Motion computation. First, we derive the distributed

formulation from the classical optimization algorithm AD-

MM, Alternating Direction Method of Multipliers, based

on the global camera consensus. Then, we analyze the

conditions under which the convergence of this distributed

optimization would be guaranteed. In particular, we adopt

over-relaxation and self-adaption schemes to improve the

convergence rate. After that, we propose to split the large

scale camera-point visibility graph in order to reduce the

communication overheads of the distributed computing.

The experiments on both public large scale SfM data-sets

and our very large scale aerial photo sets demonstrate that

the proposed distributed method clearly outperforms the

state-of-the-art method in efficiency and accuracy.

1. Introduction

With the popularization of smartphones and unmanned

aerial vehicles, larger collection of images with high quality

and resolution are available, which give rise to dramatic

increment of the scale of Structure-from-Motion. Some

works try to tackle city level and even world level SfM, such

as works in [21, 13, 1, 19, 16, 25, 26, 24]. But, these works

do not globally optimize the results in the end, since the

global optimization called bundle adjustment has too large

scale cost to be completed by limited memory and time.

The bundle adjustment is the non-linear optimization to

refine the camera parameters and 3D points in the end of

1Siyu Zhu is the corresponding author.
2Tian Fang is with Shenzhen Zhuke Innovation Technology since 2017.

Structure-from-Motion. The Levenberg-Marquardt algo-

rithm [31] with Schur complement is the most common

method to optimize the bundle adjustment formulation,

which takes advantages of the sparsity in the multiple-

view geometry problem. The work [3] tries to improve the

efficiency of the large scale bundle adjustment problem by

factorization and precondition method, and [7] proposes a

method to group factors for the bundle adjustment problem.

The preconditioner based on the camera visibility graph is

also adopted in work [17, 20] to improve the efficiency of

LM algorithm. The work [33] implements the optimization

algorithm of bundle adjustment in parallel for acceleration

by improving the CPU utilization. However, those methods

are still single-core methods which cannot solve the prob-

lem with too large scale to be loaded into memory.

Some works try to tackle the large scale bundle ad-

justment problem by out-of-core algorithms [23, 22] and

the distributed system [12] to break through the memory

limitation of the single-core algorithm. The out-of-core

method [23] splits the large scale bundle adjustment prob-

lem into several small problems, solves the small problems

in parallel and merges them iteratively by the optimization

of overlapping region of those small problems. However,

for densely captured data-sets, the splitting will yield too

large overlapping regions to be loaded into memory to

do optimization. Besides, the I/O overhead induced by

overlapping regions is also too high. In the following

work [22], the author utilizes a hierarchical framework

to split the large problem and merge small problems in

each level by the smooth method [8]. Nevertheless, the

hierarchical framework sacrifices the degree of parallelism

and is difficult to implement in a distributed system. The

smooth method to merge small problems cannot guarantee

the bundle adjustment result is optimized.

The work in [12] proposes a consensus framework to

deal with large scale bundle adjustment in distributed sys-

tem. Instead of merging small problems by the optimization

29

of overlapping regions of small problems, the consensus

framework utilizes the proximal splitting method to for-

mulate the bundle adjustment problem, in which the small

problems are merged by averaging points in fact, decreasing

the cost of merging. The merging process for the same

parameters guarantees the consensus of points in different

nodes. Thus, we call this method point consensus based

distributed bundle adjustment. However, the consensus

framework based on point consensus and splitting by cam-

eras in [12] still has some problems in practice. Firstly,

in each iteration, each node in the distributed system has

to broadcast all overlapping points to the master node to

complete the merging process, which is a huge overhead

for large scale data-sets. Secondly, parameters of each

camera are independent of parameters of other cameras.

However, in practice, some cameras may share the same

intrinsic parameters. Thirdly, the method by merging points

converges a little slowly in very large scale data-sets and

may converge in a local minimum early.

To solve above problems, referring to space division

based methods [35, 34], we propose an improved consensus

framework by camera consensus and splitting points. In

summary, our contributions primarily are as follows:

1. We propose a general consensus framework regardless

of the number of parameters of camera and take con-

sideration of the common intrinsic parameters;

2. We analyze the conditions of convergence in detail and

adopt the over-relaxation and self-adaption scheme to

improve the convergence rate;

3. We propose a splitting method to minimize the over-

head in the distributed system.

The rest of the paper is organized as follows. We

will first review the bundle adjustment problem and the

camera model in section 2.1. Then, we will introduce

the ADMM algorithm and the consensus method based on

the ADMM in section 2.2. In section 2.3, we derive the

iteration Equations for camera consensus based distributed

bundle adjustment from the ADMM algorithm. After that,

we will analyze the conditions to guarantee the conver-

gence in 3.1. The relaxation and self-adaption scheme

are introduced in section 3.2 to improve the convergence

rate. In section 4, we propose a scalable splitting method

to minimize the overhead in the distributed system and

describe the implementation detail. At last, we will show

the experimental results in section 5, demonstrating that our

method can solve the large scale bundle adjustment problem

in a distributed system efficiently and accurately.

2. The Distributed Formulation

In this section, we will first introduce the bundle adjust-

ment problem and the camera model. Then we will describe

the global consensus problem solved by the Alternating

Direction Method of Multipliers(ADMM) and then apply

the solution to the bundle adjustment problem by camera

consensus.

2.1. Bundle adjustment

Generally, camera parameters consist of extrinsic pa-

rameters and intrinsic parameters. Extrinsic parameters are

independent for different cameras but intrinsic parameters

may be shared by different cameras. Suppose we have

M observed 3D points, N cameras sharing L different

intrinsic parameters, note camera extrinsic parameter set

E = {ei ∈ R
C |i = 1, ..., N}, camera intrinsic parameter

set D = {dl ∈ R
I |l = 1, ..., L}, observed 3D point set

P = {pj ∈ R
3|j = 1, ...,M} and detected observation set

Q = {qij ∈ R
2|pj ∈ Qi}, where Qi is the set of points

viewed by the ith camera. Please note that ei is not the

extrinsic matrix of the ith camera, but the parameterization

of extrinsic parameters. The bundle adjustment is a non-

linear least square optimization problem to obtain the opti-

mized cameras and 3D points with the following objective

function:

f(E ,D,P) =
n∑

i=1

∑

pj∈Qi

||Π(ei,dli ,pj)− qij ||
2, (1)

where dli is the intrinsic parameters of the ith camera and

Π(ei,dli ,pj) computes the reprojection of the jth point in

the ith camera, which is non-linear and non-convex. The

computation Π(ei,dli ,pj) depends on the camera model

and we use the pinhole camera model with radial distortion.

Here, camera center ci and parameterization of rotation rRi

are used to express the extrinsic parameter of camera ei,

namely ei = (rRi, ci). The parameterization of rotation

will be discussed in section 3.1.

2.2. The global consensus based on ADMM

The ADMM algorithm [5] aims to solve the problem in

the form:

minimize f(x) + g(z)

subject to Ax+Bz = w
(2)

By the augmented Lagrangian multipliers method, we form

Lρ(x, z,y) = f(x)+g(z)+y
T
(Ax+Bz−w)+

ρ

2
||Ax+Bz−w||

2

2 (3)

The ADMM algorithm consists of the iterations:

xt+1 = argmin
x

Lρ(x, z
t,yt) (4)

zt+1 = argmin
z

Lρ(x
t+1, z,yt) (5)

yt+1 = yt + ρ(Axt+1 +Bzt+1 −w) (6)

30

In the implementation, x, y and z are updated by an

alternating fashion.

Now, we want to solve this global consensus problem:

minimize

n∑

i=1

fi(xi)

subject to xi = z, i = 1, ..., n

(7)

Using ADMM, we can derive the iteration expression as

x
t+1

i = argmin
xi

(
fi(xi) +

(
y
t
i

)T
(xi − z

t
) +

ρ

2
||xi − z

t
||
2

2

)
(8)

z
t+1

=
1

n

n∑

i=1

x
t+1

i (9)

y
t+1

i = y
t
i + ρ(x

t+1

i − z
t+1

), i = 1, ..., n (10)

Substituting yi = ρui, we can express equations 8 and 10

as

xt+1
i = argmin

xi

fi(xi) +
ρ

2

∥∥xi − (zt − ut
i)
∥∥2
2

(11)

ut+1
i = ut

i + xt+1
i − zt+1, (12)

Defining the proximity operator proxf/ρ of one function

f(x) with ρ > 0 as proxf/ρ(a) = f(x) + ρ
2 ‖x− a‖

2
2,

we can express the right of Eqn. 11 as proxfi/ρ(z
t − ut

i).
The computation of equations 11 and 12 can be performed

easily in a distributed system. Eqn. 9 actually averages the

results of optimization results in different nodes.

2.3. Camera Consensus

Actually, the iterations of equations 8, 9, and 10 are

indeed the Douglas-Rachford splitting method in [12]. By

clarifying the derivation of the method, we can explain the

stop criterion, over-relaxation and self-adaption scheme in

section 3. The work [12] performs the consensus framework

based on points. However, very large scale data-sets always

contain so many points that the distributed system has huge

overhead to broadcast those points. Besides, intuitively, the

averaging of too many variables in Eqn. 9 leads to slow

convergence rate. Hence, we try to reduce the overhead

of broadcasting of xi and yi in the averaging for very

large scale bundle adjustment problem by camera consensus

instead of points.

In order to broadcast cameras instead points in [12], we

split the whole bundle adjustment problem by points. Note

each block as Bk = (Ek,Dk,Pk), k = 1, ...,K, where Pk

is the set of points in the block so that Pk1
∩ Pk2

= φ
and

⋃
Pk = P . Since one camera may view points in

different block, extrinsic parameters of one camera can

appear in different block. We define eki as the extrinsic

parameter of the ith camera in block k and Ek = {eki |the

ith camera views points in the kth block}. Similar to

extrinsic parameters, one intrinsic parameter may be shared

Points

Camera

extrinsic

parameters

Camera

intrinsic

parameters

Figure 1: The camera extrinsic and intrinsic parameters with the

same color are the component of the same parameter in different

blocks. The links between cameras and points with the light color

are the lost links due to the splitting.

by cameras in different blocks, so we define dk
l as the lth

intrinsic parameter in the kth block and Dk = {dk
l |the

lth intrinsic parameter is shared by cameras in the kth

block}. Note ni and ml are the number of blocks where

the ith extrinsic or the lth intrinsic parameter appear. The

relationship of those parameters are shown in Fig. 1.

Then, we can modify the original bundle adjustment

problem in Eqn. 1 as

minimize

K∑

k=1

f(Ek,Dk,Pk)

subject to eki = ei, i = 1, ..., N, k = 1, ...,K

dk
l = dl, l = 1, ..., L, k = 1, ...,K

(13)

Using the ADMM algorithm, we can obtain the iterations
for the above problem:

(Ek,Dk,Pk)
t+1

= argmin f (Ek,Dk,Pk) + h (Ek,Dk,Pk) , ∀k (14)

e
t+1

i =

∑
Ek∋ek

i

(
ek
i

)t+1

ni

, ∀i,d
t+1

l =

∑
Dk∋dk

l

(
dk

l

)t+1

ml

, ∀l, (15)

(
ẽ
k
i

)t+1

=
(
ẽ
k
i

)t
+

(
e
k
i

)t+1

− e
t+1

i , ∀i, k

(
d̃

k
l

)t+1

=
(
d̃

k
l

)t
+

(
d

k
l

)t+1

− d
t+1

l , ∀l, k,

(16)

where f (Ek,Dk,Pk) is the bundle adjustment objective
function on variables in the kth block and

h (Ek,Dk,Pk) =
1

2

∑
ek
i
∈Ek

∥∥∥ek
i − e

t
i +

(
ẽ
k
i

)t
∥∥∥
2

Σe

+
1

2

∑
dk
l
∈Dk

∥∥∥dk
l − d

t
l +

(
d̃

k
l

)t
∥∥∥
2

Σd

+
ρp

2

∑
pj∈Pk

∥∥∥pj − p
t
j

∥∥∥
2

2

(17)

In Eqn. 17, unlike the method in [12] that the proximity

operator does not work on the non-consensus items, the

proximity operator here also works on points which do not

attend the consensus in Eqn. 9. The reason will be intro-

duced in section 3.1. For the term on camera parameters

in Eqn. 17, we use ‖ · ‖Σe
and ‖ · ‖Σd

to replace the

l2 norm, where Σe and Σd are a diagonal matrix whose

diagonal elements are formed by penalty parameters ρe and

ρd. Since each parameter has its domain, each parameter

should have their own penalty parameters according to its

range. In above iterations, equations 14 and 16 can be

implemented distributedly and camera parameters have to

be broadcasted to complete the computing in Eqn. 15. The

31

Algorithm 1 Distributed Bundle Adjustment based on Camera Consensus

1: function DBACC(E , P ,D,Q, K)

2: Initialize all ẽk
i and d̃k

l as 0

3: Initialize all ek
i and dk

l as the corresponding initial values of ei and dl

4: while the criterion in Eqn. 19 is not satisfied do

5: for each block k ∈ [1, K] distributedly do

6: for each extrinsic parameter ei in block k in parallel do

7: ẽk
i ← ẽk

i + ek
i − ei

8: for each intrinsic parameter dl in block k in parallel do

9: d̃k
l ← d̃k

l + dk
l − dl

10: (Ek,Dk,Pk)← argmin f (Ek,Dk,Pk) + h (Ek,Dk,Pk)

11: Broadcast Ek andDk of all nodes to the master node

12: Average Ek andDk in the master node by Eqn. 15 to get E andD

distributed bundle adjustment algorithm based on camera

consensus is concluded in Algorithm. 1.

Stopping criterion Referring to [6], we define the primal
residual rt and the dual residual st as

∥∥∥rt
∥∥∥
2

2
=

∑∥∥∥
(
e
k
i

)t
− e

t
i

∥∥∥
2

2
+

∑∥∥∥
(
d

k
l

)t
− d

t
l

∥∥∥
2

2∥∥∥st
∥∥∥
2

2
=

∑∥∥∥et+1

i − e
t
i

∥∥∥
2

Σe

+
∑∥∥∥dt+1

l − d
t
l

∥∥∥
2

Σd

+ ρ
2

p

∑∥∥∥pt+1

j − p
t
j

∥∥∥
2

2

(18)

Then, the stopping criterion is that l2 norms of the primal

residual and dual residual are less than their thresholds

∥∥rt
∥∥
2
< ǫpri,

∥∥st
∥∥
2
< ǫdual (19)

3. Convergence of Camera Consensus

In this section, we will first analyze the convergence

conditions for the proposed algorithm. Then, we will

discuss on some extensions to accelerate the algorithm.

3.1. Convergence conditions

ADMM algorithm requires that the function fi(x) in

Eqn. 7 should be convex. However, the bundle adjustment

objective function in Eqn. 1 is non-convex. Some works

such as [14, 18, 30] analyze the proximal splitting method

on non-convex problems and the work [12] proposes a s-

tatement for the convergence of Douglas-Rachford splitting

applied to the bundle adjustment problem with point con-

sensus without proof. In the following, we will analyze the

convergence conditions of the Algorithm 1 and provide the

provable statement for the convergence. The convergence

proof is provided in the supplementary material.

In the convergence proof of ADMM on convex functions

in [6], the proof depends on the convexity of Lρ(x, z
t,yt)

in Eqn. 4 guaranteed by the convexity of f(x), so that

xt+1 minimizes it. If f(x) is not convex, according to the

propositions and theorems in [18], f(x) must satisfy ∇f(x)
is local Lipschitz-continuous with Lipschitz constant ρmin,

which guarantees Lρ(x, z
t,yt) be convex when ρ > ρmin.

Since the Lipschitz-continuity is defined on all variables,

the proximity operator should work on all variables in

Eqn. 17, though points do not participate in the consensus.

Based on the Lipschitz-continuity requirement, we then

check the objective function of bundle adjustment.

Note the reprojecton function in Eqn. 1 Π(e,d,p) =
fd(fp(e,K,p),o), where K is the intrinsic matrix of the

camera, o is the distortion parameter, fp is the reprojection

function of pinhole camera and fd is the distortion function.

Note the camera matrix as [M|m] = KR[I| − c]. Then

fp(e,K,p) = [(MT
1 p + m1)/(M

T
3 p + m3), (M

T
2 p +

m2)/(M
T
3 p + m3)], where Mi is the ith row of M and

mi is the ith element of m. Therefore, excluding the

parameterization of rotation, (MT
3 p + m3)

−a, a > 0 is

the only part of the gradient of fp which may break the

lipschitz-continuity. To avoid the situation where MT
3 p +

m3 → 0, we must assume MT
3 p + m3 ≥ dmin > 0,

namely depths of any points in any cameras are larger than

dmin, which is a reasonable assumption for SfM problem.

Besides, we must also guarantee the gradient of distortion

function ∂fd/∂o be local Lipschitz-continuous, which is

valid for radial distortion.

Let’s consider the parameterization of rotation for the

Lipschitz-continuity of the objective function in Eqn. 1.

Note the parameterization of rotation R as rR. We must

guarantee ∂R/∂rR be Lipschitz-continuous. The common-

ly used parameterization of rotation includes quaternion

and angle-axis(θv ∈ R
3). The map of quaternion to

rotation matrix involves the normalization of quaternion,

so the gradient is unbounded when quaternion approaches

zero. Besides, quaternion is a over-parameterization for

rotation, so it leads to communication redundancy. The

gradient of exponential map of angle-axis to rotation matrix

R
3 → SO(3) also contains a part of ‖θv‖−a, a > 0, but it

can be proved that the Jacobian tensor of exponential map

approaches a constant when ‖θv‖ → 0. Therefore, the

gradient of the exponential map can be proved as Lipschitz-

continuous and angle-axis is the minimum description for

rotation. Hence, angle-axis can be adopted as the parame-

terization of rotation in the proposed algorithm. Based on

above analysis, we can conclude the following statement.

Theorem With the bundle adjustment objective func-

tion 1, let {Et,Dt,Pt} ⊂ R
6N × R

IL × P
3M denote a

sequence generated by Algorithm 1, where I is the dimen-

sion of intrinsic parameter and each Et = {(rtR, c
t)} ∈

R
3N × R

3N where rR is the angle-axis presentation of

rotation and c is the camera center. Suppose the gradi-

ent of distortion function is Lipschitz-continuous and the

scene depth d is bounded from below by MT
i3pj + mi3 ≥

dmin > 0 for all cameras and points, then, there exists

a ρmin = (ρmin
e ,ρmin

d , ρmin
p) such that if each element

in ρ of Algorithm 1 is larger than the corresponding one

in ρmin, Algorithm 1 is guaranteed to converge to a local

minimum of Eqn. 1.

32

There are three differences of the statement from the one

in [12]. Firstly, the rotation parameterization is required

as angle-axis to satisfy the Lipschitz-continuity since the

proximity operator works on camera parameters. Secondly,

we consider distortions of the camera model and give the

requirement of distortion function. Thirdly, we also consid-

er the non-consensus term and its penalty to guarantee the

Lipschitz-continuity more validly.

3.2. Improving convergence rate

In this section, we will introduce two extensions of

ADMM algorithm to improve the convergence rate.

Self-adaption penalty It is obviously that if the penalty

parameter ρ is too large, the algorithm will converge slowly.

Otherwise, the algorithm will yield diverged results accord-

ing to the analysis in section 3.1. According to the iterations

in Eqn. 17, large penalty on violations of primal feasibility

results in small primal residual r. Conversely, small penalty

leads to small dual residual according to the definition of

dual residual s in Eqn. 18. Therefore, we adopt the scheme

introduced in [15].

ρt+1
x =





τ incrρtx if‖rtx‖2 > µ1‖s
t
x‖2

ρtx/τ
decr if‖stx‖2 > µ2‖r

t
x‖2

ρtx otherwise

(20)

where x, sx and rx means the different components of ρ, s

and r corresponding to the parameters of different cameras

and points. Since each parameter is independent, we adopt

different penalty parameters for different parameters of

different cameras and points. Since ui = yi/ρ in Eqn. 12,

when ρ multiplies τ , the corresponding ẽtk and d̃t
k should

be divided by τ .

Over-relaxation Over-relaxation scheme can be adopted

in the ADMM iteration of Eqn. 6 according to the analysis

in [10], where Axt+1 can be replaced with αkAxt+1 −
(1 − αt)(Bzt −w) in the iteration of Eqn. 6. Substituting

the bundle adjustment configuration to the over-relaxation

scheme, we can obtain the over-relaxed iteration of Eqn. 16:

(
ẽ
k
i

)t+1

=
(
ẽ
k
i

)t
+ (1 + α

t
)

((
e
k
i

)t+1

− e
t+1

i

)
, ∀i, k

(
d̃

k
l

)t+1

=
(
d̃

k
l

)t
+ (1 + α

t
)

((
d

k
l

)t+1

− d
t+1

l

)
, ∀l, k,

(21)

where αt ∈ (0, 1) and limt→∞

∑
αt (1− αt) = 0. The

experiments in [9, 11] suggest that αt ∈ [0.5, 0.8] should

improve the convergence rate.

4. The Distributed Implementation

In this section, we will describe the implementation

details to reduce the overhead further more and improve the

convergence rate.

4.1. Block splitting

Few previous works on the parallel or distributed bundle

adjustment discuss how to split blocks. [23] adopts graph

cut to get a partition minimizing the edges that span the

visibility graph, so that the overlapped region including

cameras and points is minimized. Our method only broad-

cast all the cameras in different nodes to the master node

to compute Eqn. 15. Suppose parameters of each camera

are independent, the total overhead of one iteration in our

distributed method is proportional to

∑K

i=1
|Ek| =

∑N

i=1
ni, (22)

However, it is NP-hard to minimize the above overhead.

Referring to [23], we transform the problem to a graph cut

problem on the camera-point visibility graph.

If the ith camera appears in ni blocks, the number of

links between the camera and its visible points which will

be cut(the link with the light color shown in Fig.1) is at

least ni − 1. Hence,
∑N

i=1 ni ≤
∑N

i=1 Ei + n, where Ei

is the number of cut edges on the ith camera. Therefore,

we can minimize the upper bound of Eqn. 22 by graph-cut

in the visibility graph between cameras and points to obtain

the sub-optimization of Eqn. 22. Meanwhile, it is better

that each block has unbiased number of cameras and points

to balance the load of each node. Therefore, Normalized-

Cut [27] is a proper algorithm to implement the graph cut.

After the graph cut, we collect points and cameras viewing

those points in different blocks.

However, for very large scale data-sets with high cap-

turing density, cameras, points and edges in visibility graph

are so many that the graph cut algorithm cannot work on one

machine. To tackle this problem, we first divide the points

just by KD-Tree [4] into the first-level blocks which can be

split by graph cut and also collect all the cameras viewing

those points in each first-level block to construct the sub-

graphs. After that, we perform graph cut on each sub-graph

to get the blocks which will be used in the distributed bundle

adjustment algorithms.

4.2. Parameter setting

Although we adopt the self-adaption scheme for the

penalty parameters ρ in section 3.2, we still need set a

proper initial value for the penalty parameters.

The analysis in section 3.1 shows that the penalty pa-

rameters should be larger than the Lipschitz constant of

the objective function gradient. However, too large penalty

parameters may lead to low convergence rate. The Lipschitz

constant is difficult to estimate, so we set the initial penalty

parameters intuitively according to the estimated range

of parameters and the ratio of observations, cameras and

points. Since the penalty parameters should balance the

errors of f (Ek,Dk,Pk) and h (Ek,Dk,Pk) in Eqn. 14, the

33

Buildings Street Town City
Figure 2: Selected images and screenshots of the Structure-from-Motion results of Buildings, Street, Town and City. The first row is the

selected images and the second row is the screenshots of SfM results, where the blue points are cameras. For Street, the top view and side

view of SfM results are provided to show the data-set contains both aerial view and street view photos.

initial penalty parameters are set proportional to the ratio

of observations, cameras and points as ρx = αx|Q|/N and

ρp = αp|Q|/M . ρx and αx correspond to different kinds of

camera parameters.

To unify the scale of input data, we first normalize the

input SfM results so that the coordinates of camera centers

are in [−1, 1]
3
. Then we set the penalty coefficient αc

on camera centers and αp on points as 105. The angle-

axis rR of rotation are periodic and ‖rR − r0R‖ < 2π, so

it has the similar range to the normalized camera centers.

Thus, the penalty coefficient αr is also set as 105 for all

cameras. The intrinsic parameters have their own ranges.

In our experiment, we will optimize focal lengths, principle

points and radial distortions simultaneously. Focal lengths

and principle points are in the same order of magnitude as

the image resolution and we set the penalty coefficient αf

and αuv as 10−3. Radial distortions are always less than

10−2, we set the the penalty coefficient αd on them as 104.

The convergence threshold ǫpri and ǫdual in Eqn. 19 are

set according to the initial penalty parameters. ǫpri is set

as 10−5 × N and ǫdual is set as 10−5 × (2Nρ0r + Mρ0p +
L(ρ0d + 3ρ0f)).

In the self-adaption scheme in section 3.2, we need to

set four parameters µ1, µ2, τ incr and τdecr. Since the dual

residuals are proportion with the penalty parameters and

primal residuals are independent of the penalty parameters,

generally, with large penalty parameters, the dual residuals

are always much larger than the primal residuals in the

iterations in Eqn. 20. Thus, we set µ according to the

initial penalty parameters as µ1x = 10/ρ0x and µ2x = 10ρ0x.

τ incr and τdecr are both set as 2. By this way, the penalty

parameters fluctuate on enough large values to guarantee

the convergence. The over-relaxation coefficient in our

experiments is set as 0.5.

5. Experimental Results

The proposed algorithm is implemented in C++ and run

on PCs with Intel(R) Core(TM) i7-4770K 3.50GHz proces-

sors with 8 threads and 32GB memory. The communication

speed is about 10MB/s among different nodes. We assign

each thread one block and the number of used computers

depends on the number of blocks according to the data

scale. The method is a meta-algorithm independent of the

specific optimization method for the iteration in Eqn. 14.

Ceres Solver [2] with preconditioners in [20] is used as

the optimization tool for each block’s optimization in our

experiments. We test our algorithm on the public online

data-sets and our aerial photo data-sets. We choose the

public online data-sets with number of images larger than

900, among which Roman Forum, Piccadilly, Trafal-

gar [32] are initialized by Bundler [28] and Ladybug,

Venice, Final 961, Final 13682 [3] are initialized by the

methods in [1], [29] and Bundler [28]. Our aerial photo

data-sets include Buildings, Street, Town and City with

high resolution 6000 × 4000 captured by DJI Phantom 4.

Buildings, Town and City are captured in the aerial view

and the cameras look towards the ground. Street is captured

in both aerial and street view and some of cameras look

forward in the street view. Selected images and screenshots

of the Structure-from-Motion results of those four aerial

photo data-sets are shown in Fig. 2. These 4 aerial photo

data-sets are also initialized by the methods in [1], [29]

and Bundler [28]. The number of intrinsic parameters

shared by all cameras are one in Buildings, five in Town

and 45 in City. Intrinsic parameters of cameras in other

data-sets are independent. Since overlapping regions of

the method of [23] for most of our data-sets account for

at least half of the whole regions, it is nearly equivalent

to do bundle adjustment in one machine. Therefore, we

mainly compare our algorithm with the point consensus

34

Dataset N M |Q| K Error
KDTree NCut PC

Nc B(MB) Nc B(MB) T (s) ro(%) Np B(MB) T (s) ro(%)

Buildings 510 260k 1.40M 32 1.21 5.12k 0.236 4.57k 0.211 1.41 2.94 190k 4.35 2.22 38.7

Final 961 961 187k 1.69M 32 0.760 26.4k 2.42 25.4k 2.33 5.22 10.4 155k 3.56 5.30 13.1

Roman Forum 1084 158k 1.12M 32 0.531 12.0k 1.10 9.66k 0.884 7.16 2.89 92.3k 2.11 7.18 4.61

Street 1130 347k 2.00M 64 1.04 22.6k 2.07 13.6k 1.25 2.66 13.5 156k 3.57 3.00 23.5

Ladybug 1723 157k 679k 64 0.739 19.9k 1.82 10.2k 0.93 4.07 6.66 66.9k 1.53 4.19 8.10

Venice 1778 994k 5.00M 64 1.11 21.6k 1.98 20.6k 1.89 4.86 8.44 352k 8.05 6.18 28.2

Piccadilly 2152 136k 9.20M 64 0.613 30.9k 2.83 23.5k 2.15 8.89 5.61 156k 3.56 9.06 9.63

Trafalgar 5288 214k 1.82M 128 - 92.7k 8.49 53.4k 4.89 19.3 6.05 354k 8.10 20.3 10.4

Final 13682 13682 4.46M 29.0M 256 - 511k 46.8 282k 25.8 40.2 17.1 4.65M 106 54.0 39.8

Town 36428 27.8M 3512M 1024 - 412k 18.9 365k 17.3 22.8 12.2 15.0M 342 105.6 80.0

City 138193 100.2M 10088M 2048 - 910k 45.9 693k 35.9 73.1 10.5 33.2M 760 167.4 70.9

Table 1: This table shows the data-scale of each data-set, containing the number of cameras(N), the number of points(M) and the number

of observation(|Q|). K is the number of blocks, which are decided according to the number of cameras of each data-set. “Error” is the

average reprojection error of each observation with unit pixel after the data is optimized by one single machine method implemented by

Ceres Solver [2] with preconditioners in [20]. KDTree and NCut are different methods to split blocks for our algorithm. KDTree just

splits blocks so that each block has the same number of points and NCut is the splitting algorithm described in section 4.1. PC is the

point consensus method in [12]. Since [12] does not discuss the splitting method, we use the graph cut method similar to the method

in section 4.1. Nc is the number of cameras to be broadcasted in one iteration in our algorithm and Np is the number of points to be

broadcasted in one iteration in method PC. B is the real size of data to be broadcasted in one iteration. T is the total time including

computing and communication in one iteration. ro is the ratio between the communication time and total time.

based method in [12]. To share intrinsic parameters in

Buildings, Town and City in the experiment of the point

consensus based method, we modify the method to aver-

age intrinsic parameters. Table 1 shows the numbers of

cameras, points, observation, blocks of all data-sets and the

optimized results by the traditional single machine bundle

adjustment method [20] for above data-sets which can be

optimized in one single machine.

In the following experiments, we first test how our

splitting algorithm in section 4.1 optimizes the overhead

and compare the overhead of our algorithm with the point

consensus method [12]. Then, we compare the convergence

of the two method. In the comparison, we will also show

how the over-relaxation and self-adaption scheme affect the

convergence rate.

5.1. Overhead

Table 1 shows the size of data to be broadcasted in

one iteration, time used in one iteration and the ratio for

which communication among different nodes accounts of

total time in one iteration. Our method need broadcast all

the camera parameters and each camera contains 6 extrinsic

parameters and 6 camera intrinsic parameters according to

our experiment configuration.

Firstly, we compare the splitting algorithm in section 4.1

with the method that just splits blocks equally by KD-Tree

so that each block contains the same number of points.

Table 1 demonstrates the splitting algorithm indeed reduces

the total number of cameras to be broadcasted, especially

for the densely captured data-set Ladybug, Trafalgar,

Final 13682 and City, for which the proposed method

reduces nearly half of the data to be broadcasted. Then,

we compare the proposed method with the point consensus

method in [12]. Since the splitting method is not discussed

in [12], in the comparison, we modify the method in

0

500

1000

1500

16 32 64 128 256 512 1024
Number of blocks

Total Time(s)
Camera Consensus
Point Consensus

0

20

40

60

80

100

16 32 64 128 256 512 1024
Number of blocks

Overhead Ratio(%)
Camera Consensus
Point Consensus

Figure 3: Left is the total time of each iteration with different

numbers of blocks. Right is the ratio of communication time and

total time. The experiments are performed on Town.

section 4.1 so that we collect the cameras and all the points

viewed by those cameras after graph cut to minimize the

points to be broadcasted in the point consensus method.

Table 1 demonstrates that the cameras to be broadcasted in

our method are less than the points to be broadcasted in the

point consensus method by one or two orders of magnitude.

Here, since we consider the optimization of camera intrinsic

parameters in the bundle adjustment, each camera has to

transfer 6 or 12 parameters, more than the parameters each

point transfers. However, since the number of cameras to be

broadcasted is much less than points, the total size of data

to be broadcasted in our method is still less than the point

consensus method. The more densely the data captured,

the more data size reduced in broadcasting. On data-sets

Venice, Final 13682, Town and City, the proposed method

reduces the data to be broadcasted by 4 to 10 times in

table 1.

Since our method splits blocks by points instead of

cameras, the blocks in our methods have more cameras than

points, while the blocks of points consensus method have

more points than cameras. The number of cameras have

more influence on the time used in local bundle adjustment

of each block. Therefore, the local bundle adjustment of

blocks in our method is a little slower than the compared

method each iteration. However, with the increment of

data scale and nodes used in the distributed system, the

35

0.6

1.2

2.4

1 3 5 7 9 11 13 15 17 19

Er
ro

r

Iteration

Piccadilly

0.5

1

2

1 6 11 16 21 26 31 36 41 46

Er
ro

r

Iteration

Rome Forum

0.5

2

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Er
ro

r

Iteration

Trafalgar

1.1

2.2

1 3 5 7 9 11 13 15 17 19

Er
ro

r

Iteration

Venice

0.7

1.4

2.8

1 6 11 16 21 26 31

Er
ro

r

Iteration

Ladybug

0.7

1.4

2.8

1 6 11 16 21

Er
ro

r

Iteration

Final 961

1

2

1 6 11 16 21

Er
ro

r

Iteration

Final 13682

1

64

1 11 21 31 41 51 61 71 81 91

Er
ro

r

Iteration

Buildings

1.35

2.7

1 6 11 16 21 26 31 36 41 46

Er
ro

r

Iteration

City

1

2

1 11 21 31 41 51 61 71 81 91
Er

ro
r

Iteration

Street

1.7

6.8

1 11 21 31 41 51 61 71 81 91

Er
ro

r

Iteration

Town

CC
CC no relaxation
CC no self-adaption
PC

Figure 4: The convergence curves of each method for each data-set. The vertical axis of average reprojection errors uses the logarithmic

scale to stand out the changes in the last iterations.

communication overhead accounts for more ratio among

total time. Shown as Fig. 3, with the increment of number

of used blocks, the total time reduces each iteration and the

time cost by communication increases. The communication

time in our method increases much slower than the com-

pared method. For Town in Fig. 3, the total cost time each

iteration in our method is less than the compared method

after the number of blocks is larger than 128. On large scale

data-sets Final 13682, Town and City, our method saves

20%-80% time, while the point consensus method spends

more than half of time on communication. Therefore, our

method has higher scalability when we use more blocks and

deal with larger scale data-sets.

5.2. Convergence

Fig. 4 shows the convergence curves of each method for

each data-set and table 2 provides the average reprojection

error of each observation and the number of iteration when

the algorithms satisfy the stop criterion in Eqn. 19.

We first test the over-relaxation and self-adaption

scheme for our algorithm. The curve in Fig. 4 shows that

the over-relaxation facilitates the convergence after several

iterations. To test the effect of the self-adaption scheme,

we adopt the strategy in [12] for the algorithm without

self-adaption as comparison. In that strategy, the penalty

parameters increase 0.01 times in each iteration. Table 2

shows that the algorithm without self-adaption converges

slowly or converges fast in a larger error. Fig. 4 shows that

the algorithm with self-adaption always has a non-smooth

curve. The reason is the penalty parameters decrease when

the primary residual is much smaller than the dual residual

and the curve will converge faster after the penalty is set

smaller.

To compare with the point consensus method in [12],

we modify the penalty parameter setting in [12] since we

normalize all the data-sets. The initial penalty parameter

on each point position is 105 × |Q|/M same as the one in

our method. We also adopt the over-relaxation and the self-

adaption scheme on the point consensus method. Table 2

shows the point consensus method always converges in

little larger errors, though it converges faster for some

Dataset

Convergence

CC CCnr CCna PC
Nit Error Nit Error Nit Error Nit Error

Buildings 64 1.23 72 1.35 100 1.39 87 1.43

Final 961 22 0.763 30 0.801 14 0.820 25 0.864

Roman Forum 22 0.536 25 0.542 50 0.590 23 0.597

Street 85 1.04 87 1.10 100 1.05 76 1.08

Ladybug 31 0.745 32 0.801 34 0.810 32 0.837

Venice 16 1.13 17 1.15 12 1.18 20 1.17

Piccadilly 17 0.614 13 0.625 19 0.686 11 0.688

Trafalgar 10 0.580 15 0.601 12 0.597 10 0.619

Final 13682 24 1.01 30 1.04 23 1.08 22 1.07

Town 83 1.76 96 1.87 98 1.89 96 1.91

City 41 1.36 59 1.38 34 1.43 61 1.41

Table 2: This table shows the number of iterations when each

method satisfies the stop criterion for each data-set and average

reprojection errors of each observation when they converge. Nit

is the number of iterations and “Error” is the average reprojection

error of each observation with unit pixel. CC is our algorithm with

over-relaxation and self-adaption scheme, which means camera

consensus. CCnr is our algorithm without the over-relaxation

scheme and CCna is the one without the self-adaption scheme.

PC is the method in [12], meaning point consensus.

data-sets. Intuitively, single points influence weaker than

cameras in the bundle adjustment problem and the more

parameters to be averaged, the slower the ADMM algorithm

converges. Thus, camera consensus method outperforms

the point consensus one on convergence rate.

6. Conclusion

In this paper, we propose a distributed bundle adjustment

algorithm based on camera consensus for very large scale

data-sets. Our key contribution is that we distribute points

in different nodes of the distributed system and broadcast

cameras for consensus. The camera consensus reduces the

size of data to be broadcasted in each iteration and thus

saves much overhead in the distributed system. Besides,

we adopt the over-relaxation and self-adaption scheme to

improve the convergence rate. In the end, the experiments

demonstrate our camera consensus method outperforms the

state-of-the-art method in efficiency and accuracy.

Acknowledgement. This work is supported by Hong
Kong RGC 16208614, T22-603/15N, Hong Kong ITC P-
SKL12EG02, and China 973 program, 2012CB316300.

36

References

[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S. M. Seitz, and R. Szeliski. Building rome in a day.

Communications of the ACM, 54(10):105–112, 2011.

[2] S. Agarwal, K. Mierle, and Others. Ceres solver. http:

//ceres-solver.org.

[3] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle

adjustment in the large. In European Conference on Com-

puter Vision, pages 29–42. Springer, 2010.

[4] J. L. Bentley. Multidimensional binary search trees used

for associative searching. Communications of the ACM,

18(9):509–517, 1975.

[5] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed

computation: numerical methods, volume 23. Prentice hall

Englewood Cliffs, NJ, 1989.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.

Distributed optimization and statistical learning via the al-

ternating direction method of multipliers. Foundations and

Trends R© in Machine Learning, 3(1):1–122, 2011.

[7] L. Carlone, P. Fernandez Alcantarilla, H.-P. Chiu, Z. Kira,

and F. Dellaert. Mining structure fragments for smart bundle

adjustment. In Proceedings of the British Machine Vision

Conference. BMVA Press, 2014.

[8] F. Dellaert and M. Kaess. Square root sam: Simultane-

ous localization and mapping via square root information

smoothing. The International Journal of Robotics Research,

25(12):1181–1203, 2006.

[9] J. Eckstein. Parallel alternating direction multiplier de-

composition of convex programs. Journal of Optimization

Theory and Applications, 80(1):39–62, 1994.

[10] J. Eckstein and D. P. Bertsekas. On the douglas-rachford

splitting method and the proximal point algorithm for maxi-

mal monotone operators. Mathematical Programming, 55(1-

3):293–318, 1992.

[11] J. Eckstein and M. C. Ferris. Operator-splitting methods

for monotone affine variational inequalities, with a parallel

application to optimal control. INFORMS Journal on Com-

puting, 10(2):218–235, 1998.

[12] A. Eriksson, J. Bastian, T.-J. Chin, and M. Isaksson. A

consensus-based framework for distributed bundle adjust-

ment. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016.

[13] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson,

R. Raguram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazeb-

nik, et al. Building rome on a cloudless day. In European

Conference on Computer Vision, pages 368–381. Springer,

2010.

[14] M. Fukushima and H. Mine. A generalized proximal point

algorithm for certain non-convex minimization problems.

International Journal of Systems Science, 12(8):989–1000,

1981.

[15] B. He, H. Yang, and S. Wang. Alternating direction method

with self-adaptive penalty parameters for monotone vari-

ational inequalities. Journal of Optimization Theory and

applications, 106(2):337–356, 2000.

[16] J. Heinly, J. L. Schonberger, E. Dunn, and J.-M. Frahm.

Reconstructing the world* in six days *(as captured by the

yahoo 100 million image dataset). In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2015.

[17] Y.-D. Jian, D. C. Balcan, and F. Dellaert. Generalized

subgraph preconditioners for large-scale bundle adjustment.

In Outdoor and Large-Scale Real-World Scene Analysis,

pages 131–150. Springer, 2012.

[18] A. Kaplan and R. Tichatschke. Proximal point methods and

nonconvex optimization. Journal of global Optimization,

13(4):389–406, 1998.

[19] B. Klingner, D. Martin, and J. Roseborough. Street view

motion-from-structure-from-motion. In The IEEE Interna-

tional Conference on Computer Vision (ICCV), December

2013.

[20] A. Kushal and S. Agarwal. Visibility based preconditioning

for bundle adjustment. In The IEEE Conference on Comput-

er Vision and Pattern Recognition (CVPR), June 2012.

[21] M. Lhuillier and L. Quan. A quasi-dense approach to surface

reconstruction from uncalibrated images. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 27(3):418–

433, 2005.

[22] K. Ni and F. Dellaert. Hypersfm. In 2012 Second Inter-

national Conference on 3D Imaging, Modeling, Processing,

Visualization & Transmission, pages 144–151. IEEE, 2012.

[23] K. Ni, D. Steedly, and F. Dellaert. Out-of-core bundle

adjustment for large-scale 3d reconstruction. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1–8, 2007.

[24] J. L. Schonberger and J.-M. Frahm. Structure-from-motion

revisited. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016.

[25] J. L. Schonberger, F. Radenovic, O. Chum, and J.-M. Frah-

m. From single image query to detailed 3d reconstruction.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2015.

[26] T. Shen, S. Zhu, T. Fang, R. Zhang, and L. Quan. Graph-

based consistent matching for structure-from-motion. In

European Conference on Computer Vision, pages 139–155.

Springer, 2016.

[27] J. Shi and J. Malik. Normalized cuts and image segmen-

tation. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 22(8):888–905, 2000.

[28] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism:

exploring photo collections in 3d. In ACM transactions on

graphics, volume 25, pages 835–846. ACM, 2006.

[29] N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal graphs

for efficient structure from motion. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2008.

[30] S. Sra. Scalable nonconvex inexact proximal splitting. In

Advances in Neural Information Processing Systems, pages

530–538, 2012.

[31] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W.

Fitzgibbon. Bundle adjustmentła modern synthesis. In Vision

algorithms: theory and practice, pages 298–372. Springer,

2000.

37

http://ceres-solver.org
http://ceres-solver.org

[32] K. Wilson and N. Snavely. Robust global translations with

1dsfm. In European Conference on Computer Vision, pages

61–75. Springer, 2014.

[33] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore

bundle adjustment. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2011.

[34] R. Zhang, S. Li, T. Fang, S. Zhu, and L. Quan. Joint

camera clustering and surface segmentation for large-scale

multi-view stereo. In The IEEE International Conference on

Computer Vision (ICCV), December 2015.

[35] S. Zhu, T. Fang, J. Xiao, and L. Quan. Local readjustment for

high-resolution 3d reconstruction. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2014.

38

