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Abstract

This paper considers the multi-camera motion segmenta-

tion problem using unsynchronized videos: given two video

clips containing several moving objects, captured by unreg-

istered, unsynchronized cameras with different viewpoints,

our goal is to assign features to moving objects in the scene.

This problem challenges existing methods, due to the lack of

registration information and correspondences across cam-

eras. To solve it, we propose a method that combines shape

and dynamical information and does not require spatio-

temporal registration or shared features. As shown in the

paper, this combination results in improved performance

even in the single camera case, and allows for solving the

multi-camera segmentation problem with a computational

cost similar to that of existing single-view techniques.

1. Introduction

Motion segmentation using data collected with a single

camera has been extensively studied in the past decade,

[7, 10, 15, 17, 18]. A large portion of the recent work in

the area is based on the fact, noted in [3], that trajectories

from k (rigid) motions lie in a union of subspaces (each of

dimension at most 4), embedded in R
2F , where F denotes

the number of frames, allowing for reducing the motion seg-

mentation problem to subspace clustering. While most of

the techniques for solving the later problem require solving

a regularized optimization problem, [7] has shown that a

very efficient, robust algorithm for subspace clustering can

be obtained by simply considering a Robust Shape Inter-

action Matrix (RSIM), obtained by row-normalization and

exponentiation of the Shape Interaction Matrix introduced

in [3]. Alternatively, affinity based methods, apply spectral

clustering to an affinity matrix directly computed from the
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Figure 1: Multi-camera motion segmentation is challenging

due to the lack of feature correspondences. We propose a

new correspondence-free method to tackle this problem.

point trajectories [1, 9, 14]. Finally, [13] proposed using

a dynamics motivated similarity matrix, where the distance

between two points was given by the order of the model

needed to jointly explain the corresponding trajectories.

The methods above work well for the single camera

case, even in the presence of outliers and missing data, On

the other hand, these techniques fail in the unsynchronized

multi-camera scenario of interest here, since in this case the

underlying assumption that points from the same motion

lie on a low order subspace no longer holds. In principle,

this scenario could be handled by performing independent

segmentations in each camera and then seeking correspon-

dences across cameras using additional information. For

instance, [19] exploits shape information. However, this re-

quires viewing a set of point features in both cameras. In

[5] cross-camera trajectory labeling is achieved by consid-

ering all possible assignments and selecting the one that

minimizes the cost in a non-linear least squares problem.

While this approach works well for scenes containing one

or two moving objects, the cost of solving the non-linear

least squares problem is not trivial, and overall complexity

increases combinatorially with the number of objects.

Motivated by these difficulties, in this paper we propose

a new approach that exploits both shape and dynamical in-

formation and does not require spatio-temporal registration
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Figure 2: Diagram of the proposed method. The main idea is to combine information from a Multi-Camera Shape Interaction

Matrix (McRSIM) and a Manifold Dynamic Distance (MDD) matrix, obtained using the Jensen-Bregman LogDet Divergence

(JBLD), into a single affinity matrix W. The cluster labels are obtained by performing spectral clustering on this matrix.

or shared features. Indeed, the only assumption used by the

method is that the number of moving objects is invariant

across cameras. The main observation motivating the pro-

posed method is that, under affine camera models, the dy-

namical models underlying the motion of each rigid body

are invariant under spatial rotation/translations and tempo-

ral offsets. Thus, a suitable defined distance between these

models can be used, combined with a spectral clustering

approach to assign points to objects, even if these points

are observed by different cameras, not necessarily synchro-

nized. As we show in the paper, such a distance can be

efficiently computed by considering the manifold distance

between Gram matrices corresponding to given trajectories,

computed on the symmetric positive definite (SPD) matrix

manifold. Since the “manifold dynamic distance” (MDD)

feature is complementary to the shape feature used in RSIM

(essentially based on geometric considerations, rather than

dynamics), both can be combined to obtain an improved

segmentation, even in the single camera case. While in prin-

ciple the multi-camera case can be handled by considering

this new feature alone, we show that a suitable multi-camera

extension of RSIM (McRSIM) can be obtained by aligning

the principal directions of the shape matrix across cameras.

When combined with the new dynamics feature, McRSIM

leads to a multi-camera robust motion segmentation algo-

rithm that substantially outperforms approaches relying on

dynamical or geometric information alone.

Paper contributions:

• Single camera case: We introduce a new feature, SPD

manifold dynamic distance between trajectories (MDD),

and show that, when combined with existing geometric-

based features, the resulting algorithm outperforms the

state of the art. This is illustrated using the Hopkins 155

data set.

• Multiple camera case:

– We show that the MDD feature is invariant to affine

transformations and time delays and thus can directly

be used to perform multi-camera motion segmentation

with unsynchronized cameras under a very mild con-

dition: The same number of rigid motions must be ob-

served across video sequences. There is no need for

any number of points to be visible in both cameras or

restrictions on the view-point difference or time offset.

– We introduce a multi-camera generalization of the

shape interaction matrix (McRSIM), obtained by con-

sidering velocities, rather than positions, and aligning

the principal directions of the shape matrix. For a

given set of points, McRSIM is also invariant to affine

spatial transformations and time delays.

– We propose a multi-camera motion segmentation algo-

rithm based upon performing normalized spectral clus-

tering on an affinity matrix obtained by combining the

two features. Since its computational complexity is

dominated by the complexity of performing a singular

value decomposition on the data matrix, it can com-

fortably handle very large data sets. The advantages

of this algorithm are illustrated both with a synthetic

experiment using the Hopkins 155 data set, where, in

each sequence half of the points are rotated/translated

or delayed, and a new multi-camera data set, specifi-

cally created to benchmark this scenario.

2. Preliminaries

2.1. Notation

Sn set of symmetric matrices in R
n×n

Sn+(S
n
++) set of positive-semidefinite (-definite)

matrices in R
n×n

x(X) a vector (matrix) in R
n(Rn×m)

X(�) ≻ 0 X is positive-(semi)definite

|X| determinant of the matrix X

◦ Hadamard matrix product M = X ◦ Y
has entries mij = xijyij .
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2.2. Modeling 3D Rigid Motion

As shown in [13], the 3D coordinates at time t (in the

camera frame), P(t) = [X(t) Y (t) Z(t)]T of a point P
on an object are related to their past values by an ARMA

model of the form P(t) =
∑n

i=1
aiP(t − i), for some n

large enough. Here ai are scalars that depend only on the

motion, and can be estimated, together with n, from the

experimental data by considering the Hankel matrix associ-

ated with the trajectories of the point defined by:

Hn(P) =




P(1) P(2) · · · P(n+ 1)
P(2) P(3) · · · P(n+ 2)

...
...

. . .
...

P(n) P(n+ 1) · · · P(2n)


 (1)

Specifically, it can be shown (see for instance [16], Chap-

ter 10) that n is the smallest integer such that Hn is

rank deficient, and in that case its null space is spanned

by a vector of the form r =
[
aT −1

]T
, where a

.
=[

an an−1 . . . a1
]T

. This observation was exploited

in [13] to perform single-camera motion segmentation by

grouping points according to rank of the Hankel matrix of

point-wise differences of time trajectories Pi(t)−Pj(t).

2.3. A Dynamic Feature Invariant under Affine
Transformations and Time Shifts

Suppose that each point in the object undergoes a trans-

formation of the form P → P̃
.
= AP + t, where A and

t are, a given affinity matrix and translation vector, respec-

tively. Assume that the 3D points are viewed using an or-

thographic camera, that is the 2D coordinates of the points

p =
[
x y

]T
are given by x(t) = X(t), y(t) = Y (t).

Let v and ṽ denote the corresponding 2D velocities, that

is, v(t)
.
= p(t) − p(t − 1) and ṽ(t)

.
= p̃(t) − p̃(t − 1)

Since v(t) = p(t)− p(t− 1) = Π [P(t)−P(t− 1)], and

ṽ(t) = ΠA [P(t)−P(t− 1)], where Π
.
=

[
1 0 0
0 1 0

]
, it

follows that v and ṽ satisfy:

v(t) =
n∑

i=1

aiv(t− i), ṽ(t) =
n∑

i=1

aiṽ(t− i) (2)

From the discussion above, it follows that Hn(v) and

Hn(ṽ) share the same (right) null space, spanned by the

vector r =
[
aT −1

]T
, that is, the (right) null space of the

(velocity) Hankel matrix is invariant to affine + translational

transformations. Similarly, since the sequence v(t) and its

time delayed version v(t−τ) both satisfy (2), it follows that

the corresponding Hankel matrices share the same right null

space. These observations are summarized next:

Theorem 1. Consider the 3D trajectory of a moving point

P(t)
.
=

[
X(t) Y (t) Z(t)

]T
and let p(t) denote its

2D orthographic projection. Then, the right null space of

the Hankel matrix Hn(v) obtained from the 2D velocities

v(t)
.
= p(t) − p(t − 1) is invariant under 3D affine trans-

formations, translations and time delays.

2.4. Comparing Trajectories

From the discussion above, it follows that points un-

dergoing the same motion will lead to Hankel matrices

with the same null space, even if the trajectories are ob-

served by cameras with different viewpoints and a tempo-

ral offset. Thus, in principle, 2D points could be assigned

to “motions”1 comparing the subspace angles between the

null spaces of the corresponding (velocity) Hankel matri-

ces. However, a potential difficulty here is that comput-

ing these angles requires estimating the rank of these matri-

ces, a difficult task in the presence of noise. To circumvent

this difficulty, motivated by the work of [20], in this paper,

we will use Gram (rather than Hankel) matrices defined as

Gn(p)
.
= Hn(p)

THn(p)
2. The advantage of using Gram

matrices, is that, with a suitable regularization, they can be

embedded in the SPD manifold and compared using a num-

ber of manifold metrics, without the need for rank estima-

tion, as shown in the following theorem, adapted from [20]:

Theorem 2. Given Gram matrices G1,G2, define regular-

ized matrices G1,σ
.
= G1/‖G1‖F + σI, G2,σ

.
=

G2/‖G2‖F + σI, where σ > 0. Then

limσ→0 δ(G1,σ,G2,σ) 6= ∞ if and only if the corre-

sponding Hankel matrices H1, H2 have the same (right)

null space, where δ(., .) denotes a suitable metric in S++.

Motivated by computational efficiency considerations,

in this paper we will use as manifold metric the Jensen-

Bregman LogDet Divergence (JBLD) defined by:

δ2ld(X,Y) = log

∣∣∣∣
X+Y

2

∣∣∣∣−
1

2
log |XY| (3)

This metric offers a good compromise between efficiency

(since computing it does not require performing singular

value decompositions) and approximating the Affine Invari-

ant Riemannian Metric, a true geodesic metric in S++.

1 Note that the null space of Hankel matrices alone cannot distinguish

between objects undergoing exactly the same motion. This issue will be

addressed in Section 3.
2Note that this is different from the definition used in [20], G

.

=

HHT . Since H = KX, where K depends only on the coefficients ai

and X depends on the initial conditions, the choice HTH leads to matri-

ces whose null-space is independent of the initial conditions, a key feature

when seeking to group points that share the same motion model but not

necessarily the same initial conditions.
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2.5. The Robust Shape Interaction Matrix

The seminal work in [3] showed that the motion seg-

mentation problem can be solved by considering the shape

interaction matrix Q = VrV
T
r , where Vr denotes the

first r right singular vectors of the data matrix X and

r = 4×(number of independent motions). In the ideal case,

qi,j 6= 0 if and only if the pair of points (i, j) belong to the

same motion. Thus, for clean data, motion segmentation

can be solved by block-diagonalization. However, as pro-

posed, the shape interaction matrix has an intrinsic bias [7],

since the intra-class affinity depends on the magnitude of

data points (e.g. points closer to the origin have a smaller

value than those farther away), leading to relatively poor

performance in the presence of noise and outliers. To ad-

dress this issue, [7] proposed using a Robust Shape Interac-

tion Matrix, obtained by row normalization of Vr, to avoid

the magnitude bias noted above, followed by element-wise

powering. This last step denoises the affinity matrix, by

suppressing small elements while leaving larger elements

with values closer to 1 relatively unchanged. As shown in

[7], combining the robustified SIM with spectral clustering

leads to a subspace clustering algorithm that outperforms

competing methods, with lower computational costs.

3. Dynamics Enhanced Single Camera Seg-

mentation

From the discussion in Section 2.4 it follows that a suit-

able affinity matrix that takes into account dynamical in-

formation is given by Wld = e−D/dmax , where the matrix

D ∈ R
np×np has entries di,j = δ2ld(Gi,σ,Gj,σ) and dmax

is its largest entry. Here Gi denotes the Gram matrix ob-

tained from the 2D velocities of the point pi and σ is a

design parameter. Note that, from Theorem 2, it follows

that, as σ → 0, ideally the matrix W will have wi,j = 0
for points corresponding to different motions. However, on

the other hand σ should not be taken too small, to avoid nu-

merical problems. A good compromise is to take σ on the

order of magnitude of the estimated noise covariance. Note

that Wld takes into account only dynamic information. An

affinity matrix that considers both the dynamics and the ge-

ometry of the scene can be obtained by simply defining the

combined affinity matrix W
.
= Wld ◦WRSIM, where the

later is the RSIM matrix defined in Section 2.5. The com-

plete single camera algorithm is outlined in Algorithm 1.

4. The Multi-Camera Case

Next, we present the main result of the paper, an algo-

rithm capable of handling multiple cameras and time off-

sets. Since the matrix Wld is view-point and time-delay

invariant, in principle one could just use it in combination

with spectral clustering to segment the motions. However,

as noted in section 2.4, such an approach cannot distinguish

Algorithm 1 RSIM-MDD: Single Camera Motion Segmen-

tation.

Input: X ∈ R
3f×n, a matrix containing all trajectories

in a video sequence with homogeneous coordinates, k,

the number of motions; rmax and rmin, upper and lower

bound of rank r; γ, the power parameter.

1: s← 0
2: for r := rmin to rmax do

3: s← s+ 1
4: (Compute RSIM affinity matrix WRSIM)

5: [U,S,V]← SVD(X)
6: Vr ← V(:, 1 : r)

7: Ṽr ← Normalize each row of Vr

8: WRSIM ← ṼrṼ
T
r

9: WRSIM(p, q)← (WRSIM(p, q))γ , ∀p, q
10: (Compute MDD affinity matrix WMDD)

11: for j := 1 to n do

12: Y ← reshape X(:, j) into 3× f matrix

13: Y ← remove 3rd row of Y which are all ones

14: velocity A← Y(:, 2 : end)−Y(:, 1 : end− 1)
15: HA,j ← Hankelize A

16: Gj ← HA,jH
T
A,j

17: Gj,σ ← Gj/‖Gj‖F + σIr,r

18: end for

19: D(p, q)← δ2ld(Ĝp,σ, Ĝq,σ), ∀p, q
20: WMDD(p, q) = exp(−D(p, q)/max(D)), ∀p, q
21: (Compute combined affinity matrix W)

22: Ws ←WRSIM ◦WMDD

23: Labels zs ← spectral clustering on Ws

24: c(s)← minCut{X1,X2,··· ,Xk}
λk−λk+1

25: end for

26: ŝ← argminsc(s)
Output: zŝ

objects with the same dynamics. To circumvent this diffi-

culty, next we introduce a modified RSIM matrix that takes

into account multiple views and hence can be combined

with Wld proceeding in the spirit of Algorithm 1.

4.1. A MultiCamera Shape Interaction Matrix

Suppose that the same set of moving points is observed

from two (fixed) cameras whose 3D positions are related by

a rotation Rc and a translation tc. Let si denote the 3D

homogeneous coordinates of the ith point in the object ref-

erence frame and Pi,j(k), j = 1, 2 its 3D (homogeneous)

coordinates in coordinate system of each camera at time k.

Then

Pi,1(k) =

[
R(k) t(k)
0 1

]
si (4)

and
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Pi,2(k) =

[
Rc tc
0 1

]
Pi,1(k)

=

[
Rc tc
0 1

] [
R(k) t(k)
0 1

]
si

.
=

[
R̃(k) t̃(k)
0 1

]
si

(5)

Thus, it follows that the corresponding 2D data matrices in

coordinate frames of each camera satisfy

X1 = MS, X2 = M̃S (6)

where S is a matrix whose ith column is si and the motion

matrices M, M̃ have (block) rows of the form:

Mk = Π
[
R(k) t(k)

]
and M̃k = Π

[
R̃(k) t̃(k)

]

Consider now the case of K moving objects, with the same

set of points observed by the two cameras. From this discus-

sion, it follows that as long as rank(X1) = rank(X2) =
4K, then their respective row spaces are spanned by the

row space of S, which, in turn is spanned by VT
r,1 and VT

r,2.

Hence, given Vr,1 and Vr,2, there exists some orthogonal

matrix Rv ∈ R
r×r such that Vr,1 = Vr,2Rv . It can be

easily shown that one such matrix is given by

Rv = VT
r,2Vr,1 (7)

since

Vr,1 = Vr,2Rv = Vr,2V
T
r,2Vr,1 =

(I−V⊥
r,2(V

⊥
r,2)

T )Vr,1 = Vr,1

(8)

where the last equality follows from the fact that V1,r and

V2,r span the same subspace and hence (V⊥
2,r)

TV1,r = 0.

Note that this matrix is precisely the one that rotates the

subspaces so that their corresponding angle becomes zero.

In the case where sets of points observed by two cameras

are different, the derivation above no longer holds. Nev-

ertheless, one would expect that there exists a matrix Rv

closely aligning the subspaces spanned by V1,r and V2,r.

Intuitively, if there is enough information on each camera

to determine the shape of the object, then it should be pos-

sible to (approximately) align the principal directions of the

shapes, as viewed by each camera. In this case, Rv can be

found by solving the following optimization problem:

min
R

‖V1,r −V2,rR‖F subject to RTR = I (9)

where, if needed, the matrices Vi,r are padded with zero

columns, so that the dimensions are compatible. It is not

hard to show that the explicit solution for this problem is

precisely given by (7). This reasoning suggests using the

following multi-camera shape interaction matrix:

Qv
.
=

[
V1,r

V2,rRv

] [
VT

1,r RT
v V

T
2,r

]
(10)

where Rv is given by (7). Note that (1, 1) and (2, 2) blocks

of Qv are precisely Q1 and Q2, the shape interaction ma-

trices in each camera, while (1,2) and (2,1) blocks provide

cross-camera shape information. Finally, a robust version

of Qv can be obtained by row normalization as in [7].

4.2. Dynamics Enhanced MultiCamera Segmenta
tion

The discussion in the previous section suggests that an

affinity matrix combining multi-camera dynamic and ge-

ometric information is given by W
.
= Wld ◦WMcRSIM,

where WMcRSIM is obtained from Qv defined in (10) by

row normalization and exponentiation. This motivates the

multi-camera motion segmentation Algorithm 2.

Algorithm 2 Multi camera motion segmentation with

McRSIM-MDD

Input: Data matrices Xi ∈ R
3f×ni , i = 1, 2, · · · ,m

where ni is the number of trajectories in the ith camera;

k (number of motions); rmax and rmin (upper and lower

bound of rank
number of motions

); γ (the power parameter).

1: s← 0
2: for r := rmin · k to rmax · k do

3: (Compute McRSIM affinity matrix WMcRSIM)

4: for i := 1 to m do

5: [Ui,Si,Vi]← SVD(Xi)
6: Vi,r ← Vi(:, 1 : r)

7: Ṽi,r ← Normalize each row of Vi,r

8: end for

9: nmax ← max{n1, n2, · · · , nm}
10: Suppose nl = nmax, then

11: Vl,t ← Vl,r

12: for i := 1 to m do

13: if i != l then

14: M← ṼT
i,rṼl,r(1 : ni, :)

15: [UM,SM,VM]← SVD(M)
16: R← UMVT

M

17: Vi,t = Vi,rR

18: end if

19: end for

20: Vt ←
[
VT

1,t VT
2,t · · · VT

m,t

]T

21: WMcRSIM ← VtV
T
t

22: WMcRSIM(p, q)← (WMcRSIM(p, q))γ , ∀p, q
23: (Compute MDD affinity matrix WMDD)

24: WMDD ← Compute WMDD as in Algorithm 1

25: (Compute combined affinity matrix W)

26: Ws ←WMcRSIM ◦WMDD

27: Labels zs ← spectral clustering on Ws

28: c(s)← minCut{X1,X2,··· ,Xk}
λk−λk+1

, s← s+ 1

29: end for

30: ŝ← argminsc(s)
Output: zŝ
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Algorithm 2 is robust to gross contamination due to the

following reasons: Firstly, RSIM has built-in robustness [7].

Secondly, in the presence of gross contamination, the null

space of the corrupted Gram matrix will be generally closer

to the true one than to those corresponding to other motions.

Hence the JBLD will yield a smaller distance to the true

motion. In addition, it can be modified to handle missing

data, as follows: (i) use RSIM-M [7] in lieu of RSIM and

(ii) if the data in [t1, t2] is missing, ignore it and form the

Hankel matrices H1, H2 from trajectories in [0, t1 − 1] and

[t2+1, F ], respectively. The matrix Gm
.
= HT

1 H1+HT
2 H2

has the same null space of the “complete” matrix G and thus

can be used in its place in the algorithm.

For benchmarking purposes, we introduce Algorithm 3,

where we first perform motion segmentation in each cam-

era, followed by computing the Stein mean [2] of the regu-

larized Gram matrices of all trajectories in a cluster. Cross-

camera matching is posed as a linear assignment problem

between these means and solved using the code from [8].

Algorithm 3 Two cameras motion segmentation with

RSIM-MDD-LA

Input: Data matrices Xi ∈ R
3f×ni , i = 1, 2 where ni is

the number of trajectories in the ith camera; k (number

of motions); rmax and rmin (upper and lower bound of
rank

number of motions
); γ (the power parameter).

1: for i := 1 to 2 do

2: zi ← Perform RSIM-MDD algorithm on Xi

3: (Put together data in the same cluster)

4: for j := 1 to k do

5: initialize a set Sj ← ∅
6: end for

7: for l := 1 to ni do

8: Compute Ĝl,σ

9: Szil = Szil ∪ {Ĝl,σ}
10: end for

11: (Get Stein mean from each cluster)

12: for j := 1 to k do

13: Mij ← get Stein mean of all elements in Sj

14: end for

15: end for

16: (Match cluster labels between two cameras)

17: Dpq = δld(M1p,M2q), ∀p, q = 1, 2, · · · , k
18: Matching index y← linear assignment (LA) on D

19: z2l ← yz2l
, ∀l = 1, 2, · · · , n2

Output: z1, z2

5. Experimental results

In this section, we illustrate the effectiveness of the pro-

posed method, both in single and multi-camera scenarios.

In all cases we used γ = 3.5 for all RSIM related methods.

5.1. Hopkins 155 data set

The results of this experiment (Table 1), illustrate the fact

that combining dynamic and geometric information leads to

improved results, even in the single camera case.

Table 1: % Clustering error on Hopkins 155 data set.

(R)SIM means (Robust) Shape Interaction Matrix ([7])[3]; SSC

means Sparse Subspace Clustering; [4]; LRR means Low Rank

Representation[12]; LRR-H and LRR-H2 mean LRR with the

heuristic [4] and [11]; EDSC means Efficient Dense Subspace

Clustering [6]; EDSC-H means EDSC with Heuristic.

Methods SIM SSC LRR LRR-

H

LRR-

H2

EDSC EDSC-

H

RSIM RSIM-

MDD

2 motions

Mean 6.50 1.53 4.10 2.13 1.33 2.67 0.86 0.78 0.52

Median 1.14 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00

3 motions

Mean 12.26 4.40 9.89 4.03 2.51 8.06 2.49 1.77 1.55

Median 6.12 6.22 0.56 1.43 0.00 2.53 0.21 0.28 0.25

Overall

Mean 7.80 2.18 5.41 2.56 1.60 4.04 1.23 1.01 0.75

Median 1.53 0.00 0.53 0.00 0.00 0.30 0.00 0.00 0.00

5.2. Modified Hopkins 155 data set with rotation
and translation

To test the proposed multi-camera segmentation algo-

rithm in a scenario with a known ground truth, we per-

formed an experiment where the Hopkins 155 data set was

used to generate simulated multi-camera data. To this ef-

fect, we randomly selected, in each sequence, half of the

trajectories. These trajectories were rotated 45◦ and moved

to the right by 300 pixels and downward by 200 pixels to

simulate data obtained from a second camera, rotated and

translated with respect to the first. Note that in this sce-

nario there are no common trajectories across cameras. The

results of these experiments are shown in Table 2. In all

cases {method}-MDD denotes using the affinity matrix ob-

tained from the Hadamard product of the affinity matrix

from {method} and MDD. The suffix LA means performing

{method} on each view, computing the Stein mean of each

cluster and using a Linear Assignment (LA) [8] to match

cluster labels in different cameras. Note that here, the error

rate of RSIM is much larger than in the single camera case,

illustrating its difficulty in handling rotations and transla-

tions. On the other hand, these transformations are readily

handled by the McRSIM-MDD method.

5.3. Modified Hopkins 155 data set with time delay

The goal here is to test the effect of a time delay between

the two cameras. To simulate this situation, we randomly

divided the trajectories of each sequence in the Hopkins 155

data set into two sets. Suppose the total number of frames

is F and the time delay is τ frames. We picked Frames 1 to

F − τ in the first set, and for Set 2, we picked Frames τ +1
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Table 2: Clustering error ( in % ) on Hopkins 155 data set with half its trajectories rotated 45
◦ and translated 300 pixels in x axis and 200

pixels in y axis. Parameters are rmin = 1, rmax = 4 for all RSIM and McRSIM related methods.

Methods SSC SSC-

MDD

SSC-

MDD-LA

LRR-H2 LRR-H2-

MDD

LRR-H2-

MDD-LA

RSIM RSIM-

MDD

RSIM-

MDD-LA

McRSIM McRSIM-

MDD

2 motions clustering error ( in % )

Mean 33.28 32.04 3.28 17.97 16.89 3.23 25.73 25.94 2.10 0.98 0.83

Median 43.46 42.71 0.00 15.54 12.31 0.00 30.82 31.82 0.00 0.00 0.00

3 motions clustering error ( in % )

Mean 44.29 43.89 8.20 26.33 25.76 6.33 30.18 27.03 2.34 2.40 2.09

Median 46.84 46.79 5.06 26.81 26.56 1.80 33.33 31.40 0.28 0.67 0.58

Overall clustering error ( in % )

Mean 35.77 34.72 4.39 19.86 18.90 3.93 26.74 26.18 2.15 1.30 1.11

Median 44.35 44.34 0.00 19.23 18.10 0.00 31.82 31.82 0.00 0.00 0.00

Running time (in seconds)

Total 88.46 186.38 118.84 138.61 242.16 241.02 28.19 131.24 94.58 28.01 129.72

Avg 0.57 1.20 0.77 0.89 1.56 1.55 0.18 0.85 0.61 0.18 0.84

Table 3: Clustering error ( in % ) on Hopkins 155 data set with half its trajectories delayed 4 frames. Parameters are rmin = 1, rmax = 4

for all RSIM and McRSIM related methods.

Methods SSC SSC-

MDD

SSC-

MDD-LA

LRR-H2 LRR-H2-

MDD

LRR-H2-

MDD-LA

RSIM RSIM-

MDD

RSIM-

MDD-LA

McRSIM McRSIM-

MDD

2 motions clustering error ( in % )

Mean 23.23 22.82 3.59 18.64 19.22 5.53 9.21 9.67 2.93 1.57 0.94

Median 26.11 25.86 0.00 7.74 12.22 0.00 0.00 0.00 0.00 0.00 0.00

3 motions clustering error ( in % )

Mean 35.34 34.84 8.96 31.66 31.98 11.12 28.53 27.82 4.43 2.22 2.14

Median 45.92 43.78 5.39 35.53 36.96 3.80 33.33 33.33 0.48 0.67 0.64

Overall clustering error ( in % )

Mean 25.96 25.54 4.80 21.58 22.10 6.79 13.57 13.78 3.27 1.71 1.21

Median 33.33 31.71 0.00 25.68 26.16 0.00 0.27 0.26 0.00 0.00 0.00

Running time (in seconds)

Total 86.77 180.95 118.69 128.86 226.92 225.83 26.35 125.42 91.04 27.86 128.26

Avg 0.56 1.17 0.77 0.83 1.46 1.46 0.17 0.81 0.59 0.18 0.83

to F . Thus trajectories from Camera 2 have a delay of τ
frames relative to those of Camera 1. As shown in Table 3,

McRSIM combined with Gram JBLD has much lower error

rate than other methods, illustrating its robustness to delays.

5.4. Multiview motion segmentation data set

To test the proposed algorithms with real-world data, we

created a new data set, RSL 12, consisting of 12 pairs of two

camera sequences, captured using common phone cameras,

and thus, unsynchronized. We used KLT trackers to ex-

tract trajectories from each video sequences and manually

labeled each motion cluster. The clustering results, shown

in Table 4, illustrate that, in multi-camera scenarios, the

proposed McRSIM-MDD based method outperforms state-

of-the-art clustering methods such as RSIM and SSC. It is

worth nothing that in all cases, the use of single camera

methods in each view, followed by a Linear Assignment us-

ing the MDD feature (in the spirit of Algorithm 3) yielded

near optimal performance, illustrating the advantages of us-

ing dynamic information.

5.5. Hopkins 155 data set with gross contamination

To show that the proposed method is robust to gross con-

tamination, we used a modified version of Hopkins 155 data

set. From all tracked feature points in each video, we re-

placed 5% entries with random values from uniform distri-

bution between −1 and 1 (Note that since we used normal-

ized data, all entries are between −1 and 1). We ran each

video 10 times with different random seed. Tables 5 and 6

show that the proposed method performs better than RSIM

both in the single and multi-camera cases.

5.6. Hopkins 12 Real Sequences with Missing data

To show that the proposed method is robust to missing

entries, we experimented on Hopkins 12 Real Sequences

With Missing Data. As too-short trajectories do not contain

enough dynamic information, we removed the trajectories

whose number of visible entries is less than 5. Tables 7

and 8 indicate that the adapted method McRSIM-M-MDD

performs best, both in single and multi-camera scenarios.

6. Conclusions

In this paper, we address the problem of multi-camera

motion segmentation on possibly asynchronous videos. The

proposed method exploits both shape and motion cues and

does not require that the same features appear in both views.
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Table 4: Clustering error ( in % ) on Multiview Motion RSL 12 data set. Parameters are rmin = 1, rmax = 2 for all RSIM and McRSIM

related methods.

Methods SSC SSC-

MDD

SSC-

MDD-LA

LRR-H2 LRR-H2-

MDD

LRR-H2-

MDD-LA

RSIM RSIM-

MDD

RSIM-

MDD-LA

McRSIM McRSIM-

MDD

2 motions clustering error ( in % )

Mean 2.78 2.78 0.00 9.54 9.40 0.00 8.72 8.68 0.00 0.03 0.00

Median 0.00 0.00 0.00 2.91 2.51 0.00 0.20 0.20 0.00 0.00 0.00

3 motions clustering error ( in % )

Mean 8.36 7.22 0.29 29.55 29.45 0.32 24.08 23.98 0.00 0.00 0.00

Median 2.70 2.70 0.00 33.29 33.29 0.00 32.41 32.41 0.00 0.00 0.00

Overall clustering error ( in % )

Mean 5.57 5.00 0.15 19.54 19.43 0.16 16.40 16.33 0.00 0.02 0.00

Median 0.95 0.95 0.00 25.70 25.70 0.00 7.72 7.41 0.00 0.00 0.00

Running time (in seconds)

Total 24.46 53.58 29.55 19.22 51.80 42.42 3.25 35.18 20.50 3.03 34.56

Avg 2.04 4.46 2.46 1.60 4.32 3.53 0.27 2.93 1.71 0.25 2.88

Table 5: Clustering error ( in % ) on Hopkins 155 sequence with

grossly contaminated entries (%5 corrupted).

% RSIM RSIM-MDD

2 motions

Mean 17.22 16.97

Median 12.32 12.15

3 motions

Mean 28.90 28.78

Median 25.63 25.53

Overall

Mean 19.86 19.64

Median 17.99 17.71

Table 6: Clustering error ( in % ) on Hopkins 155 sequence with

grossly contaminated entries (%5 corrupted). Half the trajectories

are rotated 45
◦ and serve as Camera 2.

Methods RSIM RSIM-

MDD

McRSIM McRSIM-

MDD

2 motions

Mean 31.76 31.39 21.79 21.64

Median 34.66 34.05 22.52 22.19

3 motions

Mean 45.05 44.77 36.13 36.02

Median 47.42 47.32 35.66 35.41

Overall

Mean 34.76 34.41 25.03 24.89

Median 38.67 38.19 25.95 25.97

We introduce a new feature, MDD, as a dynamics based

comparison of point trajectories which is invariant to affine

transformations and time delays and is complementary to

geometric based features used in most of the common mo-

tion segmentation methods. Additionally, we propose a

multi-camera generalization of RSIM, McRSIM, which is

substantially more robust to affine transformations and time

Table 7: Clustering error ( in % ) on Hopkins 12 Real Motion

Sequences With Incomplete Data.

% RSIM-M RSIM-M-MDD

Mean 0.69 0.61

Median 0.70 0.64

Max 1.74 1.64

Std 0.59 0.51

Table 8: Clustering error ( in % ) on Hopkins 12 Real Motion Se-

quences With Incomplete Data. Half of the trajectories are rotated

45
◦ and serve as Camera 2.

Methods RSIM-

M

RSIM-

M-MDD

McRSIM-

M

McRSIM-

M-MDD

Mean 35.78 35.58 7.45 7.15

Median 38.06 37.96 1.89 1.69

Max 47.40 47.63 31.83 31.83

Std 11.63 11.45 11.45 11.58

delays and can be combined with the MDD feature, leading

to an affinity matrix that incorporates multi-camera dynam-

ics and geometric information. Finally, we propose a multi-

camera motion segmentation algorithm based on spectral

clustering on this combined affinity matrix. With both syn-

thetic and real-world experiments on a new data set, specif-

ically created to benchmark this scenario, we show that it

achieves better performance than the state of the art. Fur-

ther, since the computational complexity of the algorithm is

dominated by that of the singular value decomposition step,

it can comfortably handle large data sets.
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