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Abstract

In this paper, we develop deep spatio-temporal neural

networks to sequentially count vehicles from low quality

videos captured by city cameras (citycams). Citycam videos

have low resolution, low frame rate, high occlusion and

large perspective, making most existing methods lose their

efficacy. To overcome limitations of existing methods and

incorporate the temporal information of traffic video, we

design a novel FCN-rLSTM network to jointly estimate ve-

hicle density and vehicle count by connecting fully convo-

lutional neural networks (FCN) with long short term mem-

ory networks (LSTM) in a residual learning fashion. Such

design leverages the strengths of FCN for pixel-level pre-

diction and the strengths of LSTM for learning complex

temporal dynamics. The residual learning connection re-

formulates the vehicle count regression as learning resid-

ual functions with reference to the sum of densities in each

frame, which significantly accelerates the training of net-

works. To preserve feature map resolution, we propose a

Hyper-Atrous combination to integrate atrous convolution

in FCN and combine feature maps of different convolution

layers. FCN-rLSTM enables refined feature representation

and a novel end-to-end trainable mapping from pixels to ve-

hicle count. We extensively evaluated the proposed method

on different counting tasks with three datasets, with experi-

mental results demonstrating their effectiveness and robust-

ness. In particular, FCN-rLSTM reduces the mean absolute

error (MAE) from 5.31 to 4.21 on TRANCOS; and reduces

the MAE from 2.74 to 1.53 on WebCamT. Training process

is accelerated by 5 times on average.

1. Introduction

Many cities are being instrumented with hundreds of

surveillance cameras mounted on streets and intersections

[22, 39, 38]. They capture traffic 24 hours a day, 7 days

∗The first two authors contributed equally to this work.

Figure 1. FCN-rLSTM network to count vehicles in traffic videos

captured by city cameras. The videos have low frame rate, low

resolution, high occlusion, and large perspective. FCN and LSTM

are combined in a residual learning framework, leveraging the

strengths of FCN for dense visual prediction and strength of LSTM

for modeling temporal correlation. Video frames are input into

FCN, and the output density maps are fed into a stack of LSTMs

to learn residual functions with reference to the sum of densities

in each frame. The global vehicle count is finally generated by

summing the learned residual and the densities.

a week, generating large scale video data. Citycam videos

can be regarded as highly versatile, being an untapped po-

tential to develop many vision-based techniques for appli-

cations like traffic flow analysis and crowd counting. This

paper aims to extract vehicle counts from streaming real-

time video captured by citycams. Vehicle count is the num-

ber of vehicles in a given region of the road [23]. As shown

in Figure 1, we select a region of fixed length in a video and

count the number of vehicles in that region.

Vehicle counting is of great importance for many real-

world applications, such as urban traffic management. Im-

portant as it is, Counting vehicles from city cameras is an

extremely difficult problem faced with severe challenges (il-
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lustrated in Figure 1) due to network bandwidth limitations,

lack of persistent storage, and privacy concerns. Publicly

available citycam video is limited by: 1. Low frame rate,

ranging from 1 fps to 0.3 fps. 2. Low resolution, including

352 × 240, 320 × 240 or 704 × 480. 3. High occlusion,

especially in rush hours. 4. Large perspective, resulting in

various vehicle scales. All these challenges make vehicle

counting from citycam data very difficult.

The challenges of citycam videos preclude existing ap-

proaches to vehicle counting, which can be grouped into

five categories: frame differencing based [41, 12], detection

based [52, 40], motion based [37, 9, 10, 27], density esti-

mation based [42], and deep learning based [47, 50, 30, 51,

2, 35, 19] methods. The first three groups of methods are

sensitive to environment conditions and tend to fail in high

occlusion, low resolution, and low frame rate videos. While

density estimation approaches avoid detecting or tracking

individual vehicles, they perform poorly in videos with

large perspective and oversized vehicles. Though the low

frame rate citycam video lacks motion information, vehi-

cle counts of sequential frames are still correlated. Exist-

ing methods fail to account for such temporal correlation

[30, 49, 15, 20, 11, 46]. Work [2] and [49] achieve state-of-

the-art performance on animal counting and traffic count-

ing, respectively, yet they fail to model the temporal corre-

lation as an intrinsic feature of the surveillance video.

To overcome these limitations, we propose a deep spatio-

temporal network architecture to sequentially estimate ve-

hicle count by combining FCN [25] with LSTM [18] in

a residual learning framework (FCN-rLSTM). The FCN

maps pixel-level features into vehicle density to avoid in-

dividual vehicle detection or tracking. LSTM layers learn

complex temporal dynamics by incorporating nonlineari-

ties into the network state updates. The residual connec-

tion of FCN and LSTM reformulates global count regres-

sion as learning residual functions with reference to the sum

of densities in each frame, avoiding learning unreferenced

functions and significantly accelerating the network train-

ing. FCN-rLSTM enables refined feature representation and

a novel end-to-end optimizable mapping from image pix-

els to vehicle count. The framework is shown in Figure 1.

Video frames are input into FCN, and the output density

maps are fed into LSTMs to learn the vehicle count residual

for each frame. The global vehicle count is finally generated

by summing the learned residual and the densities.

The proposed FCN-rLSTM has the following novel-

ties and contributions: 1. FCN-rLSTM is a novel spatio-

temporal network architecture for object counting, such as

crowd counting [47], vehicle counting [30], and penguin

counting [2]. It leverages the strength of FCN for dense

visual prediction and the strengths of LSTM for learning

temporal dynamics. Such network can learn from more in-

formation. To the best of our knowledge, FCN-rLSTM is

the first spatio-temporal network architecture with residual

connection for object counting.

2. The residual connection between FCN and LSTM is

novel and significantly accelerates the training process by

5 times on average, as shown by our experiments. Though

some recent work on other visual tasks [14, 44] also ex-

plored spatio-temporal networks, none of them combines

FCN with LSTM, or has the residual connection between

CNN and LSTM. FCN-rLSTM can be potentially applied

to other visual tasks that both require dense prediction and

exhibit temporal correlation.

3. One challenge for FCN based visual tasks is the re-

duced feature resolution [8] caused by the repeated max-

pooling and striding. To solve this problem, we propose a

Hyper-Atrous combination to integrate atrous convolution

[8] in the FCN and to combine feature maps of different

atrous convolution layers. We then add a convolution layer

after the combined feature volume with 1×1 kernels to per-

form feature re-weighting. The selected features both pre-

serve feature resolution and distinguish better foreground

from background. Thus, the whole network accurately esti-

mates vehicle density without foreground segmentation.

4. We jointly learn vehicle density and vehicle count

from end-to-end trainable networks improving the accuracy

of both tasks. Recent object counting literature [50, 30,

51, 2] estimates directly the object density map and sum

the densities over the whole image to get the object count.

But such methods suffer from large error when videos have

large perspective and oversized vehicles (big bus or big

truck). Our proposed multi-task framework pursues differ-

ent but related objectives to achieve better local optimal, to

provide more supervised information (both vehicle density

and vehicle count) in the training process, and to learn better

feature representation.

5. We present comprehensive experiments on three

datasets covering different counting tasks, such as vehi-

cle counting and crowd counting, to show generalization

and substantially higher accuracy of FCN-rLSTM. On the

TRANCOS dataset [30], we improve over state-of-the-art

baseline methods, reducing the MAE from 5.31 to 4.21.

The rest of paper is outlined as follows. Section 2 briefly

reviews the related work for vehicle counting. Section 3

details the proposed FCN-rLSTM. Section 4 presents ex-

perimental results, and Section 5 concludes the paper.

2. Related Work

In this section, we provide a brief review of related work

on vehicle counting and LSTM for visual tasks.

2.1. Visionbased Methods for vehicle counting

Vision-based approaches deal with camera data, which

have low installation costs, bring little traffic disruption dur-

ing maintenance, and provide wider coverage and more de-
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Figure 2. Examples of density estimation based methods.

tailed understanding of traffic flow [28, 13, 21]. They can

be divided into five categories:

1. Frame differencing methods count vehicles based

on the difference between sequential frames and are easy

to implement. They suffer with noise, abrupt illumination

changes, and background changes [41, 12].

2. Detection based methods [52, 40] detect individual

vehicles in each frame and perform poorly in low resolution

and high occlusion videos.

3. Motion based methods [37, 9, 10, 27] count vehicles

by tracking and tend to fail with citycam videos due to their

low frame rate and lack of motion information.

4. Density estimation based methods deal with the lim-

itations of detection and motion based method by mapping

the dense (pixel-level) image feature into object densities,

avoiding detecting or tracking each object, as shown in Fig-

ure 2. Reference [42] casts the counting problem as estimat-

ing an image density whose integral over an image region

gives the count of objects within that region. Object den-

sity is formulated as a linear transformation of each pixel

feature, with a uniform weight vector applied to the whole

image. This method suffers from low accuracy when the

camera has large perspective and oversized vehicles occur.

5. Deep learning based counting methods have been

developed recently [47, 50, 30, 51, 2, 34, 33, 45] that signif-

icantly improved counting performance. Work [47] applies

CNN to output a 1D feature vector and fits a ridge regres-

sor to perform the final density estimation. This work is not

based on FCN and cannot perform pixel-wise dense predic-

tion. Reference [30] is based on FCN, but it does not have

deconvolutional or upsampling layers, resulting in the out-

put density map being much smaller than the input image.

Reference [2] jointly estimates the object density map and

performs foreground segmentation, but it does not address

the problem of large perspective and various object scales.

All existing methods fail to model the temporal correla-

tion of vehicle count in traffic video sequential frames.

2.2. LSTM for Visual Tasks

In recent years, several works attempt to combine CNN

with recurrent neural networks (RNN) [4] to model the

spatio-temporal information of visual tasks, such as action

recognition [14, 3], video description [14], caption gener-

ation [36], and multi-label classification [44]. However,

no existing work models the spatio-temporal correlation for

object counting, especially by combining CNN/FCN with

RNN/LSTM. Some work [29] explores new design of the

internal LSTM architecture, but none of the existing works

combined FCN with LSTM in a residual learning fashion.

Work [48] regards the crowd flow map in a city as an image

and build spatio-temporal networks to predict crowd flow.

It does not apply RNN or LSTM networks to learn the tem-

poral information; instead, it aggregates the output of three

residual neural networks to model temporal dynamics. Thus

such work is essentially multiple convolutional neural net-

works, rather than the combination of CNN and LSTM.

3. FCN-rLSTM for vehicle counting

As the low spatial and temporal resolution and high oc-

clusion of citycam videos preclude existing detection or

motion based methods for vehicle counting, we propose to

apply FCN [25] to map the dense (pixel-level) feature into

vehicle density and to avoid detecting or tracking individual

vehicles. FCN based density estimation allows arbitrary in-

put resolution and outputs vehicle density maps that are of

the same size as the input image. Existing object counting

literature [50, 30, 51, 2] estimates the object density map

and directly sums the density over the whole image to get

the object count. But such methods suffer from large er-

ror when the video has large perspective and oversized ve-

hicles (big bus or big truck). Thus we propose the FCN-

rLSTM network to jointly estimate vehicle density and ve-

hicle count by connecting FCN with LSTM in a residual

learning fashion. Such design leverages the strengths of

FCN for pixel-level prediction and the strengths of LSTM

for learning complex temporal dynamics. Counting accu-

racy is significantly improved by taking the temporal cor-

relation of vehicle counts into account. However, it is not

easy to train the combined FCN and LSTM networks. We

further propose the residual connection of FCN and LSTM

to accelerate the training process. The resulting end-to-end

trainable network has high convergence rate and further im-

proves the counting accuracy. In the following subsections,

we will explain the proposed network architecture and high-

light additional details.

3.1. FCNrLSTM Model & Network Architecture

The network architecture with detailed parameters is

shown in Figure 3, which contains convolution network,

deconvolution network, hyper-atrous feature combination,

and LSTM layers. Inspired by the VGG-net [32], small ker-

nels of size 3 × 3 are applied to both convolution layers

and deconvolution layers. The number of filter channels in

the higher layers are increased to compensate for the loss of

spatial information caused by max pooling.

To preserve feature map resolution, we develop hyper-

atrous combination, where atrous convolution [8] is inte-

grated into the convolution networks, and the feature maps

after the second max-pooling layer and the atrous convo-
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Figure 3. Network architecture and parameters of FCN-rLSTM.

lution layers are combined together into a deeper feature

volume. Atrous convolution is proposed by work [8]; it

amounts to filter upsampling by inserting holes between

nonzero filter taps. It computes feature maps more densely,

followed by simple bilinear interpolation of the feature re-

sponses back to the original image size. Compared to regu-

lar convolution, atrous convolution effectively enlarges the

field of view of filters without increasing the number of pa-

rameters. After several atrous convolution layers, we com-

bine the features from the second max-pooling layer and the

atrous convolution layers. And then, after the combined fea-

ture volume, we add a convolution layer with 1×1 kernels to

perform feature re-weighting to encourage the re-weighted

feature volume to distinguish better foreground and back-

ground pixels. The combined and re-weighted feature vol-

ume is input of the deconvolution network that contains two

deconvolution layers. At the top of the FCN, a convolution

layer with 1×1 kernel acts as a regressor to map the features

into vehicle density.

it = σi(xtWxi + ht−1Whi + wci ⊙ ct−1 + bi)

ft = σf (xtWxf + ht−1Whf + wcf ⊙ ct−1 + bf )

ct = ft ⊙ ct−1 + it ⊙ σc(xtWxc + ht−1Whc + bc)

ot = σo(xtWxo + ht−1Who + wco ⊙ ct + bo)

ht = σt ⊙ σh(ct)

(1)

To incorporate the temporal correlation of vehicle counts

from sequential frames, we combine LSTM with FCN to

jointly learn vehicle density and count. RNN maintains in-

ternal hidden states to model the dynamic temporal behav-

ior of sequences. LSTM extends RNN by adding three gates

to an RNN neuron: a forget gate ft; an input gate it; and an

output gate ot. These gates enable LSTM to learn long-

term dependencies in a sequence, and make it easier to be

optimized. LSTM effectively deals with the gradient van-

ishing/exploding issues that commonly appear during RNN

training [31]. It also contains cell activation vector ct and

hidden output vector ht. We reshape the output density map

of FCN into a 1D vector xt and feed this vector into three

LSTM layers. Each LSTM layer has 100 hidden units and

is unrolled for a window of 5 frames. The gates apply sig-

moid nonlinearities σi, σf , σo, and tanh nonlinearities σc,

and σh with weight parameters Whi, Whf , Who, Wxi, Wxf ,

and Wxo, which connect different inputs and gates with the

memory cells, outputs, and biases bi, bf , and bo. We define

the commonly-used update equations [16]:

To accelerate training, FCN and LSTM are connected in

a residual learning fashion as illustrated in Figure 4. We

take the sum of the learned density map over each frame

as a base count, and feed the output hidden vector of the

last LSTM layer into one fully connected layer to learn

the residual between base count and final estimated count.

Compared to the direct connection of FCN and LSTM, the

residual connection eases the training process and increases

counting accuracy.

Figure 4. Comparison of (a) Direct connection of FCN and LSTM

(FCN-dLSTM); (b) Residual connection of FCN and LSTM.

3.2. SpatioTemporal MultiTask Learning

The ground truth supervision for FCN-rLSTM includes

two types of information: the pixel-level density map and

the global vehicle count for each frame. Generation of these

supervision depends on how the objects are annotated. If the

center of each object is labeled as a dot d, the ground truth

vehicle count for frame i is the total number of labeled dots.

The ground truth density F 0

i (p) for each pixel p in image i

is defined as the sum of 2D Gaussian kernels centered at

each dot annotation covering pixel p:

F 0

i (p) =
∑

d∈Di

N(p; d, δ) (2)

where Di is the set of the dot annotations, d is each anno-

tation dot, and δ of the Gaussian kernel is decided by the

perspective map. If each object is annotated by a bound-

ing box B = (x1, y1, x2, y2), where (x1, y1) are the co-
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ordinates of the left top point and (x2, y2) are the coordi-

nates of the right bottom point, the ground truth vehicle

count for frame i is the total number of bounding boxes

in frame i. The center o of each bounding box B is:

ox = 1

2
(x1 + x2), oy = 1

2
(y1 + y2). Then, the ground

truth density F 0

i (p) for each pixel p in image i is defined as:

F 0

i (p) =
∑

o∈Oi

N(p; o, δ) (3)

where the parameter Oi is the set of bounding box centers

in frame i. δ of the Gaussian kernel is decided by the length

of the bounding box.

The FCN task is to estimate the pixel-level density map,

and the LSTM task is to estimate the global vehicle count

for each frame. These two tasks are jointly achieved by

training the whole FCN-rLSTM network end-to-end. The

vehicle density is predicted from the feature map by the last

convolution 1 × 1 layer of the FCN. Euclidean distance is

adopted to measure the difference between the estimated

density and the ground truth. The loss function for density

map estimation is defined as follows:

LD =
1

2N

N
∑

i=1

P
∑

p=1

∥

∥Fi(p; Θ)− F 0

i (p))
∥

∥

2

2
(4)

where N is the batch size and Fi(p) is the estimated vehicle

density for pixel p in image i, and Θ is the parameter of

FCN. The second task, global count regression, is learned

from the LSTM layers including two parts: (i) base count:

the integration of the density map over the whole image;

(ii) residual count: learned by the LSTM layers. We sum

the two to get the estimated vehicle count:

Ci = G(Fi; Γ,Φ) +

P
∑

p=1

Fi(p) (5)

where G(Fi; Γ,Φ) is the estimated residual count, Fi is the

estimated density map for frame i, Γ is the learnable pa-

rameters of LSTM, and Φ is the learnable parameters of the

fully connected layers. We hypothesize that it is easier to

optimize the residual mapping than to optimize the original

mapping. The loss of the global count estimation is:

LC =
1

2N

N
∑

i=1

(Ci − C0

i )
2 (6)

where C0

i is the ground truth vehicle count of frame i, Ci is

the estimated count of frame i. Then overall loss function

for the network is defined as:

L = LD + λLC (7)

where λ is the weight of the global count loss, and it should

be tuned to achieve best accuracy. By simultaneously learn-

ing the two related tasks, each task can be better trained

with much fewer parameters.

The loss function is optimized via batch-based Adam

[24] and backpropagation. Algorithm 1 outlines the FCN-

rLSTM training process. As FCN-rLSTM can adapt to

different input image resolutions and variation of vehicle

scales and perspectives, it is robust to different scenes.

Algorithm 1: FCN-rLSTM Training Algorithm

Input : Images: {I11, ..., Inm}, wherer n is the

number of sequences and m is the number of

unrolled frames.

Label : Density Maps: {F 0

11
, ..., F 0

nm}
Output: Parameters of FCN, LSTM, and FC: Θ,Γ,Φ

1 for i = 1 to max iteration do

2 for j = 1 to unroll number do

3 Fij = FCN(Iij ; Θ)
4 LDj = L2(Fij , F

0

ij)

5 Cresidual = FC(LSTM(Fij ; Γ); Φ)
6 Cij =

∑

Fij + Cresidual

7 LCj = L2(
∑

F 0

ij , Cij)

8 end

9 L =
∑

LDj + λ
∑

LCj

10 Θ,Γ,Φ← Adam(L, Θ,Γ,Φ)

11 end

4. Experiments

In this session, we discuss experiments and quantitative

results: 1. We first evaluate and compare the proposed meth-

ods with state-of-the-art methods on public dataset Web-

CamT [49]. 2. We evaluate the proposed methods on the

public dataset TRANCOS [30]. 3. To verify the robustness

and generalization of our model, we evaluate our methods

on the public crowd counting dataset UCSD. [5].

4.1. Quantitative Evaluations on WebCamT

WebCamT is a public dataset for large-scale city camera

videos, which have low resolution (352 × 240), low frame

rate (1 frame/second), and high occlusion. Both bounding

box and vehicle count are available for 60, 000 frames. The

dataset is divided into training and testing sets, with 45,850

and 14,150 frames, respectively, covering multiple cameras

and different weather conditions.

Following the same settings in [49], we evaluate our

method on the 14,150 test frames of WebCamT, which con-

tains 61 videos from 8 cameras. These videos cover differ-

ent scenes, congestion states, camera perspectives, weather

conditions, and time of the day. The training set contains
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Table 1. Different configurations of FCN-rLSTM

Configuration Atrous Hyper
Direct

connect

Residual

connect

FCN-A ✦ X X X

FCN-H X ✦ X X

FCN-HA ✦ ✦ X X

FCN-dLSTM ✦ ✦ ✦ X

FCN-rLSTM ✦ ✦ X ✦

45,850 frames with the same resolution, but from different

videos. Both training and testing sets are divided into two

groups: downtown cameras and parkway cameras. Mean

absolute error (MAE) is employed for evaluation. For FCN-

rLSTM, the weight of the vehicle count loss is 0.01. The

learning rate is initialized by 0.0001 and adjusted by the

first and second order momentum in the training process.

To test the efficacy of the proposed Hyper-Atrous combi-

nation, combination of FCN and LSTM, and the residual

connection, we evaluate different configurations of FCN-

rLSTM as shown in Table 1. Atrous indicates the atrous

convolution; Hyper indicates hypercolumn combination of

the feature maps; Direct connect indicates combining FCN

with LSTM directly; Residual connect indicates connecting

FCN with LSTM in residual fashion.

Data augmentation. To make the model more robust to

various cameras and weather conditions, several data aug-

mentation techniques are applied to the training images:

1. horizontal flip, 2. random crop, 3. random brightness,

4. and random contrast. More details can be found in the

released code and other data augmentation techniques can

also be applied.

Baseline approaches. We compare our method with

three methods: Baseline 1: Learning to count [42]. This

work maps each pixel’s feature into object density with uni-

form weight for the whole image. For comparison, we ex-

tract dense SIFT features [26] for each pixel using VLFeat

[43] and learn the visual words. Baseline 2: Hydra[30]. It

learns a multi-scale non-linear regression model that uses

a pyramid of image patches extracted at multiple scales to

perform final density prediction. We train Hydra 3s model

on the same training set as FCN-rLSTM. Baseline 3: FCN

[49]. It develops a deep multi-task model to jointly estimate

vehicle density and vehicle count based on FCN. We train

FCN on the same training set as FCN-rLSTM.

Experimental Results. We compare the error of the pro-

posed and baseline approaches in Table 2. From the re-

sults, we see that FCN-rLSTM outperforms all the base-

line approaches and all the other configurations. As the

testing data cover different congestion states, camera per-

spectives, weather conditions, and time of the day, these

results verify the efficacy and robustness of FCN-rLSTM.

To do ablation analysis of the proposed techniques, we

Table 2. Results comparison on WebCamT

Method Downtown Parkway

Baseline 1 5.91 5.19

Baseline 2 3.55 3.64

Baseline 3 2.74 2.52

FCN-A 3.07 2.75

FCN-H 2.48 2.30

FCN-HA 2.04 2.04

FCN-dLSTM 1.80 1.82

FCN-rLSTM 1.53 1.63

Figure 5. Counting results comparison of FCN-HA and FCN-

rLSTM on parkway cameras. X axis-frames; Y axis-Counts.

Figure 6. Counting results comparison of FCN-HA and FCN-

rLSTM on downtown cameras. X axis-frames; Y axis-Counts.

also evaluate the performance of different configurations

as shown in Table 2. With the Hyper-Atrous combination,

FCN-HA itself already outperforms all the baseline meth-

ods and achieves better accuracy than FCN-A and FCN-

H, which verifies the efficacy of the Hyper-Atrous com-

bination. FCN-rLSTM has higher accuracy than FCN-HA

and FCN-dLSTM, which verifies the efficacy of the resid-

ual connection of FCN and LSTM. Figure 5 and Figure 6

compare the counting results of FCN-HA and FCN-rLSTM,

from which we conclude that FCN-rLSTM estimates bet-

ter the vehicle count (blue dashed circles) and reduces large

counting error induced by oversized vehicles (purple dashed

circles). Figure 8 shows the density map learned from FCN-

rLSTM. Without foreground segmentation, the learned den-

sity map can still distinguish background from foreground

in both sunny, rainy and cloudy, dense and sparse scenes.

Figure 9 shows the counting results for six different cam-
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eras from downtown and parkway. The camera positions

are shown in the map of Figure 7. From the counting curves,

we see that the proposed FCN-rLSTM accurately counts the

vehicles for multiple cameras and long time sequences.

Figure 7. Test cameras in the urban area

Figure 9. Counting results for multiple cameras.

Besides the high accuracy achieved by FCN-rLSTM, the

convergence of the proposed approach is also improved sig-

nificantly. As shown in Figure 10, the FCN-rLSTM con-

verges much faster than FCN alone networks (FCN-HA).

The residual connection of FCN and LSTM also enables

faster convergence than the direct connection.

Figure 10. Convergence of FCN-HA, FCN-dLSTM, and FCN-

rLSTM for: (a) Parkway Cameras (b) Downtown Cameras. Shad-

ing shows the MAE over Epochs and dark lines indicate the

smoothed trend.

4.2. Quantitative Evaluations on TRANCOS

We also evaluate the proposed method on a public

dataset TRANCOS [30] to verify its efficacy. TRANCOS is

a collection of 1244 images of different traffic scenes from

surveillance camera videos. It has 46796 annotated vehi-

cles in total and provides a region of interest (ROI) for each

image. Images of TRANCOS are from very different sce-

narios and no perspective maps are provided. The ground

truth vehicle density maps are generated by the 2D Gaus-

sian Kernel in the center of each annotated vehicle [17].

The MAE of the proposed method and baseline meth-

ods are compared in Table 3. Baseline 2-CCNN is a basic

version of the network in [30], and Baseline 2-Hydra aug-

ments the performance by learning a multiscale regression

model with a pyramid of image patches to perform the final

density prediction. All the baselines and proposed meth-

ods are trained on 823 images and tested on 421 frames

following the separation in [30]. From the results, we can

see FCN-HA significantly decreases the MAE from 10.99

to 4.21 compared with Baseline 2-Hydra, and decreases the

MAE from 5.31 to 4.21 compared with Baseline 3. As the

training and testing images of TRANCOS are random sam-

ples from different cameras and videos, they lack consis-

tent temporal information. Thus FCN-rLSTM cannot learn

temporal patterns from the training data. The performance

of FCN-rLSTM is not as good as FCN-HA, but it already

outperforms all the baseline methods. When applying our

proposed model to other datasets, we can choose the FCN-

rLSTM configuration for datasets that have temporal cor-

relation and choose the FCN-HA configuration for datasets

that do not have temporal correlation. Figure 11 compares

the estimated counts from the proposed and baseline meth-

ods. The estimated counts of the proposed methods are

evidently more accurate than that of the baseline methods.

FCN-rLSTM and FCN-HA have comparable estimation ac-

curacy of vehicle counts.

Table 3. Results comparison on TRANCOS dataset

Method MAE Method MAE

Baseline 1 13.76 Baseline 3 5.31

Baseline 2-CCNN 12.49 FCN-HA 4.21

Baseline 2-Hydra 10.99 FCN-rLSTM 4.38
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Figure 8. Estimated density map for multiple cameras. Column direction: The first four cameras are from downtown, and the last two

cameras are from parkway. Row direction: The first two rows are estimated density maps for cloudy frames; the middle two rows are for

sunny frames; and the last two rows are for rainy frames. Better view in color. Some density values may be too small to be clearly seen.

Figure 11. Results comparison on TRANCOS dataset.

4.3. Quantitative Evaluations on UCSD Dataset

To verify the generalization and robustness of our pro-

posed methods in different counting tasks, we also evalu-

ate and compare our methods with baselines on the pedes-

trian counting dataset UCSD [5]. This dataset contains 2000

frames chosen from one surveillance camera. The frame

size is 158 × 238 and frame rate is 10fps. Average number

of people in each frame is around 25. The dataset provides

the ROI for each video frame. By following the same setting

in [5], we use frames from 601 to 1400 as training data, and

the remaining 1200 frames as test data. Table 4 shows the

results of our methods and existing methods, from which we

Table 4. Results comparison on UCSD dataset

Method MAE MSE

Kernel Ridge Regression [1] 2.16 7.45

Ridge Regression [7] 2.25 7.82

Gaussian Process Regression [5] 2.24 7.97

Cumulative Attribute Regression [6] 2.07 6.86

Cross-scene DNN[47] 1.6 3.31

Baseline 3 1.67 3.41

FCN-HA 1.65 3.37

FCN-rLSTM 1.54 3.02

can see that FCN-rLSTM outperforms all the baseline meth-

ods and the FCN-HA configuration. These results show our

proposed methods are robust to other type of counting tasks.

5. Discussion & Conclusion

Vehicle counting is of great significance for many real

world applications. Counting vehicles from citycams is

very challenging as videos from citycams have low spatial

and temporal resolution, and high occlusion. To overcome

these challenges, we propose a novel FCN-rLSTM network

architecture to jointly estimate vehicle density and vehicle

count by connecting FCN with LSTM in a residual learning

fashion. Extensive evaluations on different counting tasks

and three datasets demonstrate the effectiveness and robust-

ness of the proposed methods. One limitation for FCN-

rLSTM is that the window size of the unrolled sequential

frames is restricted by the available memory capacity. Thus

we cannot learn very long term temporal information from

the current FCN-rLSTM architecture. This limitation does

not significantly affect the counting performance, for small

window sizes (five frames in this paper) is capable of learn-

ing the smoothness of vehicle count.
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