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Abstract

Deep convolutional neural networks (CNNs) have deliv-

ered superior performance in many computer vision tasks.

In this paper, we propose a novel deep fully convolutional

network model for accurate salient object detection. The

key contribution of this work is to learn deep uncertain con-

volutional features (UCF), which encourage the robustness

and accuracy of saliency detection. We achieve this via in-

troducing a reformulated dropout (R-dropout) after specific

convolutional layers to construct an uncertain ensemble of

internal feature units. In addition, we propose an effective

hybrid upsampling method to reduce the checkerboard ar-

tifacts of deconvolution operators in our decoder network.

The proposed methods can also be applied to other deep

convolutional networks. Compared with existing saliency

detection methods, the proposed UCF model is able to in-

corporate uncertainties for more accurate object boundary

inference. Extensive experiments demonstrate that our pro-

posed saliency model performs favorably against state-of-

the-art approaches. The uncertain feature learning mech-

anism as well as the upsampling method can significantly

improve performance on other pixel-wise vision tasks.

1. Introduction

Saliency detection targets to identify the most important

and conspicuous objects or regions in an image. As a pre-

processing procedure in computer vision, saliency detection

has greatly benefited many practical applications such as

object retargeting [6, 40], scene classification [37], semantic

segmentation [34] and visual tracking [29, 14]. Although

significant progress has been made [15, 1, 30, 21, 33, 46],

saliency detection remains very challenging due to complex

factors in real world scenarios. In this work we focus on the

task of improving robustness of saliency detection models,

which has been ignored in the literature.

Previous saliency detection methods utilize several hand-

crafted visual features and heuristic priors. Recently, deep

∗Prof.Lu is the corresponding author.

(a) Feature Visualization [7]

(b) Generative Adversarial Example [35]

(c) Saliency Detection [45]

(d) Semantic Segmentation [31]

Figure 1. Examples of the checkerboard artifacts in pixel-wise vi-

sion tasks using deep CNNs. High resolution to see better.

learning based methods become more and more popular,

and have set the benchmark on many datasets [27, 49, 3].

Their superior performance is partly attributed to the strong

representation power in modeling object appearances and

varied scenarios. However, existing methods fail to provide

a probabilistic interpretability of the “black-box” learning

in deep neural networks, and mainly enjoy the models’ ex-

ceptional performance. A reasonable probabilistic interpre-

tation can provide relational confidences alongside predic-

tions and make the prediction system into a more robust

one [10]. In addition, since the uncertainty is a natural part

of any predictive system, modeling the uncertainty is of cru-

cial importance. For instance, the object boundary strongly

affects the prediction accuracy of a saliency model, it is de-

sirable that the model can provide meaningful uncertainties
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on where the boundary of distinct objects is. As far as we

know, there is no work to model and analyze the uncertainty

of saliency detection methods based on deep learning.

Another important issue is the checkerboard artifact in

pixel-wise vision tasks, which target to generate images or

feature maps from low to high resolution. Several typical

examples are shown in Fig. 1 (ref. [32] for more details).

The odd artifacts sometimes are very fatal for deep CNNs

based approaches. For example, when the artifacts appear in

the output of a fully convolutional network (FCN), the net-

work training may fail and the prediction can be completely

wrong [36]. We find that the actual cause of these artifacts

is the upsampling mechanism, which generally utilizes the

deconvolution operation. Thus, it is of great interest to ex-

plore new upsampling methods to better reduce the artifacts

for pixel-wise vision tasks. Meanwhile, the artifacts are also

closely related to the uncertainty learning of deep CNNs.

All of the issues discussed above motivate us to learn

uncertain features (probabilistic learning) through deep net-

works to achieve accurate saliency detection. Our model

has several unique features, as outlined below.

• Different from existing saliency detection methods,

our model is extremely simplified. It consists of an

encoder FCN, a corresponding decoder FCN followed

by a pixel-wise classification layer. The encoder FCN

hierarchically learns visual features from raw images

while the decoder FCN progressively upsamples the

encoded feature maps to the input size for the pixel-

wise classification.

• Our model can learn deep uncertain convolutional fea-

tures (UCF) for more accurate saliency detection. The

key ingredient is inspired by dropout [13]. We pro-

pose a reformulated dropout (R-dropout), leading to

an adaptive ensemble of the internal feature units in

specific convolutional layers. Uncertain features are

achieved with no additional parameterization.

• We propose a new upsampling method to reduce the

checkerboard artifacts of deconvolution operations.

The new upsampling method has two obvious advan-

tages. On the one hand it separates out upsampling (to

generate higher resolution feature maps) from convo-

lution (to extract convolutional features), on the other

hand it is compatible with the regular deconvolution.

• The uncertain feature extraction and saliency detec-

tion are unified in an encoder-decoder network archi-

tecture. The parameters of the proposed model (i.e.,

weights and biases in all the layers) are jointly trained

by end to end gradient learning.

• Our methods show good generalization on saliency de-

tection and other pixel-wise vision tasks. Without any

post-processing steps, our model yields comparable

even better performance on public saliency detection,

semantic segmentation and eye fixation datasets.

2. Related Work

Recently, deep learning has delivered superior perfor-

mance in saliency detection. For instance, Wang et al. [44]

propose two deep neural networks to integrate local estima-

tion and global search for saliency detection. Li et al. [23]

train fully connected layers of mutiple CNNs to predict the

saliency degree of each superpixel. To deal with the prob-

lem that salient objects may appear in a low-contrast back-

ground, Zhao et al. [50] take global and local context into

account and model the saliency prediction in a multi-context

deep CNN framework. These methods have excellent per-

formances, however, all of them include fully connected

layers, which are very computationally expensive. What’s

more, fully connected layers drop spatial information of in-

put images. To address these issues, Li et al. [26] propose

a FCN trained under the multi-task learning framework for

saliency detection. Wang et al. [45] design a recurrent FCN

to leverage saliency priors and refine the coarse predictions.

Although motivated by the similar spirit, our method sig-

nificantly differs from [26, 45] in three aspects. First, the

network architecture is very different. The FCN we used is

in the encoder-decoder style, which is in the view of main

information reconstruction. In [26, 45], the FCN originates

from the FCN-8s [28] designed with both long and short

skip connections for the segmentation task. Second, in-

stead of simply using FCNs as predictors in [26, 45], our

model can learn uncertain convolutional features by using

multiple reformulated dropouts, which improve the robust-

ness and accuracy of saliency detection. Third, our model

is equipped with a new upsampling method, that naturally

handles the checkerboard artifacts of deconvolution opera-

tions. The checkerboard artifacts can be reduced through

training the entire neural network. In contrast, the artifacts

is handled by hand-crafted methods in [26, 45]. Specifical-

ly, [26] uses superpixel segmentation to smooth the predic-

tion. In [45], an edge-aware erosion procedure is used.

Our work is also related to the model uncertainty in deep

learning. Gal et al. [10] mathematically prove that a mul-

tilayer perceptron models (MLPs) with dropout applied be-

fore every weight layer, is equivalent to an approximation

to the probabilistic deep Gaussian process. Though the pro-

vided theory is solid, a full verification on deep CNNs is

underexplored. Base on this fact, we make a further step

in this direction and show that a reformulated dropout can

be used in convolutional layers for learning uncertain fea-

ture ensembles. Another representative work on the model

uncertainty is the Bayesian SegNet [20]. The Bayesian Seg-

Net is able to predict pixel-wise scene segmentation with a

measure of the model uncertainty. They achieve the model

uncertainty by Monte Carlo sampling. Dropout is activated

at test time to generate a posterior distribution of pixel class

labels. Different from [20], our model focuses on learning

uncertain convolutional features during training.
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Figure 2. Overall architecture of the proposed UCF model.

3. The Proposed Model

3.1. Network Architecture Overview

Our architecture is partly inspired by the stacked denois-

ing auto-encoder [43]. We generalize the auto-encoder to a

deep fully convolutional encoder-decoder architecture. The

resulting network forms a novel hybrid FCN which con-

sists of an encoder FCN for high-level feature extraction,

a corresponding decoder FCN for low-level information re-

construction and a pixel-wise classifier for saliency predic-

tion. The overall architecture is illustrated in Fig. 2. More

specifically, the encoder FCN consists of multiple convolu-

tional layers with batch normalizations (BN) [16] and recti-

fied linear units (ReLU), followed by non-overlapping max

pooling. The corresponding decoder FCN additionally in-

troduces upsampling operations to build feature maps up

from low to high resolution. We use the softmax classifier

for the pixel-wise saliency prediction. In order to achieve

the uncertainty of learned convolutional features, we utilize

the reformulated dropout (dubbed R-Dropout) after sever-

al convolutional layers. The detailed network configuration

is included in supplementary materials. We will fully elab-

orate the R-Dropout, our new upsampling method and the

training strategy in the following subsections.

3.2. R-Dropout for Deep Uncertain Convolutional
Feature Ensemble

Dropout is typically interpreted as bagging a large num-

ber of individual models [13, 39]. Although plenty of ex-

periments show that dropout for fully connected layers im-

proves the generalization ability of deep networks, there is

a lack of research about using dropout for other type layers,

such as convolutional layers. In this subsection, we show

that using modified dropout after convolutional layers can

be interpreted as a kind of probabilistic feature ensembles.

In light of this fact, we provide a strategy on learning uncer-

tain convolutional features.

R-Dropout in Convolution: Assume X ∈ RW×H×C is a

3D tensor, and f(X) is a convolution operation in CNNs,

projecting X to the RW
′

×H
′

space by parameters W and b:

f(X) = WX + b. (1)

Let g(·) be a non-linear activation function. When the orig-

inal dropout [13] is applied to the outputs of g(f), we can

get its disturbed version ĝ(f) by

g(f) = g(WX + b), (2)

ĝ(f) = M ⊙ g(f) = M ⊙ g(WX + b), (3)

where ⊙ denotes element-wise product and M is a binary

mask matrix of size W
′×H

′

with each element Mi,j drawn

independently from Mi,j ∼ Bernoulli(p). Eq.(3) denotes

the activation with dropout during training, and Eq.(2) de-

notes the activation at test time. In addition, Srivastava et

al. [39] suggest to scale the activations g(f) with p at test

time to obtain an approximate average of the unit activation.

Many commonly used activation functions such as Tanh,

ReLU and LReLU [12], have the property that g(0) = 0.

Thus, Eq.(3) can be re-written as the R-Dropout formula,

ĝ(f) = g(M ⊙ (WX + b)) (4)

= g(M ⊙ (WX) + M ⊙ b) (5)

= g((M ⊗ W)X + M ⊙ b) (6)

= g(SX + M ⊙ b), (7)

where ⊗ denotes the cross-channel element-wise product.

From above equations, we can derive that when S = M⊗W

is still binary, Eq.(7) implies that a kind of stochastic prop-

erties1 is applied at the inputs to the activation function. Let

1Stochastic property means that one can use a specific probability dis-

tribution to generate the learnable tensor S during each training iteration.

The update of S forms a stochastic process not a certain decision.

214



Si,j,k ∈ [0, 1] and
∑

j

∑
k Si,j,k = 1, the above equations

will strictly construct an ensemble of internal feature units

of X. However, in practice there is certainly no evidence to

hold above constraints. Even though, we note that: (1) the

stochastic mask matrix S mainly depends on the mask gen-

erator2; (2) when training deep convolutional networks, the

R-Dropout after convolutional layers acts as an uncertain

ensemble of convolutional features; (3) this kind of feature

ensemble is element-wisely probabilistic, thus it can bring

forth robustness in the prediction of dense labeling vision

tasks such as saliency detection and semantic segmentation.

Uncertain Convolutional Feature Extraction: Motivated

by above insights, we employ the R-Dropout into convolu-

tional layers of our model, thereby generating deep uncer-

tain convolutional feature maps. Since our model consists

of alternating convolutional and pooling layers, there exist

two typical cases in our model. For notational simplicity,

we subsequently drop the batch normalization (BN).

1) Conv+R-Dropout+Conv: If the proposed R-Dropout

is followed by a convolutional layer, the forward propaga-

tion of input is formulated as

ĝ(f l) = g(SlXl−1 + Ml ⊙ bl), (8)

f l+1 = Conv(Wl+1, ĝ(f l)), (9)

gl+1 = g(f l+1), (10)

where l is the layer number and Conv is the convolution op-

eration. As we can see from Eq.(9), the disturbed activation

ĝ(f l) is convolved with filter Wl+1 to produce convolved

features f l+1. In this way, the network will focus on learn-

ing the weight and bias parameters, i.e., W and b, and the

uncertainty of using the R-Dropout will be dissipated dur-

ing training deep networks.

2) Conv+R-Dropout+Pooling: In this case, the forward

propagation of input becomes

ĝ(f l) = g(SlXl−1 + Ml ⊙ bl), (11)

gl+1
j = Pooling(ĝ(f l)1, ..., ĝ(f

l)n), i ∈ Rl
j . (12)

Here Pooling(·) denotes the max-pooling function. Rl
j is

the pooling region j at layer l and ĝ(f l)i is the activi-

tion of each neuron within Rl
j . n = |Rl

j | is the num-

ber of units in Rl
j . To formulate the uncertainty, without

loss of generality, we suppose the activations ĝ(f l) in each

pooling region j are ordered in non-decreasing order, i.e.

ĝ(f l)1 ≤ ĝ(f l)2 ≤ ... ≤ ĝ(f l)n. As a result, ĝ(f l)i
will be selected as the pooled activation on conditions that

2In R-Dropout, the generator can be any probability distribution. The

original dropout is a special case of the R-Dropout, when the generator is

the Bernoulli distribution.

(1) ĝ(f l)i+1, ĝ(f
l)i+2, ..., ĝ(f

l)n are dropped out, and (2)

ĝ(f l)i is retained. This event occurs with probability of Pi

according to the probability theory,

P (gl+1
j = ĝ(f l)i) = Pi = pqn−i, p = 1− q. (13)

Therefore, performing R-dropout before the max-pooling

operation is exactly sampling from the following multino-

mial distribution to select an index i, then the pooled acti-

vation is simply ĝ(f l)i,

gl+1
j = ĝ(f l)i, i ∼ Multinomial(P0, P1, ..., Pn), (14)

where P0(= qn) is the special event that all the units in a

pooling region is dropped out.

The latter strategy exhibits the effectiveness of building

the uncertainty by employing the R-Dropout into convolu-

tional layers. We adopt it to build up our network architec-

ture (see Fig. 2). We will experimentally demonstrate that

the R-Dropout based FCN yields marvelous results on the

saliency detection datasets in Section 4.

3.3. Hybrid Upsampling for Prediction Smoothing

In this subsection, we first explicate the cause of checker-

board artifacts by the deconvolution arithmetic [42]. Then

we derive a new upsampling method to reduce the artifacts

as much as possible for the network training and inference.

Without loss of generality, we focus on the square input

(n× n), square kernel size (k × k), same stride (s× s) and

same zero padding (p× p) (if used) along both axes. Since

we aim to implement upsampling, we set s ≥ 2. In general,

the convolution operation C can be described by

O = C(I,F) = I ∗ F, (15)

where I(n+p)×(n+p) is the input, Fk×k is the filter with

stride s, ∗ is the discrete convolution and O is the output

whose dimension is ⌊(n + 2p − k)/s⌋ + 1. The convolu-

tion C has an associated deconvolution D described by n̂
′

,

k
′

= k, s
′

= 1 and p
′

= k − p − 1, where n̂
′

is the size of

the stretched input obtained by adding s− 1 zeros between

each input unit, and the output size of the deconvolution is

o
′

= s(n
′ − 1) + k − 2p3. This indicates that the regular

deconvolution operator is equivalent to performing con-

volution on a new input with inserted zeros (n̂
′ × n̂

′

). A

toy example is shown in Fig. 3. In addition, when the filter

size k can not be divided by the stride s, the deconvolution

will cause the overlapping issue. If the stretched input is

high-frequency or near periodic, i.e., the value is extreme-

ly undulating when zeros are inserted, the output results of

deconvolution operations naturally have numerical artifacts

like a checkerboard.

3The constraint on the size of the input n can be relaxed by introducing

another parameter t ∈ 0, ..., s− 1 that allows to distinguish between the

s different cases that all lead to the same n
′

.
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Figure 3. The detailed explanation of deconvolution. The decon-

volution of a 3 × 3 kernel using 2 × 2 strides over a 5 × 5 input

padded with a 1×1 border of zeros (i.e., n = 5, k = 3, s = 2 and

p = 1). It is equivalent to convolving a 3× 3 kernel over a 3× 3

input (with 1 zero inserted between inputs) padded with a 1 × 1

border of zeros using unit strides (i.e., n
′

= 3, n̂
′

= 5, k = 3,

s = 1 and p = 1).

+Deconvolution Inter-convolution

Input

Output

Figure 4. The hybrid upsampling. Two strategies are jointly used:

1) deconvolution with restricted filter sizes (left branch); 2) linear

interpolation with 1x1 convolution (right branch). The final output

is the summed result of two strategies.

Base on the above observations, we propose two strate-

gies to avoid the artifacts produced by the regular decon-

volution. The first one is restricting the filter size. We can

simply ensure the filter size is a multiple of the stride size,

avoiding the overlapping issue, i.e.,

k = λs, λ ∈ N+. (16)

Then the deconvolution will dispose the zero-inserted input

with the equivalent convolution, deriving a smooth output.

However, because this method only focuses on changing the

receptive fields of the output, and can not change the fre-

quency distribution of the zero-inserted input, the artifacts

can still leak through in several extreme cases. We propose

another alternative strategy which separates out upsampling

from equivalent convolution. We first resize the original

input into the desired size by interpolations, and then per-

form some equivalent convolutions. Although this strategy

may destroy the learned features in deep CNNs, we find that

high resolution maps built by iteratively stacking this kind

of upsampling can reduce artifacts amazingly. In order to

take the strength of both strategies, we introduce the hy-

brid upsampling method by summing up the outputs of the

two strategies. Fig. 4 illustrates the proposed upsampling

method. In our proposed model, we use bilinear (or nearest-

neighbor) operations for the interpolation. These interpola-

tion methods are linear operations, and can be embedded

into the deep CNNs as efficient matrix multiplications.

3.4. Training the Entire Network

Since there is a lack of enough saliency detection data for

training our model from scratch, we utilize the front-end of

the VGG-16 model [38] as our encoder FCN (13 convolu-

tional layers and 5 pooling layers pre-trained on ILSVRC

2014 for the image classification task). Our decoder FCN

is a mirrored version of the encoder FCN, and has multiple

series of upsampling, convolution and rectification layers.

Batch normalization (BN) is added to the output of every

convolutional layer. We add the R-dropout with an equal

sampling rate p = 0.5 after specific convolutional layers,

as shown in Fig. 2. For saliency detection, we randomly

initialize the weights of the decoder FCN and fine-tune the

entire network on the MSRA10K dataset [4], which is wide-

ly used in salient object detection community (More details

will be described in Section 4). We convert the ground-truth

saliency map of each image in that dataset to be a 0-1 binary

map. This kind of transform perfectly matches the channel

output of the FCN when we use the softmax cross-entropy

loss function given by the following equation (17) for sepa-

rating saliency foreground from general background.

L = −
∑

m

lm log(qm) + (1− lm) log(1− qm), (17)

where lm (= 0, 1) is the label of a pixel m in the image

and qm is the probability that the pixel is the saliency fore-

ground. The value of qm is obtained from the output of the

network. Before putting the training images into our pro-

posed model, each image is subtracted with the ImageNet

mean [5] and rescaled into the same size (448 × 448). For

the correspondence, we also rescale the 0-1 binary maps to

the same size. The model is trained end to end using the

mini-batch stochastic gradient descent (SGD) with a mo-

mentum, learning rate decay schedule. The detailed settings

of parameters are included in the supplementary material.

3.5. Saliency Inference

Because our model is a fully convolutional network, it

can take images with arbitrary size as inputs when testing.

After the feed-forward process, the output of the network

is composed of a foreground excitation map (Mfe) and a

background excitation map (Mbe). We use the difference

between Mfe and Mbe, and clip the negative values to ob-

tain the resulting saliency map, i.e.,

Sal = max(Mfe − Mbe, 0). (18)

This subtraction strategy not only increases the pixel-level

discrimination but also captures context contrast informa-

tion. Optionally, we can take the ensemble of multi-scale

predicted maps to further improve performance.
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4. Experiments

In this section, we start by describing the experimental

setup for saliency detection. Then, we thoroughly evaluate

and analyze our proposed model on public saliency detec-

tion datasets. Finally, we provide additional experiments to

verify the generalization of our methods on other pixel-wise

vision tasks, i.e., semantic segmentation and eye fixation.

4.1. Experimental Setup

Saliency Datasets: For training the proposed network,

we simply augment the MSRA10K dataset [4] by the mir-

ror reflection and rotation techniques (0◦, 90◦, 180◦, 270◦),

producing 80,000 training images totally.

For the detection performance evaluation, we adopt six

widely used saliency detection datasets as follows,

DUT-OMRON [49]. This dataset consists of 5,168 high

quality images. Images in this dataset have one or more

salient objects and relatively complex background. Thus,

this dataset is difficult and challenging in saliency detection.

ECSSD [48]. This dataset contains 1,000 natural im-

ages, including many semantically meaningful and complex

structures in the ground truth segmentations.

HKU-IS [50]. This dataset contains 4,447 images with

high quality pixel-wise annotations. Images in this dataset

are well chosen to include multiple disconnected objects or

objects touching the image boundary.

PASCAL-S [27]. This dataset is carefully selected from

the PASCAL VOC dataset [8] and contains 850 images.

SED [2]. This dataset contains two different subsets:

SED1 and SED2. The SED1 has 100 images each contain-

ing only one salient object, while the SED2 has 100 images

each containing two salient objects.

SOD [48]. This dataset has 300 images, and it was orig-

inally designed for image segmentation. Pixel-wise annota-

tion of salient objects was generated by [18].

Implementation Details: We implement our approach

based on the MATLAB R2014b platform with the modified

Caffe toolbox [20]. We run our approach in a quad-core

PC machine with an i7-4790 CPU (with 16G memory) and

one NVIDIA Titan X GPU (with 12G memory). The train-

ing process of our model takes almost 23 hours and con-

verges after 200k iterations of the min-batch SGD. The pro-

posed saliency detection algorithm runs at about 7 fps with

448 × 448 resolution (23 fps with 224 × 224 resolution).

The source code can be found at http://ice.dlut.edu.cn/lu/.

Saliency Evaluation Metrics: We adopt three widely

used metrics to measure the performance of all algorithms,

i.e., the Precision-Recall (PR) curves, F-measure and Mean

Absolute Error (MAE) [3]. The precision and recall are

computed by thresholding the predicted saliency map, and

comparing the binary map with the ground truth. The PR

curve of a dataset indicates the mean precision and recall of

saliency maps at different thresholds. The F-measure is a

balanced mean of average precision and average recall, and

can be calculated by

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision×Recall
. (19)

Following existing works [48] [44] [3] [49], we set β2 to be

0.3 to weigh precision more than recall. We report the per-

formance when each saliency map is adaptively binarized

with an image-dependent threshold. The threshold is deter-

mined to be twice the mean saliency of the image:

T =
2

W ×H

W∑

x=1

H∑

y=1

S(x, y), (20)

where W and H are width and height of an image, S(x, y)
is the saliency value of the pixel at (x, y).

We also calculate the mean absolute error (MAE) for fair

comparisons as suggested by [3]. The MAE evaluates the

saliency detection accuracy by

MAE =
1

W ×H

W∑

x=1

H∑

y=1

|S(x, y)−G(x, y)|, (21)

where G is the binary ground truth mask.

4.2. Performance Comparison with State-of-the-art

We compare the proposed UCF algorithm with other

10 state-of-the-art ones including 6 deep learning based

algorithms (DCL [24], DS [26], ELD [22], LEGS [44],

MDF [50], RFCN [45]) and 4 conventional counterparts

(BL [41], BSCA [33], DRFI [18], DSR [25]). The source

codes with recommended parameters or the saliency maps

of the competing methods are adopted for fair comparison.

As shown in Fig. 5 and Tab. 1, our proposed UCF model

can consistently outperform existing methods across almost

all the datasets in terms of all evaluation metrics, which con-

vincingly indicates the effectiveness of the proposed meth-

ods. Refer to the supplemental material for more results on

DUT-OMRON, HKU-IS, PASCAL-S and SOD datasets.

From these results, we have several fundamental obser-

vations: (1) Our UCF model outperforms other algorithms

on ECSSD and SED datasets with a large margin in terms

of F-measure and MAE. More specifically, our model im-

proves the F-measure achieved by the best-performing ex-

isting algorithm by 3.9% and 6.15% on ECSSD and SED

datasets, respectively. The MAE is consistently improved.

(2) Although our proposed UCF is not the best on HKU-

IS and PASCAL-S datasets, it is still very competitive (our

model ranks the second on these datasets). It is necessary

to note that only the augmented MSRA10K dataset is used

for training our model. The RFCN, DS and DCL methods
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Figure 5. Performance of the proposed algorithm compared with other state-of-the-art methods.

DUT-OMRON ECSSD HKU-IS PASCAL-S SED1 SED2

Methods Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE
UCF 0.6283 0.1203 0.8517 0.0689 0.8232 0.0620 0.7413 0.1160 0.8647 0.0631 0.8102 0.0680

V-E 0.6135 0.1224 0.7857 0.0795 0.7716 0.0785 0.6303 0.1284 0.8128 0.0732 0.7576 0.0851

V-D 0.5072 0.1345 0.6942 0.1195 0.6851 0.0967 0.5695 0.1624 0.7754 0.0844 0.6930 0.0954

V-C 0.6165 0.1210 0.8426 0.0711 0.8156 0.0670 0.7201 0.1203 0.8665 0.0653 0.8014 0.0795

V-B 0.6168 0.1305 0.8356 0.0781 0.8060 0.0651 0.6845 0.1254 0.8547 0.0685 0.7905 0.0709

V-A 0.6128 0.1409 0.8166 0.0811 0.7346 0.0988 0.6172 0.1367 0.7641 0.1023 0.6536 0.1044

DCL [24] 0.6842 0.1573 0.8293 0.1495 0.8533 0.1359 0.7141 0.1807 0.8546 0.1513 0.7946 0.1565

DS [26] 0.6028 0.1204 0.8255 0.1216 0.7851 0.0780 0.6590 0.1760 0.8445 0.0931 0.7541 0.1233

ELD [22] 0.6109 0.0924 0.8102 0.0796 0.7694 0.0741 0.7180 0.1232 0.8715 0.0670 0.7591 0.1028

LEGS [44] 0.5915 0.1334 0.7853 0.1180 0.7228 0.1193 - - 0.8542 0.1034 0.7358 0.1236

MDF [50] 0.6442 0.0916 0.8070 0.1049 0.8006 0.0957 0.7087 0.1458 0.8419 0.0989 0.8003 0.1014

RFCN [45] 0.6265 0.1105 0.8340 0.1069 0.8349 0.0889 0.7512 0.1324 0.8502 0.1166 0.7667 0.1131

BL [41] 0.4988 0.2388 0.6841 0.2159 0.6597 0.2071 0.5742 0.2487 0.7675 0.1849 0.7047 0.1856

BSCA [33] 0.5091 0.1902 0.7048 0.1821 0.6544 0.1748 0.6006 0.2229 0.8048 0.1535 0.7062 0.1578

DRFI [18] 0.5504 0.1378 0.7331 0.1642 0.7218 0.1445 0.6182 0.2065 0.8068 0.1480 0.7341 0.1334

DSR [25] 0.5242 0.1389 0.6621 0.1784 0.6772 0.1422 0.5575 0.2149 0.7909 0.1579 0.7116 0.1406

Table 1. The F-measure and MAE of different saliency detection methods on five frequently used datasets. The best three results are shown

in red, green and blue, respectively. The proposed methods rank first and second on these datasets.

are pre-trained on the additional PASCAL VOC segmen-

tation dataset [9], which is overlaped with the PASCAL-S

and HKU-IS datasets. This fact may interpret their success

on the two datasets. However, their performance on oth-

er datasets is obviously inferior. (3) Compared with other

methods, our proposed UCF achieves lower MAE on most

of datasets. It means that our model is more convinced of

the predicted regions by the uncertain feature learning.

The visual comparison of different methods on the typi-

cal images is shown in Fig. 6. Our saliency maps can reli-

ably highlight the salient objects in various challenging sce-

narios, e.g., low contrast between objects and backgrounds

(the first two rows), multiple disconnected salient objects

(the 3-4 rows) and objects near the image boundary (the 5-6

rows). In addition, our saliency maps provide more accurate

boundaries of salient objects (the 1, 3, 6-8 rows).

Ablation Studies: To verify the contributions of each com-

ponent, we also evaluate several variants of the proposed

UCF model with different settings as illustrated in Tab. 2.

The corresponding performance are reported in Tab. 1. The

V-A model is an approximation of the DeconvNet [31]. The

comparison between V-A and V-B demonstrates that our

Settings V-A V-B V-C V-D V-E UCF

+Dropout
√

+R-Dropout
√ √ √

+Rest Deconv
√ √ √ √

+Inter
√ √ √

Table 2. Variants of our UCF model. Note that Rest Deconv and

Inter indicate the hybrid upsampling method.

(a) (b) (c) (d) (e)

Figure 7. Comparison of different upsampling algorithms. (a) In-

put image; (b) Deconvolution; (c) Interpolation; (d) Our method;

(e) Ground truth. More examples in the supplementary material.

uncertain learning mechanism can indeed benefit to learn

more robust features for accurate saliency inference. The

comparison between V-B and V-C shows the effects with

two upsampling strategies. Results imply that the interpo-

lation strategy performs much better in saliency detection.

The joint comparison of V-B, V-C and UCF confirms that

our hybrid upsampling method is capable of better refining

the output saliency maps. An example on the visual effects
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 6. Comparison of saliency maps. (a) Input images; (b) Ground truth; (c) Our method; (d) RFCN; (e) DCL; (f) DS; (g) LEGS; (h)

MDF; (i) ELD; (j) DRFI. More examples in each dataset can be found in the supplementary material.

is illustrated in Fig. 7. In addition, the V-D model and V-E

model verify the usefulness of deconvolution and interpo-

lation upsampling, respectively. The V-B and V-C models

achieve competitive even better results than other saliency

methods. This further confirms the strength of our methods.

4.3. Generalization Evaluation

To verify the generalization of our methods, we perform

additional experiments on other pixel-wise vision tasks.

Semantic Segmentation: Following existing works [31,

20], we simply change the classifier into 21 classes and

perform the semantic segmentation task on the PASCAL

VOC 2012 dataset [9]. Our UCF model is trained with

the PASCAL VOC 2011 training and validation data, us-

ing the Berekely’s extended annotations [11]. We achieve

expressive results (mean IOU: 68.25, mean pix.accuracy:

92.19, pix.accuracy: 77.28), which are very comparable

with other state-of-the-art segmentation methods. In addi-

tion, though the segmentation performance gaps are not as

large as in saliency detection, our new upsampling method

indeed performs better than regular deconvolution (mean

IOU: 67.45 vs 65.173, mean pix.accuracy: 91.21 vs 90.84,

pix.accuracy: 76.18 vs 75.73).

Eye Fixation: The task of eye fixation prediction is essen-

tially different from our classification task. We use the Eu-

clidean loss for the gaze prediction. We submit our results

AUC-J sAUC CC NSS IG

MIT300 [19] 0.8584 0.7109 0.7423 2.14 -

iSUN [47] 0.8615 0.5498 0.8142 - 0.1725

SALICON[17] 0.7621 0.6326 0.8453 - 0.3167

Table 3. Results on eye fixation datasets. Metrics in first row can

be found in [19, 17]

to servers of MIT300 [19], iSUN [47] and SALICON [17]

benchmarks with standard setups. Our model also achieves

comparable results shown in Tab. 3. All above results on se-

mantic segmentation and eye fixation tasks indicate that our

model has a strong generalization in other pixel-wise tasks.

5. Conclusion

In this paper, we propose a novel fully convolutional net-
work for saliency detection. A reformulated dropout is uti-
lized to facilitate probabilistic training and inference. This
uncertain learning mechanism enables our method to learn
uncertain convolutional features and yield more accurate
saliency prediction. A new upsampling method is also pro-
posed to reduce the artifacts of deconvolution operations,
and explicitly enforce the network to learn accurate bound-
ary for saliency detection. Extensive evaluations demon-
strate that our methods can significantly improve perfor-
mance of saliency detection and show good generalization
on other pixel-wise vision tasks.
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