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Abstract

We present a new point set registration method with

global-local correspondence and transformation estimation

(GL-CATE). The geometric structures of point sets are ex-

ploited by combining the global feature, the point-to-point

Euclidean distance, with the local feature, the shape dis-

tance (SD) which is based on the histograms generated by

an elliptical Gaussian soft count strategy. By using a bi-

directional deterministic annealing scheme to directly con-

trol the searching ranges of the two features, the mixture-

feature Gaussian mixture model (MGMM) is constructed to

recover the correspondences of point sets. A new vector

based structure constraint term is formulated to regularize

the transformation. The accuracy of transformation updat-

ing is improved by constraining spatial structure at both

global and local scales. An annealing scheme is applied

to progressively decrease the strength of the regularization

and to achieve the maximum overlap. Both of the afore-

mentioned processes are incorporated in the EM algorithm,

a unified optimization framework. We test the performances

of our GL-CATE in contour registration, sequence images,

real images, medical images, fingerprint images and re-

mote sensing images, and compare with eight state-of-the-

art methods where our GL-CATE shows favorable perfor-

mances in most scenarios.

1. Introduction

Non-rigid point set registration is an essential problem

which constantly draws interest in various fields such as re-

mote sensing, medical image registration, template match-

ing for hand-written characters and fingerprint identifica-

tion. TPSRPM [5], RPM-LNS[34], CPD [22, 21], GMM-

REG [8], L2E-RPM [17, 15], GLMDTPS [32], MoAGREG

[30] and PR-GLS [18] are some of the outstanding works.

In this section, we briefly review these methods, and then

summarize from three aspects including: (i) energy opti-

mization framework, (ii) fuzziness of correspondence and

(iii) spatial constraint, followed by the outline of our GL-

CATE.

The key idea of TPSRPM [5] is to assume that each

source point corresponds to a weighted sum of the tar-

get points. The weights are taken from a corresponding

matrix whose entries are proportional to a Gaussian func-

tion of the pairwise Euclidean distances between the source

and target point sets. The transformation is updated using

thin-plate splines (TPS) [3, 29]. Zheng et al. [34] pro-

posed a robust point matching by preserving local neigh-

borhood structures (RPM-LNS) for non-rigid shape regis-

tration based on the graph theory. RPM-LNS employs the

shape context (SC) descriptor [2, 11] to initialize the graph

matching, the optimal match between two graphs is the one

that maximizes the number of matched edges. CPD [22, 21]

takes the source and target point sets as the centroid of com-

ponents and data, respectively, and the registration is inter-

preted to a maximum likelihood estimation problem. The

elegant expectation maximization (EM) algorithm frame-

work [6, 23] is employed for parametric estimation. The

transformation is modeled using Gaussian radial basis func-

tion (GRBF) and the motion coherence theory [33] is used

to regularize the displacement field between the point sets.

GMMREG [8] extends the idea of registration from fitting

Gaussian mixtures to data to aligning two Gaussian mix-

ture models (GMM). And the L2 distance is used to mea-

sure the discrepancy of two Gaussian mixtures instead of

the log-likelihood function. RPM-L2E [17, 15] introduces

the L2 minimizing estimate (L2E) [1, 28] which is a ro-

bust estimator in statistics to estimate the transformation.

The source point set and the estimated corresponding point
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which is obtained by matching the SC descriptor are rep-

resented by two multi-dimensional normal distributions to

be fitted. GLMDTPS [32] presents a mixture-feature based

correspondence estimation method named as global and lo-

cal mixture distance (GLMD). The global distance is the

point-to-point Euclidean distance, and the local distance is

obtained by summing the squared Euclidean distance be-

tween the ith neighboring points according to the index.

These two distances are combined to form a GLMD based

cost matrix for correspondences estimation. MoAGREG

[30] uses asymmetric Gaussian distribution [10] to repre-

sent each point set, it updates correspondences and trans-

formations under the framework of TPSRPM. PR-GLS [18]

acquires a binary corresponding matrix by matching the

SC descriptors, this matrix is then used to improve CPD

through directly assigning the membership probabilities of

GMMs to close to one, if matched, or to close to zero, oth-

erwise.

TPSRPM employs robust point matching (RPM) al-

gorithm for energy optimization, it essentially involves a

dual update process embedded within an annealing scheme,

which is quite similar to the EM algorithm adopted by

CPD and PR-GLS. RPM-LNS proceed by finding the

matches that maximizes the number of matched edges,

while GLMDTPS optimizes the GLMD cost matrix us-

ing the Jonker-Volgenant algorithm [9, 20]. For GMM-

REG, RPM-L2E and MoAGREG, they optimize energy by

minimizing the discrepancy of two distributions. Overall,

TPSRPM, RPM-LNS, CPD, GMMREG, RPM-L2E, MoA-

GREG, the applicability of these methods is limited by the

single feature based correspondence estimations. For exam-

ple, if two target points share the same Euclidean distance to

a source point, we obtain equal correspondences, although

the local structures are probably totally different. And for

robust shape context or graph features, however, is unfa-

vored by the assumption that the corresponding points have

similar neighborhood structures [8]. Moreover, the rotation

invariant shape context used in RPM-LNS, RPM-L2E and

PR-GLS can be greatly deteriorated since this property re-

quires the center of mass to be stable. GLMDTPS and PR-

GLS employ both the global and local features. However,

since outliers are not modeled, GLMDTPS is sensitive to

outliers. And PR-GLS actually divides the original single

optimization process into two, which are the linear assign

problem [24, 13] of the shape context and the EM algo-

rithm. This inconsistency may cause a decrease in perfor-

mance, especially, when handling large amount of points.

Based on the assumption that each source point corre-

sponds to a weighted sum of the target points, TPSRPM

and CPD estimate the one-to-many fuzzy correspondences

by the Euclidean distance based probability, since the mag-

nitude of the searching range parameter goes from large to

small, it is a global-to-local registration strategy. At a very

large searching range, the estimated corresponding point set

is essentially very close to the center of mass of the target

point set, which leads the source point set to collapse at the

beginning, and to expand as the searching range decreases,

thus they require relatively more iterations. Particularly, the

center of mass changes relatively slightly when the target

point set is heavily rotated, which results in a bad initial

pose and finally a large deviation result. On the other hand,

enforcing a one-to-one correspondence using binary matrix

[17, 15, 32] is vulnerable to the presence of noise and out-

liers.

Methods [22, 21, 17, 15] using GRBF constrain their

spatial transformation with the motion coherence theory

[33]. In TPS, a term in the form of the space integral of

the square of the second order derivatives which reflects

the prior knowledge is also included for the same purpose

[5, 34, 32]. Intuitively, these regularizations discourage

mappings which are too arbitrary by forcing points to move

coherently at global scale. However, they produce position

deviations of the rest of the points when one point is mis-

matched, and may also be undesirable when source points

need to be moved in different directions to match their target

points at the same time [32].

In this paper, we present a new point set registration

method with global-local correspondence and transforma-

tion estimation (GL-CATE). The pairwise Euclidean dis-

tance and shape distance (SD) are used as the global and

local features, respectively. The SD which is based on the

histograms generated by an elliptical Gaussian soft count

strategy can quantify similar neighborhood structures. By

the help of the SD, the constructed mixture-feature Gaus-

sian mixture model (MGMM) obtains a sufficiently good

initial pose and reliable correspondence estimation. The

searching ranges of the two features are directly controlled

by a bi-directional deterministic annealing scheme, which

interchanges the statuses of the two features and leads a

local-to-global registration strategy. The EM algorithm, a

unified optimization framework is used to estimate the pa-

rameters of the MGMM. In E-step, the posterior probability

matrices are obtained by measuring the similarities of the

designed mixture-feature using Bayes’ rule. In M-step, we

minimize the expectation of the negative objective function

in reproducing kernel Hilbert space (RKHS). A new vec-

tor based structure constraint term is used to regularize the

transformation which complements the global coherence.

The accuracy of transformation estimation is improved by

constraining spatial structure at both global and local scales.

An annealing scheme is applied to progressively decrease

the strength of the regularization and to achieve the maxi-

mum overlap. We test the performances of our GL-CATE

in contour registration, sequence images, real images, med-

ical images, fingerprint images and remote sensing images,

and compare with eight state-of-the-art methods where our
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GL-CATE shows favorable performances in most scenarios.

2. Method

We denote the set of M source points by YM×D =
{y1,y2, ...,yM}

T , and a set of N target points by

XN×D = {x1,x2, ...,xN}
T . The goal is to recover the

unknown non-rigid transformation T (Y,φ) registering Y

to X with maximum point-wise overlap, where φ is a set of

parameters. Based on the reasonable assumption that points

from one set are normally distributed around points belong-

ing to the other set [18], aligning Y onto X is considered as

fitting M Gaussian components to N data, where achieving

the maximum point-wise overlap is therefore taken as min-

imizing the negative GMM log-likelihood function. Let ym

be the centroid of the mth component, xn the nth data. The

probability density function is obtained as:

p(xn) = (1− ζ)
M
∑

m=1

Cmnf(xn|ym) + ζ
1

N
, (1)

where Cmn is non-negative quantity with
∑M

m=1 Cmn = 1,

which is called the component densities of the mixture. 1
N

is an additional uniform distribution with a weighting pa-

rameter ζ, 0 ≤ ζ ≤ 1 for outlier dealing. Based on the

EM algorithm for GMM based clustering, we compute the

posterior probability (E-step) as:

pmn =
Cmnf(xn|ym)

∑M
j=1 Cjnf(xn|yj) + ζ 1

N

, (2)

the matrix PM×N can be regarded as the correspondence

matrix, whereby X̂ = PX, the weighted sums of X, or

to be more specifically, the putative target set, is obtained.

The new mixture model parameters are found by minimiz-

ing (M-step):

Q = −

N
∑

n=1

M+1
∑

m=1

pmn log (Cmnf(xn|ym)) +R(T ), (3)

where the first term is the expectation of the negative log-

likelihood function of GMMs. The non-rigid transforma-

tion is formulated as T (Y,φ) = Y + V(Y), which is a

kernel-based displacement function derived by using cal-

culus of variation [21]. To prevent the ill-posed problem

caused by T which is not unique, the second termR(T ) is

therefore employed for regularization. The EM algorithm

proceeds iteratively by alternating between E-step and M-

step until convergence. In this paper, the density function

f(xn|ym) is specified based on a new finite mixture model,

named mixture-feature Gaussian mixture model (MGMM).

Meanwhile, the regularization term R(T ) is formulated at

both global and local scales.

2.1. Mixture­feature Gaussian Mixture Model

For our MGMM, the density function f(xn|ym) is de-

fined as:

f(xn|ym) =
1

2πσβ
exp

[

−

(

∆G

2σ2
+

∆L

2β2

)]

, (4)

where ∆G and ∆L denote the similarity measures using

global and local features, respectively. σ2 ∈ (0, 1) and

β2 ∈ (0, 1) are covariances. Note that equal isotropic co-

variances σ2I, β2I and component densities Cmn = 1
M are

applied for all MGMM components, where I is a D × D
identity matrix.

The underlying assumption of the density function (4) is

the decomposition of the process for human to recognize

and categorize objects. Supposing such process is based on

the linear combination among features such as Euclidean

distance and density, etc. The priority of certain feature

may change during the process. For instance, one can eas-

ily categorize different letters according to the feature of

shape at the very beginning, whereafter the accuracy can be

further optimized by involving other features in. Inspired

by these facts, the bi-directional deterministic annealing

scheme is employed to gradually interchange the priorities

of the global and local feature discrepancies during the reg-

istration, which is equivalent to enhancing the robustness of

the MGMM by directly controlling the fuzziness of the cor-

respondence [4]. We define the temperature parameter as

T = − τ
l , where τ is the current iteration number, and l is a

constant. σ2 and β2 are obtained by σ2 = eT and β2 = e
1

T

in each iteration.

Iter=10Iter=1 Iter=20 Iter=30 Iter=100

Iter=1 Iter=10 Iter=20 Iter=30 Iter=57

S
in
g
le

M
ix
tu
re

Fig. 1. The comparison on the registration processes of our GL-

CATE using single feature (upper row) against its mixture-feature

counterpart (lower row). Red asterisks: the target point set X.

Green circles: the estimated corresponding point set X̂. Blue

crosses: the source point set Y.

The advantage of MGMM can be demonstrated by com-

paring the registration processes of our GL-CATE using ∆G

only against its mixture-feature counterpart, as shown in

Fig. 1. In this test, ∆G is the point-to-point squared Eu-

clidean distance, ∆L is the squared shape distance which

we will detail later. At the first iteration, we can see that

by using ∆G, the initial estimated coordinates (denoted by

green circles) are the regional center of masses, while they

are close to the real target coordinates (denoted by red aster-

isks) when using ∆G and ∆L. This helps us recover a good
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initial pose for aligning the two point sets. At the 10th it-

eration, the estimated coordinates based on single feature

discrepancy are still regional center of masses. By con-

trast, the counterpart estimates a preciser putative target by

which a reliable source point set (denoted by blue pluses)

is obtained. Finally, registration using single feature yields

large point-to-point deviations, even if the iteration number

is larger.

In the early stage of iterations, though the source point

set Y and the target point set X have the biggest difference,

the local feature can still be very strong and stable, and the

correspondence which is estimated based on the local fea-

ture is therefore more reliable. This greatly facilitates the

registration process at the very beginning. Other probability

based methods (e.g., TPSRPM) can only yield a shrunken

source point set near the regional center of masses. In our

MGMM, since we have σ2 ≈ 1 and β2 ≈ 0, ∆L

2β2 tends to be

relatively large, thus the unreliable global correspondence

is filtered due to the property of negative nature exponen-

tial function. At the final stage of iterations, Y and X are

very similar, a direct estimation using the global feature is

desirable. And the statuses of the two features interchange

exactly since σ2 ≈ 0 and β2 ≈ 1, which means that the

correspondence is mostly determined by the global feature.

2.2. MGMM based Correspondence Estimation

Typically, for point set registration, the original Maha-

lanobis distance which is a measure of distance between a

point and a distribution is simplified to the Euclidean dis-

tance [4]. And in our study, we adopt the point-to-point Eu-

clidean distance ∆G
mn = ‖xn − T (ym,φ)‖2 as the global

feature. Based on the work in [2, 11], the shape distance

smn = ∆L
mn =

Rad
∑

r=1

Tan
∑

t=1

∥

∥cXn (r, t)− cYm(r, t)
∥

∥

2
(5)

is defined as the local feature, where c(r, t) is the count of

points within the rt
th bin, and Rad and Tan denote the

number of bins in radial and tangential directions, respec-

tively. However, when points lie close to the boundaries of

bins, they may be assigned to different bins and yield biased

histograms. And, non-rigid deformations occur in both ra-

dial and tangential directions, a soft count strategy which

accordingly specifies the range and direction is more rea-

sonable. Motivated by these facts, we present a new count

strategy based on the elliptical Gaussian (EG) as:

c(r, t) =











EG(µrad, µtan,Λrad,Λtan), if (r, t) are within

A and B

0. otherwise

,

(6)

where (µrad, µtan) is the coordinate of the EG centroid, B
is the polar coordinate with Rad × Tan bins. We respec-

tively denote by ρ and θ the influence range in the radial

and tangential direction. The influence area A centered at

(µrad, µtan) is rectangle with lengths 2ρ + 1 and 2θ + 1.

Hence, the original binary count assigned at a single bin

becomes a soft count assigned within A. By choosing ap-

propriate magnitudes for the two variances Λrad and Λtan,

the EG weighting function can accurately quantify the non-

rigid deformation. Table 1 shows the shape distances of two

point sets using different count strategies. When θ = 0, it

is actually the original strategy that can not distinguish any

of the five manners since the shape distances are all equal.

The count by θ = 3 distributes the best because the dif-

ference between adjacent columns are showing a progres-

sively increasing tendency. This property makes the count

be capable of identifying the similar neighborhood struc-

tures. A direct extension for 3D case can be realized by

using 3DSC [7] and the ellipsoidal Gaussian soft technique,

which spreads the counts alone the azimuth, elevation and

radial directions of the spherical coordinates. Since 2D case

is the focus of this paper, we leave it to our future research.

Table 1. The shape distances of five manners using different count

strategies.

θ = 0 0 2 2 2 2

θ = 1 0 1.0698 2.2707 2.5413 2.5413

θ = 2 0 0.7058 2.2824 3.8210 4.6962

θ = 3 0 0.5708 1.9058 3.6220 6.8896

Substituting the Euclidean distance and the elliptical

Gaussian soft shape distance (EGSSD) into (4), we can

therefore rewrite (4) in the complete form as:

f(xn|ym) =
1

2πσβ
exp

[

−

(

‖xn − T (ym,φ)‖2

2σ2
+

smn

2β2

)]

.

(7)

And the posterior probability function (2) can be rewritten

as:

pmn =
exp

[

−
(

‖xn−T (ym,φ)‖2

2σ2 + smn

2β2

)]

∑M
j=1 exp

[

−
(

‖xn−T (yj ,φ)‖2

2σ2 +
sjn
2β2

)]

+ g
,

(8)

where g = 2Mζπσβ
N(1−ζ) .

2.3. Global­local Structure Constraint (GLSC)

Once non-rigidity is allowed, there are an infinite num-

ber of ways to map one point set onto another. The ill-posed

problem is prevented by termR(T ) of objective (3). In our

study, the regularization is defined as:

R(T ) =
λ

2
G(T ) +

η

2
L(T ), (9)
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where parameters λ and η control the strength of regulariza-

tions, G(T ) = ‖T ‖2 is the global structure constraint term

following the motion coherence theory [33], and

L(T ) =

M
∑

m=1

‖E(x̂m)− E(T (ym,φ))‖2 (10)

is the local structure constraint (LSC) term based on the

local structure descriptor (LSD) E(·). The extraction of

the LSD is illustrated in Fig. 2. Given a set ZM×D =
{z1, z2, ..., zM}

T of M points, let {zik}
K
k=1 be the K near-

est neighbors (KNN) of zi, {uik}
K
k=1 the set with each entry

denoting the vector −−−→zizik, we have E(zi) =
∑K

k=1 hikuik,

where hik = exp(−‖uik‖
2/ν2i ) is the weight that controls

the contribution of uik to E(zi), and νi is the variance of

{‖uik‖}
K
k=1. L(T ) exploits the local structural discrepan-

cies between the putative target X̂ and the source T (Y,φ).
Minimizing discrepancies L(T ) is equivalent to levering

the LSDs of T (Y,φ) and therefore forcing each neighbor-

ing point set of T (Y,φ) to align onto the corresponding

one. A vivid demonstration is shown in Fig. 3.

zi

(a)

{zik}
K
k=1

(b) (c)

{uik}
K
k=1

(d)

E(zi)

Fig. 2. Extraction of the local structure descriptor. (a): Select-

ing one point (colored in red), the goal is to obtain its LSD. (b):

Finding its K nearest neighbors (colored in green). (c): Obtaining

the respective vectors −−−→zizik. (d): Computing the weighted vector

sum. We set the weights h all equal to 1 and K = 5 for a brief

demonstration. This figure is related to Fig. 3.

In addition, a deterministic annealing scheme is also ap-

plied to the trade-off parameters λ and η. The annealing pa-

rameter is defined as κ = (τ4max − τ4 + 1)1/4/τmax where

τmax is the maximum iteration number. The parameter κ
remains stable in most iterations, then sharply decreasing

to zero in the last several iterations. This implies that the

constraint (9) is released at the final stage of iterations for

achieving the maximization of the point-wise overlap.

2.4. GLSC based Transformation Estimation

Inspired by the Riesz representation theorem [27], we

model the non-rigid transformation T by lying it within the

reproducing kernel Hilbert space (RKHS). We first define

a RKHS H by choosing a positive definite kernel, here we

adopt the Gaussian radial basis function (GRBF). With the

constant ǫ controlling the spatial smoothness, the kernel can

be written in the form Θ(yi,yj) = exp(− 1
2ǫ2 ‖yi − yj‖

2)

(a) (b)
E(zi)

E(z′
i)

L(T )i

(c) (d)

Fig. 3. The demonstration of how the LSC works. (a): Given a

point set (colored in green) and its rotated form (colored in blue),

the goal is to achieve maximum point-wise overlap between the

k
th nearest neighbors of the center point (colored in red), as shown

in (d). (b): Extracting the LSDs for the green and blue sets, the dot-

ted black line denotes the local structural discrepancy. (c): Taking

derivative of L(T )i is equivalent to exerting an imaginary force

on the LSD of the blue set. (d): The two sets are aligned. This

figure is related to Fig. 2.

and easily generalized to three or higher dimensions. The

optimal transformation function T takes the form as:

T (Y,W) = Y +ΘW, (11)

where WM×D is the coefficient matrix. Hence, the min-

imization over Q boils down to finding a finite coefficient

matrix W. The objective function (3) can be rewritten in a

matrix form as:

Q(W,σ2, β2) =
1

2σ2

N
∑

n=1

M
∑

m=1

pmn‖Xn − (Y +ΘW)m‖
2

+
λ

2
tr(WTΘW) +

η

2
tr(RRT ) +NP lnσ2β2,

(12)

where R = (HX̂ − KI)X̂ − (HY − KI)(Y + ΘW), I

is of size M × M , and NP =
∑N

n=1

∑M
m=1 pmn ≤ N

(with NP = N only if ζ = 0). Note that we omit term
1

2β2

∑N
n=1

∑M
m=1 pmnsmn in (12) since it is independent

to W. HZ is of M × M dimension with each non-zero

entry hij = exp
(

−‖−−→zizj‖
2/ν2i

)

, if zj ∈ {zik}
K
k=1. Intu-

itively, the weighting matrix HZ is analogous to a permuta-

tion matrix, by which the weighted LSDs of point set Z can

be summed if multiplying HZ by Z.

Taking partial derivative of (12) with respect to W, we

obtain the coefficient matrix W as:

W =
(

d(P1)Θ+ λσ2I+ ησ2BTBΘ
)−1

(

PX− d(P1)Y + ησ2BTA
)

,
(13)

where A = (HX̂−KI)X̂−(HY−KI)Y, B = HY−KI

and d(·) denotes the diagonal of a matrix. So far all the pa-

rameters have been solved. The new location of the source

point set is updated by (11), after which we return to corre-

spondence estimation and continue the registration process

until the maximum iteration number τmax is reached.
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3. Parametric Setting and Complexity Analysis

The expressions of the point sets on the coordinate sys-

tem affect the performance of point set registration meth-

ods. Thus an initial normalization process is involved in

our GL-CATE to rescale the two point sets Y and X to have

zero means and unit variances. In each iteration, reasonable

magnitude for β2 is obtained by normalizing the counts to

have unit length as
∑Rad

r=1

∑Tan
t=1 c(r, t)2 = 1, normaliza-

tion pmn ← pmn/
∑M

j=1 pmj is also required for the com-

putation of the estimated corresponding point set X̂ = PX.

A
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r

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

Deformation: 8

Noise: 0.05

Outlier: 1.0

Rotation: 75

Rotation 75 + Deformation 8

Rotation 75 + Deformation 8 + Noise 5

Iteration Number

Fig. 4. Convergence experiment on synthesized dataset under the

largest degree of six degradation categories.

Experiments show that our GL-CATE will catch a good

stable solution after about 60 iterations, as shown in Fig.

4. We set τmax = 60 and l = 5. Thus σ2
init = e−1/5 =

0.8187, σ2
final = e−60/5 ≈ 6.144×10−6, β2

init = e−5/1 =

0.0067, β2
final = e−5/60 ≈ 0.9200. We find that when the

target point set is contaminated by noise, the performance

can be improved by computing σ2 as:

σ2 =
tr(XT d(PT1)X)− 2tr(VTPX) + tr(VT d(P1)V)

2NP
(14)

instead of using σ2 = eT , where V = T (Y,W). In noise

scenario, precise alignment is not preferred, and registration

process using (14) is similar to the linear least-squares fit-

ting, which makes more sense. We set ζ = 0.7 for noise and

outlier scenarios, otherwise ζ = 0.3, and covariances σ2 are

computed by (14) in all noise contaminated scenarios.
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Rotation + Deformation 8 + Noise 5

Fig. 5. Experiments on synthesized dataset using different EG soft

count strategy (upper row) and LSC smoothness (lower row). Left

column: RD8 scenario. Right column: RD8N5 scenario.

Parameters ρ and θ for elliptical Gaussian (EG) weight-

ing function, and parameter η for the smoothness of the lo-

cal structure constraint (LSC) are tested under two extreme

scenarios, as shown in Fig. 5. The polar coordinate B is

set to 5 × 10, each bin in tangential direction stands for

36◦. Variances of EG function are set as Λrad = ρ2 and

Λtan = θ2. When the degree of rotation is smaller than

40◦, setting ρ = 1, θ = 1 performs better than setting

ρ = 1, θ = 2, while the opposite occurs under larger de-

gree. Therefore, we set ρ = 1 and θ = 2 for scenarios with

rotation, and both to 1 for others. The number of the nearest

neighboring points K is set to 5 to distinguish between a cor-

ner (includes two neighboring points) and a cross (includes

four neighboring points) [32]. The regularization parame-

ters λ and η are both set to 2. ǫ determines the width of the

range of the interaction between samples, we empirically

set ǫ to 2. The pseudo-code of our GL-CATE is shown in

Algorithm 1.

Algorithm 1: The GL-CATE Method

input : Two point sets Y and X

output : Transformed point set Y

1 Construct the kernel matrix Θ;

2 Initialization: W = 0; λ = η = 2; ζ = 0.7 under

noise and outlier, otherwise ζ = 0.3; K = 5;

3 Compute the histograms of X by (6);

4 while not convergence do

5 E-Step:

6 Compute the histograms of Y by (6);

7 Compute the shape distance between X and

Y by (5);

8 Compute the posterior probability matrix P

by (8);

9 Compute temperature parameter T = − τ
l ;

10 Compute κ =
(τ4

max−τ4+1)1/4

τmax
;

11 M-Step:

12 Compute W by (13);

13 Update the source point set Y = Y +ΘW;

14 Update covariances σ2 by (14) under noise,

otherwise by σ2 = eT ;

15 Update covariances β2 = e
1

T ;

16 Anneal λ = κλ and η = κη;

17 end

18 The transformed source point set Y is obtained in

the final iteration.

For our GL-CATE, it takes O((CM)2) to obtain the

shape distances for M points by using the soft count strat-

egy, where C = (2θ + 1)(2ρ + 1). The K nearest neigh-

bors are obtained by K operations of sequential search with

O(KM) complexity for one point. The heat kernel H

requires O(KM2) to compute. The derivative (13) is of

O(M3) due to the existence of M ×M kernel Θ. Over-

all, the computational complexity of GL-CATE is O(M3),
which, as well, can be ulteriorly reduced to O(M) com-

plexity by using several well-studied techniques such as

low-rank matrix approximation [19] and subset of regres-
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sors method [26, 16]. For other methods, TPSRPM, CPD,

GMMREG and MoAGREG require O(MN) work to com-

pute the corresponding matrix, where M ≤ N . Instead, to

solve the linear assignment problem based on the N × N
dummy cost matrix, RPM-L2E, GLMDTPS and PR-GLS

need O(N3) work by which a permutation matrix is ob-

tained. The regular complexity for the radial basis func-

tion (e.g., thin-plate spline and Gaussian radial basis func-

tion) based transformation estimation step is O(M3), and

for CPD, RPM-L2E, MoAGREG and PR-GLS, the fast im-

plementation which has O(M) complexity is presented in

their literatures.

4. Experiments

Both the basic and application experiments are carried

out to compare the performance of our GL-CATE against

eight state-of-the-art methods which are TPSRPM[5],

RPM-LNS[34], CPD[21], GMMREG[8], RPM-L2E[17],

GLMDTPS[32], MoAGREG[30] and PR-GLS[18]. The

experiments are implemented in Matlab on a laptop with

2.60 GHz Intel Core CPU, 16 GB RAM.

4.1. Results on Basic Experiments

In the first series of experiments, four synthesized con-

tour data sets, fish1, Chinese character, hand and line, each

of which respectively contains 98, 105, 302 and 60 points

are used. Four degradation categories, i.e., deformation,

noise, outlier and rotation are used to evaluate the accuracy

and robustness of methods. We follow the experimental set-

tings as in [32], which are degree of deformation from 1 to

8, noise level from 0.01 to 0.05, outlier to data ratio from

0.2 to 1.0, and enlarging the rotation range from ±30◦ to

±90◦, with a 15◦ interval. We abbreviate the nth degree as

Dn, Nn, On and Rn for convenience of description. Note

that D4 degradation is contained in noise, outlier and ro-

tation scenarios by default. The average performances on

the four data sets are shown in the first row of Fig. 6. Our

GL-CATE gives the best performances over D1 to D8, N1
to N5 and O4 to O5. In rotation scenario, it yields near-

perfect result within ±75◦ rotation.

In the second series of experiments, four synthesized

contour data sets, butterfly, face, fish2 and maple, each of

which respectively contains 172, 317, 98 and 215 points are

used. Each data is first degraded by either D8 or D4+N5,

and then rotated by −80◦ to 80◦ with a 10◦ interval. We

abbreviate as RD8 and RD4N5, respectively. We also test

the average runtime of our GL-CATE on all the six sce-

narios, using three data sets with representative point num-

bers. The average performances of methods using four data

sets on RD8 and RD4N5, as well as the average runtime

are shown in the second row of Fig. 6. We see that our

GL-CATE outperforms within ±70◦ rotation in RD8 and

RD4N5 scenarios. The results of RPM-LNS, RPM-L2E

and PR-GLS using rotation invariant shape context are de-

teriorated since the mass centers of the data are changed in

such cases. Formally, our GL-CATE takes about 1 second

to register two point sets with M,N = 100 points.
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Fig. 6. Comparison of our GL-CATE against eight state-of-the-art

methods on eight point sets and showcase of the average runtime

of our GL-CATE. The error bars indicate the standard deviations

of the average errors in 100 random experiments. In each line

graph, methods with representative performances are highlighted.

The stacked bar graph is used to demonstrate the average runtime,

for each bar group, five degrees ranged from the first to the last are

selected for showcase, and the units are in seconds.
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Fig. 7. Registration examples on fish1, Chinese character, hand,

line, butterfly, face, fish2 and maple, with deformation, noise, out-

liers, rotation, RD and RDN scenarios being shown in every two

rows. The goal is to align the source point set (blue asterisks) onto

the target point set (red circles). All the six scenarios are at the fol-

lowing degrees: (i) degree of deformation 8; (ii) noise level 0.05;

(iii) outlier to data ratio 1.0; (iv) degree of rotation 75◦; (v) de-

gree of rotation 75◦+ degree of deformation 8 and (vi) degree of

rotation 75◦+ degree of deformation 4 + noise level 0.05.

In the third series of experiments, three types of data sets

are used. (i) A dataset from [12] which consists of 30 pairs

of car images and 20 pairs of motorbike images selected

from Pascal 2007 Challenge, each pair contains 30−60 fea-

ture points. (ii) CMU hotel which consist of 101 frames and

each frame has 30 labeled landmarks, all possible image

pairs are tested. (iii) IMM which consists of face landmarks

with expression and multi-view changes, each face contains

58 point landmarks with different facial expressions and

poses, 8 groups of face data are tested. The matching rate

of these three experiments are listed in Table 2A.
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Table 2. Quantitative comparisons on multiple experiments. A: The matching rate on cars, motorbikes, CMU hotel and IMM images. B,C

and D: The means and standard deviations of RMSE, MAE and MEE on retinal images, fingerprint images and remote sensing images,

respectively. × denotes that the number of the points is less than the minimum requirement of RPM-LNS. Bold values indicate the best

performances.

TPSRPM RPM-LNS CPD GMMREG RPM-L2E GLMDTPS MoAGREG PR-GLS GL-CATE

A

Car 80.67% × 82.83% 78.30% 81.69% 87.07% 77.45% 92.06% 94.68%

Motorbike 84.49% × 84.25% 83.29% 83.45% 99.40% 74.74% 90.77% 93.98%
Hotel 94.69% 89.02% 98.42% 97.14% 98.06% 90.77% 99.81% 99.16% 99.98%

IMM 80.62% 77.35% 82.74% 80.50% 91.68% 93.05% 70.43% 79.02% 94.66%

B

RMSE 5.24 ± 3.50 × 4.45 ± 2.61 4.73 ± 3.84 4.49 ± 0.15 4.38 ± 0.92 5.45 ± 2.50 4.46 ± 0.64 3.08 ± 0.64

MAE 6.30 ± 4.00 × 5.66 ± 2.79 6.03 ± 4.87 5.92 ± 0.51 5.35 ± 1.37 6.64 ± 2.61 5.34 ± 0.63 3.64 ± 0.86

MEE 2.36 ± 0.99 × 1.92 ± 1.41 2.17 ± 1.81 2.51 ± 0.81 1.84 ± 0.75 2.09 ± 0.94 1.89 ± 0.41 1.07 ± 0.20

C

RMSE 14.57± 10.10 15.98± 21.67 20.72± 26.93 16.97± 18.44 15.99 ± 4.92 15.60± 12.83 10.26 ± 9.89 7.15 ± 5.67 5.34 ± 3.05

MAE 18.46± 12.62 19.29± 25.42 26.04± 34.94 21.00± 21.82 19.48 ± 5.72 17.17± 16.22 12.87± 13.36 9.48 ± 7.85 6.62 ± 3.85

MEE 2.33 ± 0.46 3.80 ± 2.67 4.75 ± 8.25 4.32 ± 4.67 3.87 ± 2.83 2.50 ± 6.30 3.40 ± 1.83 2.03 ± 1.61 1.56 ± 1.59

D

RMSE 4.06 ± 4.71 3.63 ± 5.37 1.96 ± 1.09 5.71 ± 8.23 9.96 ± 17.64 3.76 ± 4.85 2.24 ± 1.03 3.49 ± 7.88 0.88 ± 0.47

MAE 5.03 ± 5.88 4.52 ± 6.63 2.38 ± 1.25 7.20 ± 9.86 13.00± 23.20 4.70 ± 6.28 2.86 ± 1.50 4.30 ± 9.88 1.12 ± 0.64

MEE 1.45 ± 1.63 1.53 ± 1.26 1.10 ± 1.24 4.08 ± 7.11 7.35 ± 13.11 1.75 ± 3.01 1.79 ± 4.00 1.33 ± 0.56 0.44 ± 0.31

4.2. Results on Application Experiments

In the fourth series of experiments, three types of data

sets are used. (i) A pair of CT images and two pairs

of MRI images from [25], the images have a resolu-

tion in the range from 515 × 460 to 620 × 458. The

point sets are created by the edges of the objects and

extracted using a regional scanning method. The recall

curve is used to evaluate performances under 40 land-

marks from edges. The results are shown in Fig. 8. (ii)

Ten pairs of retinal images in multi-view scenarios, the

images have a resolution in the range from 640 × 480
to 1280 × 960. (iii) Eight pairs of fingerprint images

from BIT (http://biometrics.idealtest.org/

dbDetailForUser.do?id=7), each image is of reso-

lution 640 × 480 pixels. The feature points of (ii) and (iii)

are extracted following the method proposed in [31]. (iv)

Five pairs of remote sensing images (Venice, Hawaii, Lon-

don, New York and Dali) from Google Earth, the images

have a resolution in the range from 800×600 to 1150×700.

For experiments on (ii)−(iv), they are all registered using

SIFT feature points [14]. At least ten pairs of corresponding

points between the transformed and reference images are

manually determined for quantitative comparisons based

on the root of mean square error (RMSE), maximum error

(MAE) and median error (MEE), all corresponding points

are well-distributed and selected on the easily identified ar-

eas, and the results are listed in Table 2B−D, respectively.

Registration examples of (ii)−(iv) are shown in Fig. 9.
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Fig. 8. Registration performances on CT and MRI images.

Fig. 9. Examples on fingerprint images (left), remote sensing im-

ages (top right) and retinal images (bottom right).

5. Conclusion

We have presented a dual-feature based point set reg-

istration method with global-local spatial constraint. The

main idea of our GL-CATE is to first estimate the cor-

respondence using the mixture-feature Gaussian mixture

model (MGMM), and then to update the transformation un-

der global-local spatial constraint. Comparing with the cur-

rent methods, the major contributions of this work are: (i)

the MGMM which can deal with two features for estimat-

ing correspondence is constructed, meanwhile, a uniform

distribution is modeled for outlier dealing; (ii) a new ellip-

tical Gaussian soft histogram count strategy as well as the

derived shape distance is presented, which is able to quan-

tify similar neighborhood structures; (iii) a bi-directional

deterministic annealing scheme is used to combine the Eu-

clidean distance and the shape distance with the MGMM,

which leads to a local-to-global registration strategy; (iv)

a new Tikhonov regularization term is designed, this term

and the original one play complementary roles to improve

the robustness and accuracy of transformation at both global

and local scales. Experimental results demonstrate that the

proposed GL-CATE achieve better performances than state-

of-the-art methods.
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