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Abstract

Triangulation is a fundamental task in 3D computer vi-

sion. Unsurprisingly, it is a well-investigated problem with

many mature algorithms. However, algorithms for robust

triangulation, which are necessary to produce correct re-

sults in the presence of egregiously incorrect measurements

(i.e., outliers), have received much less attention. The de-

fault approach to deal with outliers in triangulation is by

random sampling. The randomized heuristic is not only

suboptimal, it could, in fact, be computationally inefficient

on large-scale datasets. In this paper, we propose a novel

locally optimal algorithm for robust triangulation. A key

feature of our method is to efficiently derive the local up-

date step by plane sweeping a set of quasiconvex functions.

Underpinning our method is a new theory behind quasicon-

vex plane sweep, which has not been examined previously in

computational geometry. Relative to the random sampling

heuristic, our algorithm not only guarantees determinis-

tic convergence to a local minimum, it typically achieves

higher quality solutions in similar runtimes1.

1. Introduction

Triangulation is the task of estimating the 3D coordinates

of a scene point from multiple 2D image observations of the

point, given that the pose of the cameras are known [14].

The task is of fundamental importance to 3D vision, since

it enables the recovery of the 3D structure of a scene.

Most 3D reconstruction pipelines estimate 3D structure

and camera poses simultaneously (via bundle adjustment,

factorization, or equivalent steps). However, triangulation

can play an important role in densifying or refining the 3D

structure, by estimating the 3D coordinates of additional

image measurements (e.g., extracted from original high-

resolution images) based on the optimized camera poses.

Since 2D feature detection and association methods are

not perfect, they inevitably create wrong feature correspon-

1See supplementary material for demo program.

dences and tracks. In an SfM pipeline, outliers are removed

during the robust relative pose estimation step. However,

outliers will exist in the additional feature correspondences

extracted post-SfM, since they were not subjected to the

SfM pipeline (e.g. for efficiency reasons).

For non-robust triangulation, the ℓ∞ paradigm [13] has

been influential. Given a set of N 2D image measurements

{ui}
N
i=1 of the same scene point x ∈ R

3, and the associ-

ated camera matrices {Pi}
N
i=1 with each Pi ∈ R

3×4, we

estimate x by minimizing the maximum reprojection error

min
x∈R3

maximum
i∈{1,...,N}

∥

∥

∥

∥

ui −
P1:2

i x̃

P3
i x̃

∥

∥

∥

∥

p

,

s.t. P3
i x̃ > 0 ∀i ∈ {1, . . . , N},

(1)

where P1:2 is the first-two rows of P, P3 is the third row

of P, and x̃ is x in homogeneous coordinates. The posi-

tivity constraints P3
i x̃ > 0 ensure that x lies in front of all

the cameras. In the above, ‖ · ‖p indicates a valid p-norm;

usually p is taken to be 1, 2 or∞.

Algorithms to solve (1) take advantage of quasiconvexity

to efficiently find the global minimizer x∗ [15, 16, 25, 23,

3]. Recently, Donné et al. [9] showed that their polyhedron

collapse algorithm (for p =∞) is the fastest.

A major weakness of the ℓ∞ paradigm, however, is that

the estimate is easily biased by outlying measurements. To

fix this issue, the usage of an inherently robust cost func-

tion is necessary. A popular robust criterion is least median

squares (LMS) [24]; for triangulation, this entails solving

min
x∈R3

median
i∈{1,...,N}

∥

∥

∥

∥

ui −
P1:2

i x̃

P3
i x̃

∥

∥

∥

∥

p

,

s.t. P3
i x̃ > 0 ∀i ∈ {1, . . . , N},

(2)

i.e., minimize the median error. LMS provably has a break-

down point of 0.5, which means that it can tolerate up to

50% of outliers [24, Chap. 3]. The drawback of LMS, how-

ever, is that the median of the reprojection errors is not qua-

siconvex, and problem (2) becomes intractable in general.

The non-differentiability of the median also complicates the

usage of standard gradient-based optimization [21].
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Existing algorithms for LMS Most practitioners rely

on the random sampling heuristic to approximately solve

LMS [30, 24]. Specifically, we randomly sample minimal

subsets of the measurements to estimate x (using, e.g., DLT

for triangulation), then select the estimate with the lowest

median error. A probabilistic upper bound of the number

of samples to take can be deduced based on the highest

expected outlier rate of 0.5 [1]. Apart from being non-

deterministic, a noticeable weakness of random sampling

is that it provides no optimality guarantees.

Ke and Kanade [16] used the bisection technique en-

dowed with a non-convex feasibility test to solve gen-

eral quasiconvex LMS problems, which includes (2). For

tractability, a relaxed feasibility test which is more conser-

vative is performed, thus the method can only converge to

an approximate LMS solution without any certificate of op-

timality (either local or global).

On the other extreme, combinatorial search algorithms

have been proposed to solve LMS exactly [28, 4]. For trian-

gulation, Li [17] exploited the quasiconvexity of the repro-

jection error to devise a search algorithm that enumerates

all local minima of the LMS problem. Despite the low-

dimensionality of x, the exact algorithms are computation-

ally costly, and are practical only for small instances.

Our contributions We propose a novel locally optimal

algorithm for LMS triangulation (2). At each iteration, our

approach calculates the update via a 1D quasiconvex LMS

problem, which can be solved efficiently via plane sweep.

We develop the necessary theory and algorithm for quasi-

convex plane sweep, and establish the convergence of the

overall algorithm to a local minimum.

Experimentally, we show that our method consistently

yields better solutions than random sampling with compa-

rable runtimes. Further, our technique is much faster and

practical than the globally optimal methods.

Differentiation against RANSAC Another popular ro-

bust technique in computer vision is RANSAC [12]. Un-

like LMS, the aim of RANSAC is to maximize the number

of inliers, given a threshold. Whether LMS or inlier maxi-

mization is the “better” criterion is debatable—certainly for

robust triangulation, both are valid and widely used.

The optimization machinery in RANSAC is random

sampling, thus, it shares the disadvantages of the ran-

domized heuristic for LMS mentioned above. Of course,

there are alternative methods for inlier maximization, e.g.,

RANSAC variants [6], branch-and-bound [18] and subset

search [5]. We stress, however, that from an optimization

viewpoint, these methods solve a different problem to LMS

and are not strictly comparable to our algorithm (not to

mention that global methods for inlier maximization would

also be costly, similar to global methods for LMS).

2. Background

First, define and rewrite the i-th reprojection error as

ri(x) =

∥

∥

∥

∥

ui −
P1:2

i x̃

P3
i x̃

∥

∥

∥

∥

p

=
‖Aix+ bi‖p
cTi x+ di

, (3)

where Ai =

[

aTi,1
aTi,2

]

∈ R
2×3, bi =

[

bi,1
bi,2

]

∈ R
2, (4)

ci ∈ R
3 and di are constants calculated from the data Pi

and ui. For p ≥ 1, ri(x) is quasiconvex [11].

To enable direct comparison with the state-of-the-art

polyhedron collapse method, we also base our method on

the same p =∞. The reprojection error thus becomes

ri(x) = max

(

|aTi,1x+ bi,1|

cTi x+ di
,
|aTi,2x+ bi,2|

cTi x+ di

)

, (5)

which can be further developed into

ri(x) = max

(

aTi,1x+ bi,1

cTi x+ di
,
−aTi,1x− bi,1

cTi x+ di
,

aTi,2x+ bi,2

cTi x+ di
,
−aTi,2x− bi,2

cTi x+ di

) (6)

= max (ri,1(x), ri,2(x), ri,3(x), ri,4(x)) . (7)

For simplicity, we define ri,j(x), j = 1, . . . , 4, as

ri,j(x) =
aTi,jx+ bi,j

cTi x+ di
; (8)

the reader should be reminded that constants ai,j and bi,j
should be taken with the appropriate sign from the input

data. Henceforth, we call the ri,j(x)’s “constraints”.

Defining ri(x) as above, i.e., as a max over four linear

fractional terms, will be crucial for clarifying the operations

of our method later. For now, we re-express the LMS trian-

gulation problem equivalently as

min
x∈R3

median
i∈{1,...,N}

ri(x)

s.t. cTi x+ di > 0 ∀i ∈ {1, . . . , N},
(9)

where the input data is {Ai,bi, ci, di}
N
i=1.

3. Locally optimal LMS triangulation

Algorithm 1 describes the proposed locally optimal

method (called Q-sweep) to solve (9). The overall structure

of Q-sweep is simple—given an initial feasible estimate x̂,

find a direction ∆x and step size α to adjust x̂ such that

the median error decreases; stop when a valid ∆x cannot

be found. A similar overall structure exists in polyhedron
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collapse, and indeed in many techniques in the wider opti-

mization literature [21]. Nonetheless, there are significant

novelties in our work, namely, an efficient routine to com-

pute the optimal step size α for LMS triangulation, and the-

oretical analyses on convergence and complexity.

Algorithm 1 Q-sweep method for LMS triangulation.

Require: Input data {Ai,bi, ci, di}
N
i=1, initial soln. x̂.

1: ∆x← DESCENTDIR
(

{Ai,bi, ci, di}
N
i=1, x̂

)

.

2: while ∆x is not null do

3: α← STEPSIZE
(

{Ai,bi, ci, di}
N
i=1, x̂,∆x

)

.

4: x̂← x̂+ α∆x.

5: ∆x← DESCENTDIR
(

{Ai,bi, ci, di}
N
i=1, x̂

)

.

6: end while

7: return x̂.

The rest of this section is devoted to fleshing out Algo-

rithm 1 (details on initialization are postponed until Sec. 4).

3.1. Finding descent direction

Algorithm 2 describes the routine DESCENTDIR used in

Q-sweep to find ∆x for the current estimate x̂. The routine

begins by finding the set of residuals A and constraints J
that are active, i.e., has the same value as the median er-

ror for x̂. Given J , the rest of the routine largely follows

the procedure of polyhedron collapse to calculate ∆x. For

brevity, we will give only high-level account of the method.

Algorithm 2 DESCENTDIR to find descent direction.

Require: Input data {Ai,bi, ci, di}
N
i=1, an estimate x̂.

1: r̂ ← medi ri(x̂).
2: A ← {p | rp(x̂) = r̂}.
3: J ← {(p, q) | p ∈ A, rp,q(x̂) = r̂}.
4: N = {n1,n2, . . . } ← set of normals for the constraints

indexed by J ; see (11) and surrounding text.

5: ∆x← null.

6: if |N | = 1 then

7: ∆x← n1.

8: else if |N | = 2 then

9: ∆x← n1 + n2.

10: else

11: for each triplet (nu,nv,nw) of N do

12: y← nu × nv + nv × nw + nw × nu.

13: s← 〈nu,y〉/|〈nu,y〉|.
14: y← sy.

15: if 〈y,n〉 > 0, ∀n ∈ N then

16: ∆x← y.

17: Break.

18: end if

19: end for

20: end if

21: return ∆x.

Each active constraint rp,q(x) indexed byJ defines a 2D

plane in 3D space, i.e.,

rp,q(x) =
aTp,qx+ bp,q

cTp x+ dp
= r̂,

=⇒ (aTp,q − r̂cTp )x+ bp,q − r̂dp = 0.

(10)

The normal of the plane pointing towards the negative di-

rection is given by

n = −(aTp,q − r̂cTp ). (11)

The normal n is also the direction where rp,q(x) will reduce

in value, starting from the point x̂.

If J has only one element, then the normal of that con-

straint is installed as ∆x (Step 7). If there are more than

one active constraints, then the normals of the constraints

are combined: by a simple addition if there are two active

constraints (Step 9), or if there are more active constraints,

triplets of normals are considered. For each triplet, the vec-

tor that gives the same scalar product on the normals are

computed (Step 14). The first such vector that allows all ac-

tive constraints to reduce is then taken as ∆x (Step 16)—if

no such vector is available, the overall algorithm terminates.

Donné et al. showed that finding ∆x in the manner above

guarantees that ∆x represents a direction from x̂ along

which the active residuals (which are the median residu-

als in our case) decrease in value. Sec. 3.3 will establish

that DESCENTDIR always find a descent direction until the

convergence of Q-sweep to a local minimum.

Number of active constraints The cost of Algorithm 2

depends on the number |J | of active constraints. Donné et

al. cited empirical evidence to support that the number of

active constraints is small (3 or 4). Actually, as we prove

below, there is a theoretical limit on the number of active

constraints—this is another contribution of our work.

Theorem 1. For any feasible x̂, there are at most 8 con-

straints ri,j(x) such that ri,j(x̂) = median i ri(x̂).

Proof. The combinatorial dimension of quasiconvex ℓ∞ tri-

angulation is 4, and assuming that the input data is non-

degenerate2, the number of active residuals (i.e., the cardi-

nality of A in Algorithm 2) is at most 4 [26].

From (6), in each residual ri(x), the operands ri,1(x)
and ri,2(x) are symmetric, such that for any r̂ > 0,

ri,1(x̂) = r̂ and ri,2(x̂) = r̂ (12)

cannot be satisfied simultaneously. Likewise for ri,3(x) and

ri,4(x). Thus, for each active residual rp(x), there are at

most two operands that satisfy rp,q(x̂) = r̂. The total num-

ber of active constraints thus cannot be more than 8.

2For the precise definition of degeneracy, see [20, Sec. 2.2]. In practical

instances that are affected by noise, the data is usually non-degenerate.
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3.2. Computing step size

Henceforth represents a significant departure from poly-

hedron collapse. From x̂, the new estimate is obtained as

x′ = x̂+ α∆x. (13)

Naturally, x′ must remain feasible, but we would also like

to find the α that reduces the median error the most.

Along ∆x and starting from x̂, the constraints can be

rewritten as a function of α:

ri,j(α) =
aTi,j(x̂+ α∆x) + bi,j

cTi (x̂+ α∆x) + di
:=

ui,jα+ vi,j
wiα+ zi

, (14)

where ui,j , vi,j , wi and zi are constants calculated from

the data; ri,j(α) is again a linear fractional function, which

is quasiconvex [2]. Trivially, the reprojection error ri(x)
along direction ∆x and starting from x̂ is

ri(α) = max(ri,1(α), ri,2(α), ri,3(α), ri,4(α)), (15)

with the usual condition wiα + zi > 0 on the denomina-

tor. Since each of the max operands in (15) is quasiconvex,

ri(α) is quasiconvex; Fig. 1(a) illustrates.

The problem of determining α can be formulated as

α∗ =argmin
α∈R+

median
i∈{1,...,N}

ri(α),

s.t. wiα+ zi > 0 ∀i ∈ {1, . . . , N},
(16)

i.e., a quasiconvex LMS problem defined over α. Solv-

ing (16) exactly to find α∗ remains theoretically intractable.

Nonetheless, since we are dealing with only one dimension,

there are “tricks” to do this efficiently.

Characterization of the solution Where can we expect

α∗ to lie? We first define several geometrical concepts.

Definition 1 (Extremity). The extremity mi of ri(α) is the

point at which ri(α) attains the minimum. Since ri(α) is

a linear fractional function, it is actually pseudoconvex (a

stronger condition than quasiconvexity) [2], implying that

mi is unique; see Fig. 1(a). The extremity can be obtained

analytically by intersecting all the constraints

ui,jα+ vi,j
wiα+ zi

=
ui,j′α+ vi,j′

wiα+ zi
, j, j′ ∈ {1, . . . , 4} (17)

from ri(α), and finding the roots. The smallest root that is

not below ri(α) is then installed as mi.

Definition 2 (Intersection). An intersection between ri(α)
and ri′(α) is a point where the two error functions intersect.

Note that for quasiconvex functions, there are in general

more than one intersection. We let Iki,i′ denote the k-th in-

tersection between ri(α) and ri′(α). The intersections can

also be found analytically, by pairing the constraints from

ri(α) and ri′(α), and solving the quadratic equations.

Definition 3 (Boundary). The boundary αmax is the largest

α such that wiα+ zi > 0 for all i.

Definition 4 (Events). The events are a set that consists of

• all extremities mi in the range [0, αmax].
• all intersections Iki,i′ in the range [0, αmax].
• the boundary point (αmax,median i ri(αmax)).

We call an item of E an event point.

The following identifies the possible locations of α∗.

Theorem 2. The minimizer α∗ of problem (16) is an event

point of the problem.

Proof. In the feasible range [0, αmax], let

g : [0, αmax] 7→ {1, . . . , N} (18)

give the index of the error corresponding to the median, i.e.,

rg(α)(α) = median
i

ri(α). (19)

The function g partitions the feasible range [0, αmax] into

segments (s1, s2, . . . ), where α’s from the same segment st
yield the same index, i.e.,

g(α1) = g(α2) for α1, α2 ∈ st; (20)

see Fig. 1(b). In turn, the segments give rise to a sequence of

error functions (rg1 , rg2 , . . . ) that correspond to the median.

It is thus sufficient to examine this sequence.

If an error function rgt(α) in the sequence achieves its

minimum (or extremity) mgt in the segment st, then mgt is

a local minimum of the median error; see Fig. 1(b).

Any two successive error functions rgt(α) and rgu(α)
in the sequence give rise to an intersection Ikgt,gu . If the

gradient of rgt(α) and rgu(α) have opposing signs at Ikgt,gu ,

then Ikgt,gu is a local minimum; see Fig. 1(b).

Lastly, the median error may achieve a local minimum at

the boundary point; see Fig. 1(b).

The above are all the possible local minima of (16), and

one of them is the global minimum.

Based on Theorem 2, a simple approach to solve (16)

would be to visit all event points, and calculate the median

error at each event point. In the following, a more efficient

technique that avoids recomputing the median is described.

Quasiconvex plane sweep Plane sweep is a basic tech-

nique for many geometric problems, such as Delaunay tri-

angulation [8]. Souvaine and Steele [27] developed an LMS

line fitting algorithm based on plane sweep. However, their

method is not directly applicable to quasiconvex LMS (16),

due to several critical differences:

• A pair of quasiconvex curves may have multiple inter-

sections (see the curves in Fig. 1(b)), while two lines

have at most one intersection;
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(c)

Figure 1. (Panel a) Reprojection error as a function of α. The black dashed curve is ri(α) and the other four curves are the four constraints

ri,j(α) corresponding to ri(α); mi is the extremity of ri(α). (Panel b) The black solid curve is the median over 7 reprojection errors ri(α).
Within each segment st, the median is defined by one of the error functions: rgt(α). Here, δ1, δ3 and δ4 are local minima corresponding

respectively to an extremity, an intersection, and the boundary. δ2 is an intersection, but not a local minimum. (Panel c) Demonstrating

plane sweep: the events are shown as dots. The sweep line is initialized at L1, with the ordering List = [1, 2, 3, 4, 5, 6, 7]; the center item

is 4, thus r4(α) is the median. As the sweep line passes through event point e1, indices 3 and 4 swap places; at L2, the ordering becomes

List = [1, 2, 4, 3, 5, 6, 7], and r3(α) is the median. After passing through e2, List = [1, 4, 2, 3, 5, 6, 7], and r3(α) remains the median.

• At an intersection, two quasiconvex curves may not

cross (i.e., they are tangent to each other), while two

lines necessarily cross at their intersection

• A quasiconvex function may achieve a minimum in the

feasible range, while a line is unbounded.

Here, we develop a novel plane sweep algorithm for (16),

to be used as routine STEPSIZE in Q-sweep.

The idea is as follows: imagine a vertical line L in the

plane [0, αmax] × R≥0 that is “swept” from α = 0 to

α = αmax; see Fig. 1(c). At each position of L, the error

functions ri(α) can be ordered based on their height along

L; the ordering is called the List. The median error is ex-

actly the height of the median point in L. In plane sweep,

we visit the event points incrementally and query List.

A crucial observation is that List changes only when L
passes through an event point that is a non-tangential in-

tersection. In fact, when sweeping past an non-tangential

intersection Iki,i′ , only ri(α) and ri′(α) swap orders along

L; see Fig. 1(c). Thus, List can be maintained and updated

efficiently as the sweep line passes through the event points.

Algorithm 3 describes the proposed quasiconvex plane

sweep algorithm in detail. Programmatically, an event point

e ∈ E is endowed with attributes α, i and i′, where

• e.α is the α value of the event point e.

• if e is an extremity, e.i returns the index of the error

ri(α) that gives rise to e (here, e.i′ is null);

• if e is an intersection, e.i and e.i′ are the indices of the

errors ri(α) and ri′(α) whose intersection forms e.

Note that, as in most plane sweep-type algorithms [8], the

sweep line L is not explicitly realized.

Complexity analysis The runtime of Algorithm 3 de-

pends on the size of E . Since there are at most N extrem-

Algorithm 3 STEPSIZE to optimize step size.

Require: Input data {Ai,bi, ci, di}
N
i=1, current estimate

x̂, and current descent direction ∆x.

1: Convert reprojection errors to 1D version (15).

2: α∗ ← 0. /* Current estimate of α */

3: E ← set of event points sorted ascendingly by {e.α}.
4: List← indices of error functions ri(α), i = 1, . . . , N ,

in descending order of error value ri(α
∗) at α∗.

5: K ← ⌈N/2⌉.
6: r∗ ← rList(K)(α

∗). /* Current median error */

7: for each event point e ∈ E do

8: if e is an intersection then

9: if re.i(α) and re.i′(α) are not tangent at e then

10: Swap the order of e.i and e.i′ in List.

11: end if

12: end if

13: if e.i = List(K) or e.i′ = List(K) then

14: if r∗ > re.i(e.α) then

15: α∗ ← e.α, r∗ ← re.i(e.α). /* Update */

16: end if

17: end if

18: end for

19: return α∗.

ities, E is dominated by the intersections. The following

establishes a bound on the number of intersections.

Lemma 1. The number of intersections of all errors ri(α),
i = 1, . . . , N , is bounded above by 16N2 − 16N .

Proof. Let ri(α) and ri′(α) be two reprojection errors. The

intersection of 2 constraints, respectively from ri(α) and

ri′(α), gives rise to a quadratic function with at most 2 in-
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tersections. Thus the number of intersections between ri(α)
and ri′(α) is limited to 32. For all

(

N

2

)

pairs of reprojection

errors, the total number of intersections is bounded above

by 32N(N − 1)/2 = 16N2 − 16N .

By maintaining List in a binary heap equipped with an

auxiliary pointer array [27], looking up the median error

(Step 14) and conducting swapping (Step 10) can be done in

constant time at each event point—the sweep thus consumes

O(N2) time. The cost of Algorithm 3 is thus dominated by

the sorting of E (Step 3), which needs O(N2 logN) time.

3.3. Convergence of Q­sweep to local minimum

In Secs. 3.1 and 3.2 we have described the details of sub-

routines DESCENTDIR and STEPSIZE in Q-sweep (Algo-

rithm 1). Here, we establish the convergence of Q-sweep to

a local minimum of LMS triangulation (9).

Theorem 3. Q-sweep (Algorithm 1) converges to a local

minimum of problem (9).

Proof. Without loss of generality, define K = ⌈N/2⌉ as the

median index. Given the current estimate x̂, let

r(1)(x̂), . . . , r(K)(x̂), . . . , r(N)(x̂), (21)

be the ordered residuals, where r(p)(x̂) ≤ r(q)(x̂) ∀p < q.

Algorithm 1 terminates when the ∆x returned by Algo-

rithm 2 is null. By [9, Supp. material], x̂ is thus the global

minimizer to the ℓ∞ triangulation problem defined by the

subset of data indexed by {(1), . . . , (K)}, i.e.,

x̂ =argmin
x∈R3

maximum
i∈{(1),...,(K)}

ri(x)

s.t. cTi x+ di > 0 ∀i ∈ {(1), . . . , (K)}.
(22)

By assuming non-degeneracy (see proof of Theorem 1),

there is an open subset X of R3 containing x̂ such that

r(K+1)(x) > r(i)(x), i = 1 . . . ,K, ∀x ∈ X , (23)

i.e., r(K+1)(x) is always the (K + 1)-th largest residual in

X . Thus, when the stopping criterion is achieved, Algo-

rithm 1 terminates at a local minimum of the median error.

For x such that cTi x + di > 0, ri(x) is bounded below

by 0. Thus, median i ri(x) is also bounded below by 0 in

the feasible region. Since each iteration of Q-sweep follows

a descent direction and guarantees reduction in the median

error, the algorithm converges to a local minimum.

4. Results

We compared Q-sweep against the following methods

for the triangulation problem:

• Polyhedron collapse [9], which solves (1) and is thus

non-robust—we regard it as the control method;

• Random sampling heuristic [1] with confidence 0.99
and outlier rate 0.5 for the stopping criterion;

• Ke & Kanade’s approximate algorithm for LMS [16];

• Li’s globally optimal method [17];

• The proposed Q-sweep method (Algorithm 1); and

• Q-sweep method with brute force search to solve (16)

for the step size, in place of plane sweep.

Since the originators’ codes were not publicly available, we

implemented polyhedron collapse ourselves in Matlab—

this is sufficient since it is is a very efficient algorithm. For

random sampling, DLT was used as the minimal solver. For

Ke & Kanade, the feasibility test was solved using Matlab’s

LP solver. For Li’s method, polyhedron collapse was used

for basis computations. For Q-sweep, the plane sweep rou-

tine (Algorithm 3) was implemented in C-mex.

All experiments were conducted on a standard machine

with a 3.6GHz Intel i7 CPU and 16GB RAM. Unavoidably,

differences in implementation and programming languages

will affect the relative runtimes of the above methods—in

Sec. 4.1, we will factor out the effects of these differences

by examining asymptotic runtime on synthetic data.

Details on initialization To initialize Ke & Kanade and

Q-sweep, we used the mid-point method (a closed form

solver) [13] on two randomly selected measurements to find

the initial x̂, which was then tested for feasibility.

4.1. Synthetic data experiments

Synthetic datasets for triangulation were generated as

follows: a dataset contained 20 random scene points in R
3,

and N cameras {Pi}
N
i=1 created with random poses with

the condition that the scene points lay in front of the cam-

eras; see Fig. 2(a). A triangulation instance was formed by

projecting a scene point onto the cameras, and adding Gaus-

sian noise of σ = 3 pixels to the image points. To create

outliers, 30% of the image points were randomly selected,

and Gaussian noise of σ = 9 pixels was added to them.

Fig. 2(b) shows the runtime of all methods plotted

against the size N of the outlier-contaminated triangula-

tion instances (the runtime of each N was averaged over

the 20 instances in the dataset). Expectedly, the runtime

of the global method increased very rapidly. The cost of

random sampling and polyhedron collapse (non-robust) re-

mained more or less constant. Ke & Kanade and Q-sweep

gave similar asymptotic behaviour—note, however, that Ke

& Kanade does not guarantee local optimality, unlike Q-

sweep. Finally, the runtime of Q-sweep with brute force

step size search also grew rapidly, illustrating the significant

computational savings due to plane sweep (Algorithm 3).

Figs. 2(c) and 2(d) show the converged reprojection er-

ror of all the triangulation methods. All LMS algorithms re-

cover the noise level for inliers (3 pixels) while polyhedron

collapse is affected by outliers (errors over 10 pixels). As is

evident in Fig. 2(d), Q-sweep (and brute force variant) gave
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Figure 2. (a) A synthetic dataset with 20 scene points and N = 9 cameras. (b) Average runtime of all algorithms on synthetic triangulation

instances plotted against input size N . (c) Average converged error for all methods. (d) Same as (c) but without polyhedron collapse.

Temple (#p=6927) Courtyard (#p=59562) University (#p=19476) Water Tower (#p=58556)

Algorithm Time (s) OptErr Time (s) OptErr Time (s) OptErr Time (s) OptErr

Polyhedron collapse [9] (non-robust) 3.931 3.604 103.406 12.248 18.443 12.166 96.197 11.414

Random sampling (approx.) 8.927 0.935 109.660 1.906 26.797 4.564 101.905 3.151

Ke & Kanade [16] (approx.) 426.425 1.565 5257.441 4.072 1167.412 5.217 5084.582 4.131

Li [17] (global) 459.258 0.397 N/A N/A N/A N/A N/A N/A

Q-sweep (locally optimal) 2.638 0.734 176.917 1.337 13.998 2.109 223.158 1.775

Q-sweep (brute force, locally optimal) 2.214 0.734 1338.820 1.337 24.586 2.109 2980.607 1.775

Table 1. Results on real datasets. #p: total number of triangulation instances in the dataset. For information regarding the size N of the

instances, see Panel (a) in Figs. 3 to 6. Time: total runtime for solving all triangulation instances (N/A if not finished by 2 hours); OptErr:

the converged reprojection error, averaged over all instances, in pixels.

the lowest error among all approximate LMS algorithms,

due to the ability of Q-sweep to converge to local minima.

4.2. Real data experiments

We used data from [10] (University of Washington, Al-

catraz Courtyard, Alcatraz Water Tower) and [7] (Temple

Ring). Olsson’s SfM implementation [22] was used to esti-

mate the camera poses and initial 3D structure (the input im-

ages were first resized to a factor 0.3). Then, SIFT [19, 29]

was invoked on the original images to produce more feature

correspondences, which were associated to form triangula-

tion instances—these instances were contaminated by out-

liers, since they were not put through the SfM pipeline. The

number of instances generated in this manner is shown as

#p in Table 1, whereas Panel (a) in Figs. 3 to 6 plots the

histogram of the sizes N of the instances—though most of

the instances were small, a non-negligible number of them

were of moderate to large sizes.

Table 1 summarizes the total runtime and average con-

verged reprojection error for all methods.

Accuracy comparison On the smallest dataset (Temple),

the global method expectedly gave the lowest error, fol-

lowed by Q-sweep. However, the global method was not

feasible on the other larger datasets; it was terminated after

reaching the time limit of 2 hours.

On the other datasets, Q-sweep gave the lowest error,

due to its ability to converge to local minima. This was fol-

lowed by random sampling, Ke & Kanade, and polyhedron

collapse. In Courtyard, University and Water Tower, the av-

erage converged error of polyhedron collapse was around

10 pixels, indicating the presence of outliers.

Panel (b) in Figs. 3 to 6 plots the histogram of converged

errors for Q-sweep and polyhedron collapse. Evidently a

large number of instances contain outliers, and the bene-

fit of LMS triangulation with Q-sweep is clearly exhibited.

Panels (c) and (d) in the figures show the triangulated points

from both methods. Observe that there are much fewer spu-

rious points in the results of Q-sweep.

Runtime comparison The recorded runtimes comply

with the trends observed in the synthetic data experiments.

We note again that step size search in Q-sweep with brute

force was much more expensive than plane sweep.

5. Conclusions

Robust triangulation is a vital computer vision problem

that has not been satisfactorily solved. The proposed Q-

sweep algorithm fills a gap in currently available techniques

for LMS triangulation. Unlike random sampling, it guaran-

tees convergence to local minima, thus giving higher quality

outcomes. Unlike global methods, Q-sweep is much more

efficient and practical. At a higher level, our work illustrates

useful adaptation of geometric algorithms to vision.
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Figure 3. Results for Temple Ring dataset. (a) Distribution of instance sizes N . (b) Histogram of converged reprojection errors for

polyhedron collapse, global method, and Q-sweep. (c)(d) 3D structure reconstructed respectively by polyhedron collapse and Q-sweep.
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Figure 4. Results for Alcatraz Courtyard dataset. (a) Distribution of instance sizes N . (b) Histogram of converged reprojection errors for

polyhedron collapse and Q-sweep. (c)(d) 3D structure reconstructed respectively by polyhedron collapse and Q-sweep.
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Figure 5. Results for University of Washington dataset. (a) Distribution of instance sizes N . (b) Histogram of converged reprojection

errors for polyhedron collapse and Q-sweep. (c)(d) 3D structure reconstructed respectively by polyhedron collapse and Q-sweep.
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Figure 6. Results for Alcatraz Water Tower dataset. (a) Distribution of instance sizes N . (b) Histogram of converged reprojection errors

for polyhedron collapse and Q-sweep. (c)(d) 3D structure reconstructed respectively by polyhedron collapse and Q-sweep.
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