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Abstract

This paper presents a real-time face detector, named

Single Shot Scale-invariant Face Detector (S3FD), which

performs superiorly on various scales of faces with a single

deep neural network, especially for small faces. Specif-

ically, we try to solve the common problem that anchor-

based detectors deteriorate dramatically as the objects be-

come smaller. We make contributions in the following

three aspects: 1) proposing a scale-equitable face detection

framework to handle different scales of faces well. We

tile anchors on a wide range of layers to ensure that all

scales of faces have enough features for detection. Besides,

we design anchor scales based on the effective receptive

field and a proposed equal proportion interval principle;

2) improving the recall rate of small faces by a scale com-

pensation anchor matching strategy; 3) reducing the false

positive rate of small faces via a max-out background la-

bel. As a consequence, our method achieves state-of-the-

art detection performance on all the common face detection

benchmarks, including the AFW, PASCAL face, FDDB and

WIDER FACE datasets, and can run at 36 FPS on a Nvidia

Titan X (Pascal) for VGA-resolution images.

1. Introduction

Face detection is the key step of many subsequent face-

related applications, such as face alignment [50, 61], face

recognition [32, 40, 62], face verification [44, 46] and face

tracking [17], etc. It has been well developed over the past

few decades. Following the pioneering work of Viola-Jones

face detector [48], most of early works focus on designing

robust features and training effective classifiers. But these

approaches depend on non-robust hand-crafted features and

optimize each component separately, making the face de-

tection pipeline sub-optimal.

In recent years, convolutional neural network (CNN) has

achieved remarkable successes, ranging from image classi-

fication [10, 42, 45] to object detection [8, 23, 26, 37, 38],
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Figure 1. Reasons behind the problem of anchor-based methods.

(a) Few features: Small faces have few features at detection layer.

(b) Mismatch: Anchor scale mismatches receptive field and both

are too large to fit small face. (c) Anchor matching strategy: The

figure demonstrates the number of matched anchors at different

face scales under current anchor matching method. It reflects that

tiny and outer faces match too little anchors. (d) Background

from small anchors: The two figures have the same resolution.

The left one tiles small anchors to detect the small face and the

right one tiles big anchors to detect the big face. Small anchors

bring about plenty of negative anchors on the background.

which also inspires face detection. On the one hand, many

works [21, 31, 54, 55, 58] have applied CNN as the fea-

ture extractor in the traditional face detection framewrok.

On the other hand, face detection is regarded as a spe-

cial case of generic object detection and lots of meth-

ods [3, 15, 43, 49, 59] have inherited valid techniques from

generic object detection method [38]. Following the latter

route, we improve the anchor-based generic object detection

frameworks and propose a state-of-the-art face detector.

Anchor-based object detection methods [26, 38] detect

objects by classifying and regressing a series of pre-set an-

chors, which are generated by regularly tiling a collection of

boxes with different scales and aspect ratios on the image.
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These anchors are associated with one [38] or several [26]

convolutional layers, whose spatial size and stride size de-

termine the position and interval of the anchors, respec-

tively. The anchor-associated layers are convolved to clas-

sify and align the corresponding anchors. Comparing with

other methods, anchor-based detection methods are more

robust in complicated scenes and their speed is invariant to

object numbers. However, as indicated in [12], the perfor-

mance of anchor-based detectors drop dramatically as

the objects becoming smaller. In order to present a scale-

invariant anchor-based face detector, we comprehensively

analyze the reasons behind the above problem as follows:

Biased framework. The anchor-based detection frame-

works tend to miss small and medium faces. Firstly, the

stride size of the lowest anchor-associated layer is too large

(e.g., 8 pixels in [26] and 16 pixels in [38]), therefore

small and medium faces have been highly squeezed on these

layers and have few features for detection, see Fig. 1(a).

Secondly, small face, anchor scale and receptive field are

mutual mismatch: anchor scale mismatches receptive field

and both are too large to fit small face, see Fig. 1(b). To

address the above problems, we propose a scale-equitable

face detection framework. We tile anchors on a wide range

of layers whose stride size vary from 4 to 128 pixels, which

guarantees that various scales of faces have enough features

for detection. Besides, we design anchors with scales from

16 to 512 pixels over different layers according to the effec-

tive receptive field [29] and a new equal-proportion interval

principle, which ensures that anchors at different layers

match their corresponding effective receptive field and dif-

ferent scales of anchors evenly distribute on the image.

Anchor matching strategy. In the anchor-based

detection frameworks, anchor scales are discrete (i.e.,

16, 32, 64, 128, 256, 512 in our method) but face scale is

continuous. Consequently, those faces whose scale dis-

tribute away from anchor scales can not match enough an-

chors, such as tiny and outer face in Fig. 1(c), leading to

their low recall rate. To improve the recall rate of these

ignored faces, we propose a scale compensation anchor

matching strategy with two stages. The first stage follows

current anchor matching method but adjusts a more reason-

able threshold. The second stage ensures that every scale of

faces match enough anchors through scale compensation.

Background from small anchors. To detect small faces

well, plenty of small anchors have to be densely tiled on the

image. As illustrated in Fig. 1(d), these small anchors lead

to a sharp increase in the number of negative anchors on

the background, bringing about many false positive faces.

For example, in our scale-equitable framework, over 75%
of negative anchors come from the lowest conv3 3 layer,

which is used to detect small faces. In this paper, we pro-

pose a max-out background label for the lowest detection

layer to reduce the false positive rate of small faces.

For clarity, the main contributions of this paper can be

summarized as:

• Proposing a scale-equitable face detection framework

with a wide range of anchor-associated layers and a

series of reasonable anchor scales so as to handle dif-

ferent scales of faces well.

• Presenting a scale compensation anchor matching

strategy to improve the recall rate of small faces.

• Introducing a max-out background label to reduce the

high false positive rate of small faces.

• Achieving state-of-the-art results on AFW, PASCAL

face, FDDB and WIDER FACE with real-time speed.

2. Related work

Face detection has attracted extensive research atten-

tion in past decades. The milestone work of Viola-Jones

[48] uses Haar feature and AdaBoost to train a cascade

of face/non-face classifiers that achieves a good accuracy

with real-time efficiency. After that, lots of works have

focused on improving the performance with more sophis-

ticated hand-crafted features [25, 28, 53, 60] and more

powerful classifiers [2, 33]. Besides the cascade struc-

ture, [30, 51, 63] introduce deformable part models (DPM)

into face detection tasks and achieve remarkable perfor-

mance. However, these methods highly depend on the ro-

bustness of hand-crafted features and optimize each compo-

nent separately, making face detection pipeline sub-optimal.

Recent years have witnessed the advance of CNN-based

face detectors. CascadeCNN [21] develops a cascade ar-

chitecture built on CNNs with powerful discriminative ca-

pability and high performance. Qin et al. [34] proposes

to jointly train CascadeCNN to realize end-to-end opti-

mization. Faceness [55] trains a series of CNNs for fa-

cial attribute recognition to detect partially occluded faces.

MTCNN [58] proposes to jointly solve face detection and

alignment using several multi-task CNNs. UnitBox [57]

introduces a new intersection-over-union loss function.

Additionally, face detection has inherited some achieve-

ments from generic object detection tasks. Jiang et al. [15]

applies Faster R-CNN in face detection and achieves

promising results. CMS-RCNN [59] uses Faster R-CNN

in face detection with body contextual information. Con-

vnet [24] integrates CNN with 3D face model in an end-

to-end multi-task learning framework. Wan et al. [49]

combines Faster R-CNN with hard negative mining and

achieves significant boosts in face detection performance.

STN [3] proposes a new supervised transformer network

and a ROI convolution with RPN for face detection. Sun

et al. [43] presents several effective strategies to improve

Faster RCNN for resolving face detection tasks. In this

paper, inspired by the RPN in Faster RCNN [38] and the

multi-scale mechanism in SSD [26], we develop a state-of-

the-art face detector with real-time speed.
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Figure 2. Architecture of Single Shot Scale-invariant Face Detector (S3FD). It consists of Base Convolutional Layers, Extra Convolu-

tional Layers, Detection Convolutional Layers, Normalization Layers, Predicted Convolutional Layers and Multi-task Loss Layer.

3. Single shot scale-invariant face detector

This section introduces our single shot scale-invariant

face detector, including the scale-equitable framework

(Sec. 3.1), the scale compensation anchor matching strategy

(Sec. 3.2), the max-out background label (Sec. 3.3) and the

associated training methodology (Sec. 3.4).

3.1. Scaleequitable framework

Our scale-equitable framework is based on the anchor-

based detection framework, such as RPN [38] and

SSD [26]. Despite its great achievement, the main draw-

back of the framework is that the performance drops dra-

matically as the face becomes smaller [12]. To improve the

robustness to face scales, we develop a network architec-

ture with a wide range of anchor-associated layers, whose

stride size gradually double from 4 to 128 pixels. Hence,

our architecture ensures that different scales of faces have

adequate features for detection at corresponding anchor-

associated layers. After determining the location of an-

chors, we design the scales of anchors from 16 to 512

pixels based on the effective receptive field and our equal-

proportion interval principle. The former guarantees that

each scale of anchors matches the corresponding effective

receptive field well, and the latter makes different scales of

anchors have the same density on the image.

Constructing architecture. Our architecture (see Fig.2)

is based on the VGG16 [42] network (truncated before any

classification layers) with some auxiliary structures:

• Base Convolutional Layers: We keep layers of VGG16

from conv1 1 to pool5, and remove all the other layers.

• Extra Convolutional Layers: We convert fc6 and fc7 of

VGG16 to convolutional layers by subsampling their

parameters [4], then add extra convolutional layers be-

hind them. These layers decrease in size progressively

and form the multi-scale feature maps.

• Detection Convolutional Layers: We select conv3 3,

conv4 3, conv5 3, conv fc7, conv6 2 and conv7 2

as the detection layers, which are associated with dif-

ferent scales of anchor to predict detections.

• Normalization Layers: Comparing to other detection

layers, conv3 3, conv4 3 and conv5 3 have different

feature scales. Hence we use L2 normalization [27]

to rescale their norm to 10, 8 and 5 respectively, then

learn the scale during the back propagation.

• Predicted Convolutional Layers: Each detection layer

is followed by a p×3×3×q convolutional layer, where

p and q are the channel number of input and output,

and 3×3 is the kernel size. For each anchor, we predict

4 offsets relative to its coordinates and Ns scores for

classification, where Ns = Nm + 1 (Nm is the max-

out background label) for conv3 3 detection layer and

Ns = 2 for other detection layers.

• Multi-task Loss Layer: We use softmax loss for classi-

fication and smooth L1 loss for regression.
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Detection Layer Stride Anchor RF

conv3 3 4 16 48

conv4 3 8 32 108

conv5 3 16 64 228

conv fc7 32 128 340

conv6 2 64 256 468

conv7 2 128 512 724

Table 1. The stride size, anchor scale and receptive field (RF) of

the six detection layers. The receptive field here is related to 3× 3
units on the detection layer, since it is followed by a 3×3 predicted

convolutional layer to predict detections.

Designing scales for anchors. Each of the six detec-

tion layers is associated with a specific scale anchor (i.e.,

the third column in Tab. 1) to detect corresponding scale

faces. Our anchors are 1:1 aspect ratio (i.e., square anchor),

because the bounding box of face is approximately square.

As listed in the second and fourth column of Tab. 1, the

stride size and the receptive field of each detection layer are

fixed, which are two base points when we design the anchor

scales:

• Effective receptive field: As pointed out in [29], a unit

in the CNN has two types of receptive fields. One

is the theoretical receptive field, which indicates the

input region that can theoretically affect the value of

this unit. However, not every pixel in the theoretical

receptive field contributes equally to the final output.

In general, center pixels have much larger impacts than

outer pixels, as shown in Fig. 3(a). In other words,

only a fraction of the area has effective influence on

the output value, which is another type of receptive

field, named the effective receptive field. According to

this theory, the anchor should be significantly smaller

than theoretical receptive field in order to match the

effective receptive field (see the specific example in

Fig. 3(b)).

• Equal-proportion interval principle: The stride size of

a detection layer determines the interval of its anchor

on the input image. For example, the stride size of

conv3 3 is 4 pixels and its anchor is 16×16, indicating

that there is a 16 × 16 anchor for every 4 pixels on

the input image. As shown in the second and third

column in Tab. 1, the scales of our anchors are 4 times

its interval. We call it equal-proportion interval prin-

ciple (illustrated in Fig. 3(c)), which guarantees that

different scales of anchor have the same density on the

image, so that various scales face can approximately

match the same number of anchors.

Benefits from the scale-equitable framework, our face

detector can handle various scales of faces better, especially

for small faces.

(a) (b) (c)

Figure 3. (a) Effective receptive field: The whole black box is the

theoretical receptive field (TRF) and the white point cloud with

Gaussian distribution is the effective receptive field (ERF). ERF

only occupies a fraction of TRF. The figure is from [29]. (b) A

specific example: In our framework, conv3 3’s TRF is 48 × 48
(the black dotted box) and ERF is the blue dotted circle estimated

by (a). Its anchor is 16 × 16 (the red solid line box), which is

much smaller than TRF but matches ERF. (c) Equal-proportion

interval principle: Assuming n is the anchor scale, so n/4 is the

interval of this scale anchor. n/4 also corresponds to the stride

size of the layer associated with this anchor. Best viewed in color.

3.2. Scale compensation anchor matching strategy

During training, we need to determine which anchors

correspond to a face bounding box. Current anchor match-

ing method firstly matches each face to the anchors with the

best jaccard overlap [5] and then matches anchors to any

face with jaccard overlap higher than a threshold (usually

0.5). However, anchor scales are discrete while face

scales are continuous, these faces whose scales distribute

away from anchor scales can not match enough anchors,

leading to their low recall rate. As shown in Fig. 1(c), we

count the average number of matched anchors for different

scales of faces. There are two observations: 1) the average

number of matched anchors is about 3 which is not enough

to recall faces with high scores; 2) the number of matched

anchors is highly related to the anchor scales. The faces

away from anchor scales tend to be ignored, leading to their

low recall rate. To solve these problems, we propose a scale

compensation anchor matching strategy with two stages:

• Stage one: We follow current anchor matching method

but decrease threshold from 0.5 to 0.35 in order to

increase the average number of matched anchors.

• Stage Two: After stage one, some faces still do not

match enough anchors, such as tiny and outer faces

marked with the gray dotted curve in Fig. 4(a). We

deal with each of these faces as follow: firstly picking

out anchors whose jaccard overlap with this face are

higher than 0.1, then sorting them to select top-N as

matched anchors of this face. We set N as the average

number from stage one.

As shown in Fig. 4(a), our anchor matching strategy

greatly increases the matched anchors of tiny and outer

faces, which notably improve the recall rate of these faces.
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(a) (b)

Figure 4. (a) The matched number for different scales of faces are

compared between current anchor matching method and our scale

compensation anchor matching strategy. (b) The illustration of the

max-out background label.

3.3. Maxout background label

Anchor-based face detection methods can be regarded as

a binary classification problem, which determines if an an-

chor is face or background. In our method, it is an extremely

unbalanced binary classification problem: according to our

statistical results, over 99.8% of the pre-set anchors belong

to negative anchors (i.e., background) and only a few of

anchors are positive anchors (i.e., face). This extreme im-

balance is mainly caused by the detection of small faces.

Specifically, we have to densely tile plenty of small anchors

on the image to detect small faces, which causes a sharp

increase in the number of negative anchors. For example,

as listed in Tab. 2, a 640 × 640 image has totally 34, 125
anchors, while about 75% of them come from conv3 3
detection layer which is associated with the smallest anchor

(16 × 16). These smallest anchors contribute most to the

false positive faces. As a result, improving the detection

rate of small faces by tiling small anchors will inevitably

lead to the high false positive rate of small faces.

Position Scale Number Percentage (%)

conv3 3 16 25600 75.02

conv4 3 32 6400 18.76

conv5 3 64 1600 4.69

conv fc7 128 400 1.17

conv6 2 256 100 0.29

conv7 2 512 25 0.07

Table 2. Detailed information about anchors in a 640×640 image.

To address this issue, we propose to apply a more sophis-

ticated classification strategy on the lowest layer to handle

the complicated background from small anchors. We apply

the max-out background label for the conv3 3 detection

layer. For each of the smallest anchors, we predict Nm

scores for background label and then choose the highest as

its final score, as illustrated in Fig. 4(b). Max-out opera-

tion integrates some local optimal solutions into our S3FD

model so as to reduce the false positive rate of small faces.

3.4. Training

In this subsection, we introduce the training dataset, data

augmentation, loss function, hard negative mining and other

implementation details.

Training dataset and data augmentation. Our model

is trained on 12, 880 images of the WIDER FACE training

set with the following data augmentation strategies:

• Color distort: Applying some photo-metric distortions

similar to [11].

• Random crop: We apply a zoom in operation to gen-

erate larger faces since there are too many small faces

in the WIDER FACE training set. Specifically, each

image is randomly selected from five square patches,

which are randomly cropped from the original image:

one is the biggest square patch, and the size of the other

four square patches range between [0.3, 1] of the short

size of the original image. We keep the overlapped part

of the face box if its center is in the sampled patch.

• Horizontal flip: After random cropping, the selected

square patch is resized to 640 × 640 and horizontally

flipped with probability of 0.5.

Loss function. We employ the multi-task loss defined in
RPN [38] to jointly optimize model parameters:

L({pi},{ti})=
λ

Ncls

∑

i

Lcls(pi,p
∗

i )+
1

Nreg

∑

i

p∗iLreg(ti,t
∗

i ),

where i is the index of an anchor and pi is the predicted

probability that anchor i is a face. The ground-truth label p∗i
is 1 if the anchor is positive, 0 otherwise. As defined in [38],

ti is a vector representing the 4 parameterized coordinates

of the predicted bounding box, and t∗i is that of the ground-

truth box associated with a positive anchor. The classi-

fication loss Lcls(pi, p
∗

i ) is softmax loss over two classes

(face vs. background). The regression loss Lreg(ti, t
∗

i )
is the smooth L1 loss defined in [8] and p∗

i Lreg means

the regression loss is activated only for positive anchors

and disabled otherwise. The two terms are normalized by

Ncls and Nreg , and weighted by a balancing parameter λ.

In our implementation, the cls term is normalized by the

number of positive and negative anchors, and the reg term is

normalized by the number of positive anchors. Because of

the imbalance between the number of positive and negative

anchors, λ is used to balance these two loss terms.

Hard negative mining. After anchor matching step,

most of the anchors are negative, which introduces a signif-

icant imbalance between the positive and negative training

examples. For faster optimization and stable training, in-

stead of using all or randomly select some negative samples,

we sort them by the loss values and pick the top ones so that
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the ratio between the negatives and positives is at most 3:1.

With hard negative mining, we set above background label

Nm = 3, and λ = 4 to balance the loss of classification and

regression.

Other implementation details. As for the parameter

initialization, the base convolutional layers have the same

architecture as VGG16 and their parameters are initial-

ized from the pre-trained [39] VGG16. The parameters

of conv fc6 and conv fc7 are initialized by subsampling

parameters from fc6 and fc7 of VGG16 and the other ad-

ditonal layers are randomly initialized with the “xavier”

method [9]. We fine-tune the resulting model using SGD

with 0.9 momentum, 0.0005 weight decay and batch size

32. The maximum number of iterations is 120k and we use

10−3 learning rate for the first 80k iterations, then continue

training for 20k iterations with 10−4 and 10−5. Our method

is implemented in Caffe [14] and the code will be available

to the research community.

4. Experiments

In this section, we firstly analyze the effectiveness of

our scale-equitable framework, scale compensation anchor

matching strategy and max-out background label, then eval-

uate the final model on common face detection benchmarks,

finally introduce the inference time.

4.1. Model analysis

We analyze our model on the WIDER FACE validation

set by extensive experiments. The WIDER FACE valida-

tion set has easy, medium and hard subsets, which roughly

correspond to large, medium and small faces, respectively.

Hence it is suitable to evaluate our model.

Baseline. To evaluate our contributions, we carry out

comparative experiments with our baselines. Our S3FD is

inspired by RPN [38] and SSD [26], so we directly use them

to train two face detectors as the baselines, marked as RPN-

face and SSD-face, respectively. Different from [38], the

RPN-face tiles six scales of the square anchor (16, 32, 64,

128, 256, 512) on the conv5 3 layer of VGG16 to make

the comparison more substantial. The SSD-face inherits the

architecture and anchor-setting of SSD. The remainder is

set as the same with our S3FD.

Ablative Setting. To understand S3FD better, we con-

duct ablation experiments to examine how each proposed

component affects the final performance. We evaluate the

performance of our method under three different settings:

(i) S3FD(F): it only uses the scale-equitable framework

(i.e., constructed architecture and designed anchors) and

ablates another two components; (ii) S3FD(F+S): it applies

the scale-equitable framework and the scale compensation

anchor matching strategy; (iii) S3FD(F+S+M): it is our

complete model, consisting of the scale-equitable frame-

work, the scale compensation anchor matching strategy and

the max-out background label.

Methods

mAP(%) Subsets

Easy Medium Hard

RPN-face 91.0 88.2 73.7

SSD-face 92.1 89.5 71.6

S3FD(F) 92.6 91.6 82.3

S3FD(F+S) 93.5 92.0 84.5

S3FD(F+S+M) 93.7 92.4 85.2

Table 3. The comparative and ablative results of our model on

WIDER FACE validation subset. The precision-recall curves of

these methods are in the supplementary materials.

From the results listed in Tab. 3, some promising conclu-

sions can be summed up as follows:

Scale-equitable framework is crucial. Comparing with

S3FD(F), the only difference with RPN-face and SSD-face

are their framework. RPN-face has the same choice of

anchors as ours but only tiles on the last convolutional

layer of VGG16. Not only its stride size (16 pixels) is too

large for small faces, but also different scales of anchors

have the same receptive field. SSD-face tiles anchors over

several convolutional layers, while its smallest stride size

(8 pixels) and smallest anchors are still slightly large for

small faces. Besides, its anchors do not match the effective

receptive field. The result of S3FD(F) in Tab. 3 shows that

our framework greatly outperforms SSD-face and RPN-

face, especially on the hard subsets (rising by 8.6%), which

mainly consists of small faces. Comparing the results be-

tween different subsets, our S3FD(F) handles various scales

of faces well, and deteriorates slightly as the faces become

smaller, which demonstrates the robustness to face scales.

Scale compensation anchor matching strategy is bet-

ter. The comparison between the third and fourth rows in

Tab. 3 indicates that our scale compensation anchor match-

ing strategy effectively improves the performance, espe-

cially for small faces. The mAP is increased by 0.9%, 0.4%,

2.2% on easy, medium and hard subset, respectively. The

increases mainly come from the higher recall rate of various

scales of faces, especially for those faces that are ignored by

the current anchor matching method.

Max-out background label is promising. The last con-

tribution of S3FD is the max-out background label. It deals

with the massive small negative anchors (i.e., background)

from the conv3 3 detection layer which is designed to detect

small faces. As reported in Tab. 3, the improvements on

easy, medium and hard subsets are 0.2%, 0.4%, 0.7%, re-

spectively. It demonstrates that the effectiveness of the max-

out background label is positively related to the difficulty of

the input image. Since the harder images will generate the

more difficult small backgrounds.
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4.2. Evaluation on benchmark

We evaluate our S3FD method on all the common face

detection benchmarks, including Annotated Faces in the

Wild (AFW)[63], PASCAL Face[52], Face Detection Data

Set and Benchmark (FDDB)[13] and WIDER FACE [56].

Due to the limited space, some qualitative results on these

dataset will be shown in the supplementary materials.

AFW dataset. It contains 205 images with 473 la-

beled faces. We evaluate our model against the well-known

works [3, 25, 30, 41, 52, 55, 63] and commercial face detec-

tors (e.g., Face.com, Face++ and Picasa). As illustrated in

Fig.5, our S3FD outperforms all others by a large margin.

Figure 5. Precision-recall curves on AFW dataset.

PASCAL face dataset. It has 1, 335 labeled faces in

851 images with large face appearance and pose variations.

It is collected from PASCAL person layout test subset.

Fig.6 shows the precision-recall curves on this dataset, our

method significantly outperforms all other methods [3, 16,

30, 52, 55, 63] and commercial face detectors (e.g., Sky-

Biometry, Face++ and Picasa).

Figure 6. Precision-recall curves on PASCAL face dataset.

FDDB dataset. It contains 5, 171 faces in 2, 845 images.

There are two problems for evaluation: 1) FDDB adopts the

bounding ellipse while our S3FD outputs rectangle bound-

ing box. This inconsistency has a great impact on the

continuous score, so we train an elliptical regressor to trans-

form our predicted bounding boxes to bounding ellipses. 2)

FDDB has lots of unlabelled faces, which results in many

false positive faces with high scores. Hence, we manually

review the results and add 238 unlabelled faces (annotations

will be released later and some examples are shown in the

supplementary materials). Finally, we evaluate our face de-

tector on FDDB against the state-of-the-art methods [1, 6, 7,

15, 18, 19, 20, 22, 24, 25, 31, 35, 36, 43, 47, 49, 55, 57, 58].

The results are shown in Fig. 7(a) and Fig.7(b). Our S3FD

achieves the state-of-the-art performance and outperforms

all others by a large margin on discontinuous and continu-

ous ROC curves. These results indicate that our S3FD can

robustly detect unconstrained faces.

(a) Discontinuous ROC curves

(b) Continuous ROC curves

Figure 7. Evaluation on the FDDB dataset.

WIDER FACE dataset. It has 32, 203 images and labels

393, 703 faces with a high degree of variability in scale,

pose and occlusion. The database is split into training

(40%), validation (10%) and testing (50%) set. Besides,

the images are divided into three levels (Easy, Medium and

Hard subset) according to the difficulties of the detection.

The images and annotations of training and validation set

are available online, while the annotations of testing set

are not released and the results are sent to the database

server for receiving the precision-recall curves. Our S3FD

is trained only on the training set and tested on both val-

idation and testing set against recent face detection meth-
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(a) Val: Easy (b) Val: Medium (c) Val: Hard

(d) Test: Easy (e) Test: Medium (f) Test: Hard

Figure 8. Precision-recall curves on WIDER FACE validation and test sets.

ods [31, 53, 55, 56, 58, 59]. The precision-recall curves and

mAP values are shown in Fig. 8. Our model outperforms

others by a large margin across the three subsets, especially

on the hard subset which mainly contains small faces. It

achieves the best average precision in all level faces, i.e.

0.937 (Easy), 0.924 (Medium) and 0.852 (Hard) for val-

idation set, and 0.928 (Easy), 0.913 (Medium) and 0.840
(Hard) for testing set. These results not only demonstrate

the effectiveness of the proposed method but also strongly

show the superiority of the proposed model in detecting

small and hard faces.

4.3. Inference time

During inference, our method outputs a large number of

boxes (e.g., 25, 600 boxes for a VGA-resolution image).

To speed up the inference time, we first filter out most

boxes by a confidence threshold of 0.05 and keep the top

400 boxes before applying NMS, then we perform NMS

with jaccard overlap of 0.3 and keep the top 200 boxes.

We measure the speed using Titan X (Pascal) and cuDNN

v5.1 with Intel Xeon E5-2683v3@2.00GHz. For the VGA-

resolution image with batch size 1 using a single GPU, our

face detector can run at 36 FPS and achieve the real-time

speed. Besides, about 80% of the forward time is spent

on the VGG16 network, hence using a faster base network

could further improve the speed.

5. Conclusion

This paper introduces a novel face detector by solving

the common problem of anchor-based detection methods

whose performance decrease sharply as the objects becom-

ing smaller. We analyze the reasons behind this problem,

and propose a scale-equitable framework with a wide range

of anchor-associated layers and a series of reasonable an-

chor scales in order to well handle different scales of faces.

Besides, we propose the scale compensation anchor match-

ing strategy to improve the recall rate of small faces, and the

max-out background label to reduce the false positive rate

of small faces. The experiments demonstrate that our three

contributions lead S3FD to the state-of-the-art performance

on all the common face detection benchmarks, especially

for small faces. In our future work, we intend to further

improve the classification strategy of background patches.

We believe that explicitly dividing the background class into

some sub-categories is worthy of further study.
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