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Abstract

Skeleton-based human action recognition has recently

attracted increasing attention due to the popularity of 3D

skeleton data. One main challenge lies in the large view

variations in captured human actions. We propose a novel

view adaptation scheme to automatically regulate observa-

tion viewpoints during the occurrence of an action. Rather

than re-positioning the skeletons based on a human defined

prior criterion, we design a view adaptive recurrent neu-

ral network (RNN) with LSTM architecture, which enables

the network itself to adapt to the most suitable observation

viewpoints from end to end. Extensive experiment analyses

show that the proposed view adaptive RNN model strives

to (1) transform the skeletons of various views to much

more consistent viewpoints and (2) maintain the continu-

ity of the action rather than transforming every frame to the

same position with the same body orientation. Our model

achieves significant improvement over the state-of-the-art

approaches on three benchmark datasets.

1. Introduction

Recognizing human actions has remained one of the

most important and challenging problems in computer vi-

sion. Demands on human action recognition techniques are

growing very fast and have expanded in many domains,

such as visual surveillance, human-computer interaction,

video indexing/retrieval, video summary, and video under-

standing [27, 42].

Considering the differences in inputs, human action

recognition can be categorized into color video-based and

3D skeleton-based approaches. While color video based

human action recognition has been extensively studied over

the past few decades, 3D skeleton based human representa-

∗This work was done when P. Zhang was an intern at Microsoft Re-

search Asia.
†Corresponding author.

Figure 1: Skeleton representations of the same posture cap-

tured from different viewpoints (different camera position,

angle, and the subject orientation) are very different.

tion for action recognition has recently attracted a lot of re-

search attention because of its high level representation and

robustness to variations of viewpoints, appearances, and

surrounding distractions [2, 10, 28, 47]. Biological observa-

tions from the early seminal work of Johansson suggest that

humans can recognize actions from just the motion of a few

joints of the human body, even without appearance infor-

mation [19]. Besides, the prevalence of cost-effective depth

cameras such as Microsoft Kinect [48], Intel RealSense [1],

dual camera devices, and the advance of a powerful tech-

nique of human pose estimation from depth [34] make 3D

skeleton data easily obtainable. Like the many previous

works listed in the survey paper [10], we focus on skeleton-

based action recognition.

One of the main challenges in skeleton-based human ac-

tion recognition is the complex viewpoint variations when

capturing human action data. First, in a practical scenario,

the capturing viewpoints of the camera differ among differ-

ent sequences, e.g., the facing angle, position of the cam-

era, resulting in large differences among skeleton represen-

tations. Second, the actor could conduct an action towards

different orientations. Moreover, he/she may dynamically

change his/her orientations as time goes on. As illustrated
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in Fig. 1, the skeleton representations of the same pos-

ture are rather different when captured from different view-

points. In practice, the variation of the observation view-

points makes action recognition a very challenging prob-

lem [2, 16]. Attempts have been made in previous works to

overcome the view variations for robust action recognition

[16, 30, 3, 32, 20, 7, 33, 41, 23, 15, 22, 43, 44, 25, 49, 29, 8].

Most of these works, however, are designed for color video-

based human recognition. The investigation of view invari-

ance for skeleton-based human recognition, however, still

remains under explored.

There are only a few attempts in previous works to con-

sider the effect from view variations. A general treatment

employs a pre-processing step to transform the 3D joint co-

ordinates from the camera coordinate system to a person-

centric coordinate system by placing the body center at the

origin, followed by rotating the skeleton such that the body

plane is parallel to the (x, y)-plane, to make the skeleton

data invariant to absolute location, and the body orientation

[45, 39, 5, 51, 18, 31, 24, 35]. Such a pre-processing gains

partial view-invariant. However, it also has many draw-

backs. On one hand, it loses partial motion information,

e.g., the moving trajectory and speed of the body center,

and the changing dynamics of the body orientation. For ex-

ample, the action of walking becomes walking in the same

place and the action of dancing with body rotating becomes

dancing with body facing a fixed orientation. On the other

hand, the processing (i.e., translation, rotation) is not ex-

plicitly designed with the target of optimizing action recog-

nition in mind but is based on human defined criteria, which

reduces the space for exploiting optimal viewpoints. How

to design a system which provides superior viewpoint for

action recognition is still an under-explored problem, and

warrants more investigation.

In this work, we address the view variation problem for

high performance skeleton-based action recognition. In-

stead of processing the 3D skeletons based on human de-

fined criteria for solving view variations, we propose a view

adaptation scheme which automatically regulates the obser-

vation viewpoint at each frame to obtain the skeleton rep-

resentation under the new view. Note that the regulation of

the viewpoint of the camera is equivalent to the transfor-

mation of the skeleton to a new coordinate system. To this

end, as shown in Fig. 2, we design a view adaptive RNN

with LSTM architecture to learn and determine the appro-

priate viewpoints based on the input skeleton. The skeleton

newly represented in the determined observation viewpoint

is used for easier action recognition by a main LSTM net-

work. With the objective of maximizing recognition perfor-

mance, the entire network is end-to-end trained to encour-

age the view adaptation subnetwork to learn and determine

suitable viewpoints.

To summarize, we make the following contributions.

• We propose a self-regulated view adaption scheme

which re-positions the observation viewpoints dynam-

ically to facilitate better recognition of the action from

skeleton data.

• We integrate the proposed view adaption scheme into

an end-to-end LSTM network which automatically

determines the “best” observation viewpoints during

recognition.

• We have made many observations and analyses of the

results from the view adaptation model. We find that

the proposed model automatically regulates the skele-

tons to more consistent observation viewpoints while

maintaining the continuity of an action.

Based on the above contributions, we present an end-to-end,

high performance action recognition system. Extensive ex-

periment analyses and evaluations demonstrate its strong

ability to overcome the view variation problem, and its

state-of-the-art performance on three benchmark datasets.

2. Related Work

2.1. View Invariant Action Recognition

Human actions may be observed from arbitrary cam-

era viewpoints in realistic scenes. This factor is a barrier

for the development of efficient action recognition tech-

niques. Researchers have paid much attention to this issue

and designed view-invariant approaches for action recogni-

tion from color videos [16, 30, 3, 32, 20, 7, 33, 41, 23, 15,

22, 43, 44, 25, 49, 29, 8]. One category of approaches re-

quires multiple view videos for training [15, 8, 41, 44, 25].

For example, the 3D histogram of Oriented Gradients based

Bag of Words model [41] is learned from all viewpoints of

data to provide robustness to view changes. Another cat-

egory of approaches designs view-invariant feature repre-

sentations [20, 30, 3] like self-similarity descriptors [20] or

descriptions based on trajectory curvature [30, 3]. There

is also a category of approaches that employ knowledge

transfer-based models [7, 23, 22, 49, 50, 29]. They find a

view independent latent space in which features from dif-

ferent views are directly comparable. Considering the dif-

ferent domains of the color videos and skeleton sequences,

the approaches designed for color videos cannot be directly

extended to skeleton-based action recognition.

As a comparison, the study of viewpoint influences on

skeleton-based action recognition is under-explored. The

commonly used strategies are monotonous where a pre-

processing of skeleton is performed [45, 39, 5, 51, 18, 31,

24, 35]. Unfortunately, they result in the loss of partial rel-

ative motion information. Sequence-based pre-processing,

which performs the same transformation on all frames with

the parameters determined from the first frame so that the

motion is invariant to the initial body position and initial ori-

entation, can preserve motion information. However, since
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Figure 2: Architecture of our end-to-end view adaptive RNN, which consists of a View Adaptation Subnetwork, and a Main

LSTM Network. The View Adaptation Subnetwork determines the suitable observation viewpoint at each time slot. With the

skeleton representations under the new observation viewpoints, the main LSTM network determines the action class.

the human body is not rigid, the definition of the body plane

by the joints of “hip”, “shoulder”, “neck” is not always suit-

able for the purpose of orientation alignment [40]. After the

alignment of such a defined body plane, a person who is

bending over will have his/her legs obliquely upward. Wang

et al. [40] use only the up-right pose frames in a sequence to

determine the body plane by averaging the rotation transfor-

mation. However, a sequence may not contain an up-right

pose.

In contrast to the above works, we leverage a content-

dependent view adaptation model to automatically learn and

determine the suitable viewpoints for each frame.

2.2. RNN for Skeleton­based Action Recognition

Earlier works used hand-crafted features for action

recognition from the skeleton [10, 45]. Many recent works

leverage the Recurrent Neuron Networks to recognize hu-

man actions from raw skeleton input, with feature learn-

ing and temporal dynamic modeling achieved by the neu-

ron networks. Du et al. [5] proposes an end-to-end hierar-

chical RNN for action recognition which takes each body

part as input to each RNN subnetwork and fuses the output

of subnetworks hierarchically. Zhu et al. [51] propose the

automatic exploration of the co-occurrence of discrimina-

tive skeleton joints in an LSTM network using group sparse

regularization. In the part aware LSTM model [31], the

memory unit of the LSTM model is separated to part-based

sub-cells to push the network towards learning long-term

context representations for each individual part. To learn

both the spatial and temporal relationships among joints, the

spatial-temporal LSTM network extends the deep LSTM ar-

chitecture to two concurrent domains, i.e., the temporal do-

main and the spatial domain [24]. To further exploit joint

discriminations, the spatial-temporal attention model [35]

further introduces the attention mechanism into the network

to enable it to selectively focus on discriminative joints of

the skeleton within one frame, and pay different levels of

attention to the outputs from multiple frames.

Most of the above works take the center and orientation

aligned skeletons as input to the RNNs, by using the human

defined alignment criteria. In contrast, our model automat-

ically determines the observation viewpoints and thus the

skeleton representations for efficient action recognition.

3. RNN and LSTM Overview
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Figure 3: Structures of the neurons. (a) RNN; (b) LSTM.

To make the paper self-contained, in this section we

briefly review the Recurrent Neural Network (RNN), and

the RNN with Long Short-Term Memory (LSTM) [12],

based on which our framework is built.

RNN is a powerful model for sequential data modeling

and feature extraction, which allows the previous informa-

tion to persist [9, 26]. Fig. 3 (a) shows an RNN neuron,

where the output response ht at time step t is determined by

the input xt and the hidden outputs from RNN themselves

at the last time step ht−1. However, such a standard RNN

faces the vanishing gradient effect in practice [12, 11, 9],

which is not very capable of handling long-term dependen-

cies. The advanced RNN architecture of LSTM [12] miti-

gates this problem. Fig. 3 (b) shows an LSTM neuron. The

key to LSTM is the cell state ct, which is kind of like a con-

veyor belt [26]. The removal of the previous information or

addition of the current information to the cell state are reg-

ulated with linear interactions by the forget gate ft and the

input gate it.

4. View Adaptation Model using LSTM

We propose an end-to-end LSTM network with a view

adaptation module for skeleton-based human action recog-
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nition. Fig. 2 shows the overall architecture of the proposed

network, which consists of a View Adaptation Subnetwork

and a Main LSTM Network. In the following subsections,

we first formulate the problem of observation viewpoint

regulation. Then we describe our proposed view adapta-

tion network in detail, which is capable of adaptively deter-

mining the most suitable observation viewpoints frame by

frame.

4.1. Problem Formulation

The raw 3D skeletons are recorded corresponding to the

camera coordinate system (global coordinate system), with

the origin located at the position of the camera sensor. To be

insensitive to the initial position of an action and to facilitate

our study, for each sequence, we translate the global coordi-

nate system to the body center of the first frame as our new

global coordinate system O. Note that the input skeleton

Vt to our system as in Fig. 2 is the skeleton representation

under this global coordinate system.

One can choose to observe an action from suitable views.

Thanks to the availability of the 3D skeletons captured from

a fixed view, it is possible to set up a movable virtual cam-

era and observe the action from new observation viewpoints

as illustrated in Fig. 4. With the skeleton at frame t re-

observed from the movable virtual camera viewpoint (ob-

servation viewpoint), the skeleton can be transformed to a

representation under the movable virtual camera coordinate

system, which is also referred to as the observation coordi-

nate system O′

t.

Given a skeleton sequence S with T frames, under the

global coordinate system O, the jth skeleton joint on the

tth frame is denoted as vt,j = [xt,j , yt,j , zt,j ]
T, where t ∈

(1, · · · , T ), j ∈ (1, · · · , J), J denotes the total number of

skeleton joints in a frame. We denote the set of joints in the

tth frame as Vt = {vt,1, · · · ,vt,J}.

For the tth frame, assume the movable virtual camera is

placed at a suitable viewpoint, with the corresponding ob-

servation coordinate system obtained from a translation by

dt ∈ R
3, and a rotation of αt, βt, γt radians anticlock-

wise around the X-axis, Y -axis, and Z-axis, respectively,

of the global coordinate system. Therefore, the representa-

tion of the jth skeleton joint v′

t,j = [x′

t,j , y
′

t,j , z
′

t,j ]
T of the

tth frame under this observation coordinate system O′

t is

v
′

t,j = [x′

t,j , y
′

t,j , z
′

t,j ]
T = Rt × (vt,j − dt). (1)

Rt can be represented as

Rt = R
x
t,α ×R

y
t,β ×R

z
t,γ , (2)

where R
y
t,γ denotes the coordinate transform for rotating

the original coordinate system around the Y -axis by βt ra-
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Figure 4: Illustration of the regulation of the observation

viewpoint (movable virtual camera). A skeleton sequence

is a record of the skeletons from the first frame f =1 to the

last frame f=T under the global coordinate system O. The

action can be re-observed by a movable virtual camera un-

der the observation coordinate systems. For the tth frame,

the observation coordinate system is at a new position dt

with a rotation of αt, βt, γt radians anticlockwise around

the X-axis, Y -axis, and Z-axis, respectively, correspond-

ing to the global coordinate system. The skeleton can then

be represented under this observation coordinate system O′

t.

dians anticlockwise, which is defined as

R
y
t,β =





cos(βt) sin(βt) 0
− sin(βt) cos(βt) 0

0 0 1



 . (3)

Similarly, Rx
t,α and R

z
t,γ denote the coordinate transforms

for rotating the original coordinate system around the X-

axis by αt radians, and around the Z-axis by γt radians an-

ticlockwise, respectively.

Note that all the skeleton joints in the tth frame share

the same transform parameters, i.e., αt, βt, γt,dt, consid-

ering that the changing of viewpoints is a rigid motion.

Given these transform parameters, the skeleton represen-

tation V ′

t = {v′

t,1, · · · ,v
′

t,J} under the new observation

coordinate can be obtained from (1). Besides, the view-

points can vary for different frames. The key problem be-

comes how to determine the viewpoints of the movable vir-

tual camera.

4.2. View Adaptive Recurrent Neural Network

We use a View Adaptation Subnetwork to automatically

determine the observation viewpoints, i.e., α, β, γ,dt (as

discussed in section 4.1), and use a Main LSTM Network

to learn the temporal dynamics and perform the feature ab-

stractions from the view-regulated skeleton data for the ac-

tion recognition, from end to end, as shown in Fig. 2.
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View Adaptation Subnetwork. A regulation of obser-

vation viewpoint corresponds to the re-positioning of the

movable virtual camera, which can be described by the

translation and rotation of this virtual camera (observation

coordination system). At a time slot corresponding to the

tth frame, with the skeleton Vt as input, two branches of

LSTM subnetworks are utilized to learn the rotation param-

eters αt, βt, γt to obtain the rotation matrix Rt, and the

translation vector dt, corresponding to the global coordi-

nate system.

The branch of rotation subnetwork for learning rotation

parameters consists of an LSTM layer, and a full connection

(FC) layer. The rotation parameters are obtained as

[αt, βt, γt]
T = Wrh

r
t + br, (4)

where h
r
t ∈ R

N×1 is the hidden output vector of the

LSTM layer with N denoting the number of LSTM neu-

rons, Wr ∈ R
3×N and br ∈ R

3×1 denote the weight ma-

trix and offset vector of the FC layer, respectively. With the

rotation parameters, the rotation matrix Rt is obtained by

(2).

The branch of translation subnetwork for learning trans-

lation parameters consists of an LSTM layer, and a FC layer.

The translation vector dt is calculated as

dt = Wdh
d
t + bd, (5)

where h
d
t ∈ R

N×1 is the hidden output vector of its LSTM

layer, Wd ∈ R
3×N and bd ∈ R

3×1 denotes the weight

matrix and offset vector of the FC layer. Under the obser-

vation viewpoint of the tth frame, the representation of the

skeleton V ′

t is then obtained through (1).

Note that to obtain an efficient view adaptation subnet-

work, we have experimented with many alternative desig-

nations and found the current design very efficient. First,

we use separated LSTM layers for the rotation and transla-

tion model learning rather than using shared LSTM layers

because the rotation and translation are different operations

which are difficult to learn from the shared LSTM neurons.

Second, we use the same skeleton input for both the rotation

branch subnetwork and the translation branch subnetwork

rather than taking the output of one branch (e.g., translation

/ rotation) as the input of another (e.g., rotation / transla-

tion). This is because the learning of the model under the

consistent global coordinate system is easier.

Main LSTM Network. The LSTM network is capa-

ble of modeling long-term temporal dynamics and automat-

ically learning feature representations. Similar to the de-

signs in [51, 35], we build a main LSTM network by stack-

ing three LSTM layers, followed by one FC layer with a

SoftMax classifier. The number of neurons of the FC layer

is equal to the number of action classes.

End-to-End Training. The entire network is end-to-end

trainable. We use cross-entropy loss as the training loss

[35]. The gradients of loss flow back not only within each

subnetwork, but also from the Main LSTM Network to the

View Adaptation Subnetwork. Let us denote the loss back-

propagated to the output of the View Adaptation Subnet-

work by ǫv′

t,j
, where j ∈ (1, · · · , J) and J is the number of

skeleton joints. Then, the loss back-propagated to the out-

put of the branch for determining the translation vector of

dt is

ǫdt
=

j=J
∑

j=1

∂v′

t,j

∂dt

⊙ ǫv′

t,j
, (6)

where ⊙ denotes element-wise product. Similarly, the loss

back-propagated to the output of the branch for determining

the rotation parameters can be obtained. For example, the

loss back-propagated to the output of βt is

ǫβt
=

j=J
∑

j=1

∂v′

t,j

∂Rt

∂Rt

∂βt

⊙ ǫv′

t,j
. (7)

With the end-to-end training feasible, the view adaptation

model is guided to select the suitable observation view-

points for enhancing recognition accuracy.

Our scheme has the following characteristics. Firstly, it

automatically chooses the suitable observation viewpoints

based on the contents, rather than using human predefined

criteria. Secondly, the view adaptation model is optimized

for the purpose of high accuracy recognition.

5. Experiment Results

We evaluate the effectiveness of our proposed view adap-

tation scheme on three benchmark datasets. In-depth analy-

ses are made on the NTU dataset. To better understand the

model, visualizations of the skeleton representations under

the observation viewpoints are given.

5.1. Datasets and Settings

NTU RGB+D Dataset (NTU) [31]. This Kinect cap-

tured dataset is currently the largest dataset with RGB+D

videos and skeleton data for human action recognition, with

56880 video samples. It contains 60 different action classes

including daily actions, mutual, and health-related actions.

Samples are captured from 17 setups of cameras, where in

different setups, the height and distances of the cameras to

the subjects are different. For each setup, the three cameras

were located at the same height but from different horizon-

tal angles: −45o (camera 2), 0o (camera 1), +45o (camera

3). Each subject performed each action twice, once facing

towards the left camera and once towards the right camera.

Each subject has 25 joints. The standard evaluations in-

clude Cross-Subject (CS) evaluation, where the 40 subjects

are split into training and testing groups, and Cross-View

(CV) evaluation, where the samples of cameras 2 and 3 are

used for training while those of camera 1 for testing.
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SBU Kinect Interaction Dataset (SBU) [46]. This

Kinect captured dataset is an interaction dataset with two

subjects, containing 282 sequences of 8 classes with sub-

ject independent 5-fold cross validation. Each subject has

15 joints.

SYSU 3D Human-Object Interaction Set (SYSU)

[13]. This Kinect captured dataset contains 12 actions per-

formed by 40 subjects. It has 480 sequences. Each subject

has 20 joints. We evaluate performance on two standard

protocols [13]. For setting-1, half of samples are used for

training and the rest for testing for each activity. For setting-

2, half of subjects are used for training and the rest for test-

ing. 30-fold cross validation is utilized. Downsampling the

sequences in temporal is performed on this dataset in con-

sidering that the maximum length of the sequences is high.

Implementation Details. We build our frameworks

based on the platform of Keras [4] toolbox with theano [38].

Dropout [36] with a probability of 0.5 is used to alleviate

overfitting. Gradient clipping similar to [37] is used by en-

forcing a hard constraint on the norm of the gradient (to not

exceed 1) to avoid the exploding gradient problem. Adam

[21] is adapted to train all the networks, and the initial learn-

ing rate is set as 0.005.

In our network design, we use 100 LSTM neurons in

each LSTM layer for the NTU and the SYSU datasets. To

avoid overfitting, we use 50 LSTM neurons in each LSTM

layer for the SBU dataset, which has much smaller numbers

of training samples than that of the NTU and the SYSU

datasets. We set the batch sizes for the NTU, SYSU, and

SBU dataset to 256, 64, and 8, respectively. For the View

Adaptation Subnetwork, we initialize the full connection

layer parameters to zeros for efficient training.

5.2. Comparisons to Other State­of­the­Art

We show the performance comparisons of our proposed

view adaptation scheme (VA-LSTM) with other state-of-the-

art approaches in Table 1, Table 2, and Table 3 for the

NTU, SBU and SYSU datasets, respectively. We can see

that our scheme significantly outperforms the state-of-the-

art approaches by about 6%, 4%, 1% in accuracy for the

NTU, SBU, SYSU dataset respectively.

5.3. Efficiency of the View Adaptation Model

To validate the effectiveness of the proposed view adap-

tation model, we make two sets of comparisons as summa-

rized in Table 4. One set of comparisons evaluates the ef-

ficiency among the different pre-processing based methods

and our proposed scheme. Another set of results evaluates

the efficiency of the view adaptation models.

VA-LSTM is our proposed final view adaptation scheme

which automatically regulates the observation viewpoints in

the network. This is the scheme where both the translation

and rotation branches are connected, i.e., the switch srota

Table 1: Comparisons on the NTU dataset with Cross-

Subject and Cross-View settings in accuracy (%).

Methods CS CV

Skeleton Quads [6] 38.6 41.4

Lie Group [39] 50.1 52.8

Dynamic Skeletons [13] 60.2 65.2

HBRNN-L [5] 59.1 64.0

Part-aware LSTM [31] 62.9 70.3

ST-LSTM (Tree Traversal) + Trust Gate [24] 69.2 77.7

STA-LSTM [35] 73.4 81.2

VA-LSTM 79.4 87.6

Table 2: Comparisons on the SBU dataset in accuracy (%).

Methods Acc. (%)

Raw skeleton [46] 49.7

Joint feature [46] 80.3

Raw skeleton [17] 79.4

Joint feature [17] 86.9

HBRNN-L [5] 80.4

Co-occurrence RNN [51] 90.4

STA-LSTM [35] 91.5

ST-LSTM (Tree Traversal) + Trust Gate [24] 93.3

VA-LSTM 97.2

Table 3: Comparisons on the SYSU dataset in accuracy (%).

Methods setting-1 setting-2

LAFF [14] – 54.2

Dynamic Skeletons [13] 75.5 76.9

VA-LSTM 76.9 77.5

and strans are on as in Fig. 2. VA-trans-LSTM is our scheme

which only allows the translation of the viewpoint, i.e., the

switch srota is off while strans is on. In comparison, S-

trans+LSTM is our baseline scheme without enabling the

view adaptation model, i.e., the switch srota and strans are

both off, where V ′

t = Vt. Note that the input Vt is the same

as that of our view adaptation schemes, where the global

coordinate system is moved to the body center of the first

frame for the entire sequence to be insensitive to the initial

position (see section 4.1). We refer to this pre-processing

as sequence level translation, i.e., S-trans. VA-rota-LSTM

is our scheme which only allows the rotation of the view-

points, i.e., the switch srota is on while strans is off.

From Table 4, we observe that the proposed final view

adaptation scheme outperforms the baseline scheme S-

trans+LSTM by 3.4% and 5.3% in accuracy for CS and CV

settings, respectively, thanks to the introduction of the pro-

posed view adaptation module.

One may wonder how the performance is when using

the pre-processed skeletons, basing on the widely used hu-

man defined processing criteria, before inputing to the Main

LSTM Network. Such pre-processings can be considered

as the human defined rules for determining the viewpoints.

We name the pre-processing based schemes in the manner

of C+LSTM, where C indicates the pre-processing strategy,

e.g., F-trans+LSTM. The 3rd to 7th rows show the perfor-
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Table 4: Comparisons of pre-processing methods and our

view adaptation model on the NTU dataset in accuracy (%).

Methods CS CV

wo/ pre-proc. Raw + LSTM 66.3 73.4

Pre-proc.

S-trans + LSTM 76.0 82.3
F-trans + LSTM 75.1 80.5

S-trans&S-rota + LSTM 76.4 85.4
S-trans&F-rota + LSTM 75.0 85.1
F-trans&F-rota + LSTM 74.1 83.9

View adap.

VA-trans-LSTM 77.7 84.9
VA-rota-LSTM 79.4 87.1

VA-LSTM 79.4 87.6

mance of schemes using different pre-processing strategies.

F-trans means performing frame level translation to have

the body center at the coordinate system origin for each

frame. S-rota means the sequence level rotation with the

rotation parameters calculated from the first frame, which

is to fix the X-axis to be parallel to the vector from “left

shoulder” to “right shoulder”, Y -axis to be parallel to the

vector from “spline base” to “spine”, and Z-axis as the new

X×Y . Similarly, F-rota means the frame level rotation. F-

trans&F-rota means both F-trans and F-rota are performed,

which is similar to the pre-processing in [31, 24, 35]. The

scheme Raw+LSTM in the 2nd row denotes a scheme which

uses the original skeleton without any pre-processing as the

input to the Main LSTM Network. Note that for 3D skele-

tons, the distance of a subject to the camera does not in-

fluence the scale of the skeletons. Therefore, the scaling

operation is not considered in our framework.

From the comparisons in Table 4, we have the follow-

ing observations and conclusions. (1) Our final scheme sig-

nificantly outperforms the commonly used pre-processing

strategies. In comparison with F-trans&F-rota+LSTM [31,

24, 35], our scheme achieves improvement by 5.3% and

3.7% in accuracy for CS and CV settings, respectively.

In comparison with S-trans&S-rota+LSTM, our scheme

achieves improvement by 3.0% and 2.2% in accuracy. (2)

When only the rotation (or the translation) is allowed for ad-

justing the viewpoints, our scheme still consistently outper-

forms the schemes with human defined rotation (or transla-

tion) pre-processing. (3) Frame level pre-processing is in-

ferior to the sequence level pre-processing, because the for-

mer loses more information, e.g., the motion across frames.

(4) Being insensitive to the initial position of an action, S-

trans+LSTM significantly outperforms the scheme with raw

skeletons as input Raw+LSTM.

5.4. Visualization of the Learned Views

At each frame, the view adaptation subnetwork deter-

mines the observation viewpoint (by re-localizing the vir-

tual movable camera) and then transforms the input skele-

ton Vt to the representation V ′

t in the new viewpoint for op-

timizing recognition performance. We visualize the repre-

sentations Vt and V ′

t for better understanding of our model.

Fig. 1 shows the skeletons from different sequences cap-

tured from different viewpoints of the same posture. Inter-

estingly, the transformed skeletons (green) of various view-

points have much more consistent viewpoints, i.e., frontal

viewpoint here. Another example is shown in Fig. 6 with

the skeleton frames of the same action performed by differ-

Figure 5: Frames of the same posture captured from dif-

ferent viewpoints for the same subject. 2nd row: original

skeletons. 3rd row: skeleton representations from the ob-

servation viewpoints of our model. Note the third skeleton

is very noisy due to occlusion during Kinect shooting.

Figure 6: Frames of the same action “drinking” captured

from different viewpoints for different subjects. 2nd row:

original skeletons. 3rd row: skeleton representations from

the observation viewpoints of our model.
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(a) (b)

Figure 7: Frames from sequences of actions: (a) “bow”; (b) “staggering”. 2nd row: original skeleton. 3rd row: skeleton after

the pre-processing with F-trans&F-rota. 4th row: skeleton representation from the observation viewpoints of our model.

ent subjects. We can see that they are transformed to similar

viewpoints. A similar phenomenon is observed in different

actions and sequences.

To visualize the skeleton representations in the sequence

along time, we show some frames of an action under the

original and new observation viewpoints in Fig. 7. We can

see that after our view adaptation model is applied, the sub-

jects even for different actions are oriented toward a more

consistent view. Different from frame level pre-processing

(as in the 3rd row), the transformed skeletons among frames

are continuous and looks much natural. In Fig. 7 (a) of ac-

tion “bow”, the orientation of the body after the process-

ing of our model is parallel to X-axis while the legs after

frame level pre-processing becomes obliquely upward. In

Fig. 7 (b) of action “staggering”, the position changes of

the subject after the processing of our model remain while

such motion is lost for the pre-processing results.

From observations, we find that the learned view adapta-

tion model tends to (1) regulate the observation viewpoints

to present the subjects as if observed in a consistent view-

point cross sequences and actions; (2) maintain the continu-

ity of an action without losing much of the relative motions.

Optimized with the target of maximizing the recogni-

tion performance, the proposed view adaptation model is

much effective in choosing the suitable viewpoints. The

consistency of viewpoints for various actions/subjects over-

comes the challenge caused by the diversity of viewpoints

in video capturing, enabling the network to focus on the

learning of action-specific features. Besides, unlike some

pre-processing strategy, the valuable motion information is

preserved.

6. Conclusion

We present an end-to-end view adaptation model for hu-

man action recognition from skeleton data. Instead of fol-

lowing the human predefined criterion to re-position the

skeletons for action recognition, our network is capable of

regulating the observation viewpoints to the suitable ones

by itself, with the optimization target of maximizing recog-

nition performance. It overcomes the limitations of the hu-

man defined pre-processing approaches by exploiting the

optimal viewpoints through the content dependent recurrent

neuron network model. Experiment results demonstrate that

the proposed model can significantly improve the recogni-

tion performance on three benchmark datasets and achieve

state-of-the-art results.
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