
Temporal Action Detection with Structured Segment Networks

Yue Zhao1, Yuanjun Xiong1, Limin Wang2, Zhirong Wu1, Xiaoou Tang1, and Dahua Lin1

1Department of Information Engineering, The Chinese University of Hong Kong
2Computer Vision Laboratory, ETH Zurich, Switzerland

Abstract

Detecting actions in untrimmed videos is an important

yet challenging task. In this paper, we present the structured

segment network (SSN), a novel framework which models

the temporal structure of each action instance via a struc-

tured temporal pyramid. On top of the pyramid, we fur-

ther introduce a decomposed discriminative model compris-

ing two classifiers, respectively for classifying actions and

determining completeness. This allows the framework to

effectively distinguish positive proposals from background

or incomplete ones, thus leading to both accurate recog-

nition and localization. These components are integrated

into a unified network that can be efficiently trained in an

end-to-end fashion. Additionally, a simple yet effective tem-

poral action proposal scheme, dubbed temporal actionness

grouping (TAG) is devised to generate high quality action

proposals. On two challenging benchmarks, THUMOS14

and ActivityNet, our method remarkably outperforms previ-

ous state-of-the-art methods, demonstrating superior accu-

racy and strong adaptivity in handling actions with various

temporal structures. 1

1. Introduction

Temporal action detection has drawn increasing atten-

tion from the research community, owing to its numerous

potential applications in surveillance, video analytics, and

other areas [29, 24, 55, 37]. This task is to detect human

action instances from untrimmed, and possibly very long

videos. Compared to action recognition, it is substantially

more challenging, as it is expected to output not only the ac-

tion category, but also the precise starting and ending time

points.

Over the past several years, the advances in convolution-

al neural networks have led to remarkable progress in video

analysis. Notably, the accuracy of action recognition has

1Code available at http://yjxiong.me/others/ssn

Figure 1. Importance of modeling stage structures in action de-

tection. We slide window detectors through a video clip with an

action instance of “Tumbling” (green box). Top: The detector

builds features without any stage structure of the action, e.g. av-

erage pooling throughout the window. It produces high responses

whenever it sees any discriminative snippet related to tumbling,

making it hard to localize the instance. Bottom: SSN detector uti-

lizes stage structures (starting, course, and ending) via structured

temporal pyramid pooling. Its response is only significant when

the window is well aligned.

been significantly improved [39, 44, 9, 49, 51]. Yet, the

performances of action detection methods remain unsatis-

factory [56, 55, 41]. For existing approaches, one major

challenge in precise temporal localization is the large num-

ber of incomplete action fragments in the proposed tempo-

ral regions. Traditional snippet based classifiers rely on dis-

criminative snippets of actions, which would also exist in

these incomplete proposals. This makes them very hard to

distinguish from valid detections (see Fig. 1). We argue that

tackling this challenge requires the capability of temporal

structure analysis, or in other words, the ability to identi-

fy different stages e.g. starting, course, and ending, which

12914

http://yjxiong.me/others/ssn


together decide the completeness of an actions instance.

Structural analysis is not new in computer vision. It has

been well studied in various tasks, e.g. image segmenta-

tion [20], scene understanding [16], and human pose esti-

mation [1]. Take the most related object detection for ex-

ample, in deformable part based models (DPM) [8], the

modeling of the spatial configurations among parts is cru-

cial. Even with the strong expressive power of convolution-

al networks [12], explicitly modeling spatial structures, in

the form of spatial pyramids [22, 14], remains an effective

way to achieve improved performance, as demonstrated in

a number of state-of-the-art object detection frameworks,

e.g. Fast R-CNN [11] and region-based FCN [23].

In the context of video understanding, although tempo-

ral structures have played an crucial role in action recogni-

tion [28, 48, 32, 52], their modeling in temporal action de-

tection was not as common and successful. Snippet based

methods [24, 41] often process individual snippets indepen-

dently without considering the temporal structures among

them. Later works attempt to incorporate temporal struc-

tures, but are often limited to analyzing short clips. S-

CNN [37] models the temporal structures via the 3D con-

volution, but its capability is restricted by the underlying

architecture [44], which is designed to accommodate only

16 frames. The methods based on recurrent networks [4, 26]

rely on dense snippet sampling and thus are confronted with

serious computational challenges when modeling long-term

structures. Overall, existing works are limited in two key as-

pects. First, the tremendous amount of visual data in videos

restricts their capability of modeling long-term dependen-

cies in an end-to-end manner. Also, they neither provide

explicit modeling of different stages in an activity (e.g. s-

tarting and ending) nor offer a mechanism to assess the

completeness, which, as mentioned, is crucial for accurate

action detection.

In this work, we aim to move beyond these limitations

and develop an effective technique for temporal action de-

tection. Specifically, we adopt the proven paradigm of “pro-

posal+classification”, but take a significant step forward by

utilizing explicit structural modeling in the temporal dimen-

sion. In our model, each complete activity instance is con-

sidered as a composition of three major stages, namely s-

tarting, course, and ending. We introduce structured tem-

poral pyramid pooling to produce a global representation of

the entire proposal. Then we introduce a decomposed dis-

criminative model to jointly classify action categories and

determine completeness of the proposals, which work col-

lectively to output only complete action instances. These

components are integrated into a unified network, called

structured segment network (SSN). We adopt the sparse s-

nippet sampling strategy [51], which overcomes the compu-

tational issue for long-term modeling and enables efficient

end-to-end training of SSN. Additionally, we propose to use

multi-scale grouping upon the temporal actionness signal to

generate action proposals, achieving higher temporal recal-

l with less proposals to further boost the detection perfor-

mance.

The proposed SSN framework excels in the following

aspects: 1) It provides an effective mechanism to model the

temporal structures of activities, and thus the capability of

discriminating between complete and incomplete proposal-

s. 2) It can be efficiently learned in an end-to-end fashion

(5 to 15 hours over a large video dataset, e.g. ActivityNet),

and once trained, can perform fast inference of temporal

structures. 3) The method achieves superior detection per-

formance on standard benchmark datasets, establishing new

state-of-the-art for temporal action detection.

2. Related Work

Action Recognition. Action recognition has been exten-

sively studied in the past few years [21, 46, 39, 44, 49,

51, 57]. Earlier methods are mostly based on hand-crafted

visual features [21, 46]. In the past several years, the

wide adoption of convolutional networks (CNNs) has re-

sulted in remarkable performance gain. CNNs are first

introduced to this task in [19]. Later, two-stream archi-

tectures [39] and 3D-CNN [44] are proposed to incorpo-

rate both appearance and motion features. These methods

are primarily frame-based and snippet-based, with simple

schemes to aggregate results. There are also efforts that ex-

plore long-range temporal structures via temporal pooling

or RNNs [49, 27, 4]. However, most methods assume well-

trimmed videos, where the action of interest lasts for nearly

the entire duration. Hence, they don’t need to consider the

issue of localizing the action instances.

Object Detection. Our action detection framework is close-

ly related to object detection frameworks [8, 12, 34] in s-

patial images, where detection is performed by classifying

object proposals into foreground classes and a background

class. Traditional object proposal methods rely on dense

sliding windows [8] and bottom-up methods that exploit

low-level boundary cues [45, 58]. Recent proposal meth-

ods based on deep neural networks show better average re-

call while requiring less candidates [34]. Deep models al-

so introduce great modeling capacity for capturing object

appearances. With strong visual features, spatial structural

modeling [22] remains a key component for detection. In

particular, the RoI pooling [11] is introduced to model the

spatial configuration of object with minimal extra cost. The

idea is further reflected in R-FCN [23] where the spatial

configuration is handled with the position sensitive pooling.

Temporal Action Detection. Previous works on activity

detection mainly use sliding windows as candidates and fo-

cus on designing hand-crafted feature representations for

classification [10, 43, 29, 24, 56, 17]. Recent works in-

corporate deep networks into the detection frameworks and

2915



CNN CNN CNN CNN CNN CNN CNN CNN CNN

Activity: Tumbling Complete Tumbling? Yes.

Tumbling Instance

Figure 2. An overview of the structured segment network framework. On a video from ActivityNet [7] there is a candidate region (green

box). We first build the augmented proposal (yellow box) by extending it. The augmented proposal is divided into starting (orange), course

(green), and ending (blue) stages. An additional level of pyramid with two sub-parts is constructed on the course stage. Features from CNNs

are pooled within these five parts and concatenated to form the global region representations. The activity classifier and the completeness

classifier operate on the the region representations to produce activity probability and class conditional completeness probability. The

final probability of the proposal being positive instance is decided by the joint probability from these two classifiers. During training, we

sparsely sample L = 9 snippets from evenly divided segments to approximate the dense temporal pyramid pooling.

obtain improved performance [55, 37, 2]. S-CNN [37] pro-

poses a multi-stage CNN which boosts accuracy via a lo-

calization network. However, S-CNN relies on C3D [44] as

the feature extractor, which is initially designed for snippet-

wise action classification. Extending it to detection with

possibly long action proposals needs enforcing an undesired

large temporal kernel stride. Another work [55] uses Re-

current Neural Network (RNN) to learn a glimpse policy

for predicting the starting and ending points of an action.

Such sequential prediction is often time-consuming for pro-

cessing long videos and it does not support joint training of

the underlying feature extraction CNN. Our method differs

from these approaches in that it explicitly models the ac-

tion structure via structural temporal pyramid pooling. By

using sparse sampling, we further enable efficient end-to-

end training. Note there are also works on spatial-temporal

detection [13, 54, 25, 50, 31] and temporal video segmenta-

tion [15], which are beyond the scope of this paper.

3. Structured Segment Network

The proposed structured segment network framework, as

shown in Figure 2, takes as input a video and a set of tem-

poral action proposals. It outputs a set of predicted activ-

ity instances each associated with a category label and a

temporal range (delimited by a starting point and an end-

ing point). From the input to the output, it takes three key

steps. First, the framework relies on a proposal method to

produce a set of temporal proposals of varying durations,

where each proposal comes with a starting and an ending

time. The proposal methods will be discussed in detail in

Section 5. Our framework considers each proposal as a

composition of three consecutive stages, starting, course,

and ending, which respectively capture how the action start-

s, proceeds, and ends. Thus upon each proposal, structured

temporal pyramid pooling (STPP) are performed by 1) split-

ting the proposal into the three stages; 2) building temporal

pyramidal representation for each stage; 3) building glob-

al representation for the whole proposal by concatenating

stage-level representations. Finally, two classifiers respec-

tively for recognizing the activity category and assessing the

completeness will be applied on the representation obtained

by STPP and their predictions will be combined, resulting

in a subset of complete instances tagged with category label-

s. Other proposals, which are considered as either belong-

ing to background or incomplete, will be filtered out. All

the components outlined above are integrated into a unified

network, which will be trained in an end-to-end way. For

training, we adopt the sparse snippet sampling strategy [51]

to approximate the temporal pyramid on dense samples. By

exploiting the redundancy among video snippets, this strat-

egy can substantially reduce the computational cost, thus

allowing the crucial modeling of long-term temporal struc-

tures.

3.1. Three­Stage Structures

At the input level, a video can be represented as a se-

quence of T snippets, denoted as (St)
T
t=1. Here, one snip-

2916



pet contains several consecutive frames, which, as a whole,

is characterized by a combination of RGB images and an

optical flow stack [39]. Consider a given set of N proposals

P = {pi = [si, ei]}
N
i=1. Each proposal pi is composed of a

starting time si and an ending time ei. The duration of pi is

thus di = ei − si. To allow structural analysis and partic-

ularly to determine whether a proposal captures a complete

instance, we need to put it in a context. Hence, we augment

each proposal pi into p′i = [s′i, e
′
i] with where s′i = si−di/2

and e′i = ei + di/2. In other words, the augmented propos-

al p′i doubles the span of pi by extending beyond the start-

ing and ending points, respectively by di/2. If a proposal

accurately aligns well with a groundtruth instance, the aug-

mented proposal will capture not only the inherent process

of the activity, but also how it starts and ends. Following

the three-stage notion, we divide the augmented proposal p′i
into three consecutive intervals: psi = [s′i, si], p

c
i = [si, ei],

and pei = [ei, e
′
i], which are respectively corresponding to

the starting, course, and ending stages.

3.2. Structured Temporal Pyramid Pooling

As mentioned, the structured segment network frame-

work derives a global representation for each proposal via

temporal pyramid pooling. This design is inspired by the

success of spatial pyramid pooling [22, 14] in object recog-

nition and scene classification. Specifically, given an aug-

mented proposal p′i divided into three stages psi , pci , and pei ,

we first compute the stage-wise feature vectors f
s
i , f ci , and

f
e
i respectively via temporal pyramid pooling, and then con-

catenate them into a global representation.

Specifically, a stage with interval [s, e] would cover a se-

ries of snippets, denoted as {St|s ≤ t ≤ e}. For each snip-

pet, we can obtain a feature vector vt. Note that we can use

any feature extractor here. In this work, we adopt the effec-

tive two-stream feature representation first proposed in [39].

Based on these features, we construct a L-level temporal

pyramid where each level evenly divides the interval into

Bl parts. For the i-th part of the l-th level, whose interval is

[sli, eli], we can derive a pooled feature as

u
(l)
i =

1

|eli − sli + 1|

eli∑

t=sli

vt. (1)

Then the overall representation of this stage can be obtained

by concatenating the pooled features across all parts at all

levels as f ci = (u
(l)
i |l = 1, . . . , L, i = 1, . . . , Bl).

We treat the three stages differently. Generally, we ob-

served that the course stage, which reflects the activity pro-

cess itself, usually contains richer structure e.g. this process

itself may contain sub-stages. Hence, we use a two-level

pyramid, i.e. L = 2, B1 = 1, and B2 = 2, for the course

stage, while using simpler one-level pyramids (which es-

sentially reduce to standard average pooling) for starting

and ending pyramids. We found empirically that this setting

strikes a good balance between expressive power and com-

plexity. Finally, the stage-wise features are combined via

concatenation. Overall, this construction explicitly lever-

ages the structure of an activity instance and its surround-

ing context, and thus we call it structured temporal pyramid

pooling (STPP).

3.3. Activity and Completeness Classifiers

On top of the structured features described above, we in-

troduce two types of classifiers, an activity classifier and

a set of completeness classifiers. Specifically, the activity

classifier A classifies input proposals into K + 1 classes,

i.e. K activity classes (with labels 1, . . . ,K) and an addi-

tional “background” class (with label 0). This classifier

restricts its scope to the course stage, making predictions

based on the corresponding feature f
c
i . The completeness

classifiers {Ck}
K
k=1 are a set of binary classifiers, each for

one activity class. Particularly, Ck predicts whether a pro-

posal captures a complete activity instance of class k, based

on the global representation {fsi , f
c
i , f

e
i } induced by STPP.

In this way, the completeness is determined not only on the

proposal itself but also on its surrounding context.

Both types of classifiers are implemented as linear clas-

sifiers on top of high-level features. Given a proposal pi,
the activity classifier will produce a vector of normalized

responses via a softmax layer. From a probabilistic view,

it can be considered as a conditional distribution P (ci|pi),
where ci is the class label. For each activity class k, the

corresponding completeness classifier Ck will yield a prob-

ability value, which can be understood as the conditional

probability P (bi|ci, pi), where bi indicates whether pi is

complete. Both outputs together form a joint distribution.

When ci ≥ 1, P (ci, bi|pi) = P (ci|pi) ·P (bi|ci, pi). Hence,

we can define a unified classification loss jointly on both

types of classifiers. With a proposal pi and its label ci:

Lcls(ci, bi; pi) = − logP (ci|pi)− 1(ci≥1) logP (bi|ci, pi).
(2)

Here, the completeness term P (bi|ci, pi) is only used when

ci ≥ 1, i.e. the proposal pi is not considered as part of the

background. Note that these classifiers together with STPP

are integrated into a single network that is trained in an end-

to-end way.

During training, we collect three types of proposal sam-

ples: (1) positive proposals, i.e. those overlap with the

closest groundtruth instances with at least 0.7 IoU; (2)

background proposals, i.e. those that do not overlap with

any groundtruth instances; and (3) incomplete proposals,

i.e. those that satisfy the following criteria: 80% of its own

span is contained in a groundtruth instance, while its IoU

with that instance is below 0.3 (in other words, it just cov-

ers a small part of the instance). For these proposal type-

s, we respectively have (ci > 0, bi = 1), ci = 0, and

2917



(ci > 0, bi = 0). Each mini-batch is ensured to contain

all three types of proposals.

3.4. Location Regression and Multi­Task Loss

With the structured information encoded in the global

features, we can not only make categorical predictions, but

also refine the proposal’s temporal interval itself by location

regression. We devise a set of location regressors {Rk}
K
k=1,

each for an activity class. We follow the design in RCN-

N [12], but adapting it for 1D temporal regions. Particularly,

for a positive proposal pi, we regress the relative changes of

both the interval center µi and the span φi (in log-scale), us-

ing the closest groundtruth instance as the target. With both

the classifiers and location regressors, we define a multi-

task loss over an training sample pi, as:

Lcls(ci, bi; pi) + λ · 1(ci≥1 & bi=1)Lreg(µi, φi; pi). (3)

Here, Lreg uses the smooth L1 loss function [11].

4. Efficient Training and Inference with SSN

The huge amount of frames poses a serious challenge

in computational cost to video analysis. Our structured

segment network also faces this challenge. This section

presents two techniques which we use to reduce the cost

and enable end-to-end training.

Training with sparse sampling. The structured temporal

pyramid, in its original form, rely on densely sampled snip-

pets. This would lead to excessive computational cost and

memory demand in end-to-end training over long proposals

– in practice, proposals that span over hundreds of frames

are not uncommon. However, dense sampling is generally

unnecessary in our framework. Particularly, the pooling op-

eration is essentially to collect feature statistics over a cer-

tain region. Such statistics can be well approximated via a

subset of snippets, due to the high redundancy among them.

Motivated by this, we devise a sparse snippet sampling

scheme. Specifically, given a augmented proposal p′i, we

evenly divide it into L = 9 segments, randomly sampling

only one snippet from each segment. Structured temporal

pyramid pooling is performed for each pooling region on

its corresponding segments. This scheme is inspired by the

segmental architecture in [51], but differs in that it operates

within STPP instead of a global average pooling. In this

way, we fix the number of features needed to be comput-

ed regardless of how long the proposal is, thus effectively

reducing the computational cost, especially for modeling

long-term structures. More importantly, this enables end-

to-end training of the entire framework over a large number

of long proposals.

Inference with reordered computation. In testing, we

sample video snippets with a fixed interval of 6 frames, and

construct the temporal pyramid thereon. The original for-

mulation of temporal pyramid first computes pooled fea-

tures and then applies the classifiers and regressors on top

which is not efficient. Actually, for each video, hundreds of

proposals will be generated, and these proposals can signif-

icantly overlap with each other – therefore, a considerable

portion of the snippets and the features derived thereon are

shared among proposals.

To exploit this redundancy in the computation, we adop-

t the idea introduced in position sensitive pooling [23] to

improve testing efficiency. Note that our classifiers and re-

gressors are both linear. So the key step in classification or

regression is to multiply a weight matrix W with the glob-

al feature vector f . Recall that f itself is a concatenation of

multiple features, each pooled over a certain interval. Hence

the computation can be written as Wf =
∑

j Wjfj , where

j indexes different regions along the pyramid. Here, fj is

obtained by average pooling over all snippet-wise features

within the region rj . Thus, we have

Wjfj = Wj · Et∼rj [vt] = Et∼rj [Wjvt] . (4)

Et∼rj denotes the average pooling over rj , which is a lin-

ear operation and therefore can be exchanged with the ma-

trix multiplication. Eq (4) suggests that the linear respons-

es w.r.t. the classifiers/regressors can be computed before

pooling. In this way, the heavy matrix multiplication can be

done in the CNN for each video over all snippets, and for

each proposal, we only have to pool over the network out-

puts. This technique can reduce the processing time after

extracting network outputs from around 10 seconds to less

than 0.5 second per video on average.

5. Temporal Region Proposals

In general, SSN accepts arbitrary proposals, e.g. sliding

windows [37, 56]. Yet, an effective proposal method can

produce more accurate proposals, and thus allowing a small

number of proposals to reach a certain level of performance.

In this work, we devise an effective proposal method called

temporal actionness grouping (TAG).

This method uses an actionness classifier to evaluate the

binary actionness probabilities for individual snippets. The

use of binary actionness for proposals is first introduced in

spatial action detection by [50]. Here we utilize it for tem-

poral action detection.

Our basic idea is to find those continuous temporal re-

gions with mostly high actionness snippets to serve as pro-

posals. To this end, we repurpose a classic watershed al-

gorithm [36], applying it to the 1D signal formed by a se-

quence of complemented actionness values, as shown in

Figure 3. Imagine the signal as 1D terrain with heights and

basins. This algorithm floods water on this terrain with dif-

ferent “water level” (γ), resulting in a set of “basins” cov-

ered by water, denoted by G(γ). Intuitively, each “basin”

2918



Figure 3. Visualization of the temporal actionness grouping pro-

cess for proposal generation. Top: Actionness probabilities as a

1D signal sequence. Middle: The complement signal. We flood

it with different levels γ. Bottom: Regions obtained by different

flooding levels. By merging the regions according to the grouping

criterion, we get the final set of proposals (in orange color).

corresponds to a temporal region with high actionness. The

ridges above water then form the blank areas between basin-

s, as illustrated in Fig. 3.

Given a set of basins G(γ), we devise a grouping scheme

similar to [33], which tries to connect small basins into pro-

posal regions. The scheme works as follows: it begins with

a seed basin, and consecutively absorbs the basins that fol-

low, until the fraction of the basin durations over the total

duration (i.e. from the beginning of the first basin to the

ending of the last) drops below a certain threshold τ . The

absorbed basins and the blank spaces between them are then

grouped to form a single proposal. We treat each basin as

seed and perform the grouping procedure to obtain a set of

proposals denoted by G′(τ, γ). Note that we do not choose

a specific combination of τ and γ. Instead we uniformly

sample τ and γ from ∈ (0, 1) with an even step of 0.05. The

combination of these two thresholds leads to multiple sets of

regions. We then take the union of them. Finally, we apply

non-maximal suppression to the union with IoU threshold

0.95, to filter out highly overlapped proposals. The retained

proposals will be fed to the SSN framework.

6. Experimental Results

We conducted experiments to test the proposed frame-

work on two large-scale action detection benchmark

datasets: ActivityNet [7] and THUMOS14 [18]. In this sec-

tion we first introduce these datasets and other experimental

settings and then investigate the impact of different compo-

nents via a set of ablation studies. Finally we compare the

performance of SSN with other state-of-the-art approaches.

6.1. Experimental Settings

Datasets. ActivityNet [7] has two versions, v1.2 and

v1.3. The former contains 9682 videos in 100 classes, while

the latter, which is a superset of v1.2 and was used in the

ActivityNet Challenge 2016, contains 19994 videos in 200
classes. In each version, the dataset is divided into three

disjoint subsets, training, validation, and testing, by 2:1:1.

THUMOS14 [18] has 1010 videos for validation and 1574
videos for testing. This dataset does not provide the train-

ing set by itself. Instead, the UCF101 [42], a trimmed video

dataset is appointed as the official training set. Following

the standard practice, we train out models on the validation

set and evaluate them on the testing set. On these two sets,

220 and 212 videos have temporal annotations in 20 classes,

respectively. 2 falsely annotated videos (“270”,“1496”) in

the test set are excluded in evaluation. In our experiments,

we compare with our method with the states of the art on

both THUMOS14 and ActivityNet v1.3, and perform abla-

tion studies on ActivityNet v1.2.

Implementation Details. We train the structured segmen-

t network in an end-to-end manner, with raw video frames

and action proposals as the input. Two-stream CNNs [39]

are used for feature extraction. We also use the spatial and

temporal streams to harness both the appearance and mo-

tion features. The binary actionness classifiers underlying

the TAG proposals are trained with [51] on the training sub-

set of each dataset. We use SGD to learn CNN parameters

in our framework, with batch size 128 and momentum 0.9.

We initialize the CNNs with pre-trained models from Im-

ageNet [3]. The initial learning rates are set to 0.001 for

RGB networks and 0.005 for optical flow networks. In each

minibatch, we keep the ratio of three types of proposals,

namely positive, background, and incomplete, to be 1:1:6.

For the completeness classifiers, only the samples with loss

values ranked in the first 1/6 of a minibatch are used for

calculating gradients, which resembles online hard negative

mining [38]. On both versions of ActivityNet, the RGB and

optical flow branches of the two-stream CNN are respec-

tively trained for 9.5K and 20K iterations, with learning

rates scaled down by 0.1 after every 4K and 8K iterations,

respectively. On THUMOS14, these two branches are re-

spectively trained for 1K and 6K iterations, with learning

rates scaled down by 0.1 per 400 and 2500 iterations.

Evaluation Metrics. As both datasets originate from con-

tests, each dataset has its own convention of reporting per-

formance metrics. We follow their conventions, reporting

mean average precision (mAP) at different IoU threshold-

s. On both versions of ActivityNet, the IoU threshold-

s are {0.5, 0.75, 0.95}. The average of mAP values with

IoU thresholds [0.5:0.05:0.95] is used to compare the per-

formance between different methods. On THUMOS14, the

IoU thresholds are {0.1, 0.2, 0.3, 0.4, 0.5}. The mAP at 0.5

2919










