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Abstract

Robust and efficient image alignment remains a chal-

lenging task, due to the massiveness of images, great illu-

mination variations between images, partial occlusion and

corruption. To address these challenges, we propose an on-

line image alignment method via subspace learning from

image gradient orientations (IGO). The proposed method

integrates the subspace learning, transformed IGO recon-

struction and image alignment into a unified online frame-

work, which is robust for aligning images with severe in-

tensity distortions. Our method is motivated by princi-

pal component analysis (PCA) from gradient orientations

provides more reliable low-dimensional subspace than that

from pixel intensities. Instead of processing in the inten-

sity domain like conventional methods, we seek alignment

in the IGO domain such that the aligned IGO of the newly

arrived image can be decomposed as the sum of a sparse er-

ror and a linear composition of the IGO-PCA basis learned

from previously well-aligned ones. The optimization prob-

lem is accomplished by an iterative linearization that min-

imizes the ℓ1-norm of the sparse error. Furthermore, the

IGO-PCA basis is adaptively updated based on incremen-

tal thin singular value decomposition (SVD) which takes

the shift of IGO mean into consideration. The efficacy of

the proposed method is validated on extensive challenging

datasets through image alignment and face recognition. Ex-

perimental results demonstrate that our algorithm provides

more illumination- and occlusion-robust image alignment

than state-of-the-art methods do.

1. Introduction

Image alignment is one of the most widely used im-

age processing techniques in computer vision [24]. The

technique seeks the optimal image transformations to es-

tablish spatial correspondences between different image ac-
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quisitions. Applications in video stabilization [19], medical

image registration [23], image recognition [27] and visual

tracking [31] all leverage alignment to estimate image cor-

respondences. In recent years, with the increasing popu-

larity of the image and video sharing in social networks,

such as Facebook and Instagram, we are seeing a dramatic

increasing amount of visual data available online. Such

enormous data poses great challenges for existing batch im-

age alignment algorithms, due to great illumination varia-

tions between images, partial occlusion, gross pixel corrup-

tion, and the dynamically increasing images [2]. Therefore,

the robust alignment with both memory and time efficiency

deems to be a crucial image processing issue to be resolved

for handling large and increasing amount of images.

The problem of batch image alignment has been exten-

sively exploited in the literature [5, 15]. Learned-Miller

et al. [11] minimized a sum of the pixel-stack entropies

to align images, and Huang et al. [8] further proposed a

clustered scale-invariant feature transform (SIFT) based en-

tropy to address the illumination variations involved in dif-

ferent images. Peng et al. [18] proposed a robust align-

ment by sparse and low-rank decomposition (RASL) for a

batch of linearly correlated images. In RASL, the optimal

transformations are established by exploiting the low-rank

property of aligned images. RASL has been widely used

for simultaneously aligning multiple images. However, to

align a newly arrived image to the previously aligned ones,

RASL has to adjust all the previous transformations to seek

the matrix rank minimization. In addition, RASL models

corruption and occlusion as sparse intensity errors. Nev-

ertheless, many real-world corrupted images contain severe

intensity distortions which are dense thus difficult to be sub-

tracted by RASL [13]. In contrast, Li et al. [12] arranged

the input images into a 3D tensor, and claimed that severe

intensity distortions and partial occlusions can be separated

out in the gradient and frequency domain. The optimally

aligned image tensor is achieved by simultaneously sparsi-

fying a frequency tensor and a gradient error tensor. How-

ever, such offline alignment methods are very memory- and
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time-consuming, which limits their capability of aligning

large and increasing amount of images.

To better address the dynamically increasing images,

the online image alignment has become an active research

area [17, 21]. Motivated by [18], Wu et al. [30] proposed an

online robust image alignment (ORIA) method. ORIA de-

composes the low-rank component in RASL into the prod-

uct of a basis matrix and a weight coefficient matrix, where

the basis matrix consists of previously well-aligned images.

ORIA employs a fixed rank model, and assumes that the

aligned image without corruption is a linear composition

of well-aligned basis. Although quite efficient on large

datasets, the heuristic basis updating scheme using thresh-

olding and replacement reduces the robustness of image

alignment. He et al. [7] proposed t-GRASTA (transformed

Grassmannian Robust Adaptive Subspace Tracking Algo-

rithm) for online image alignment, which updates the basis

matrix with a gradient geodesic step on the Grassmannian.

Though [7] learns the subspace in Grassmannian, the num-

ber of the subspace dimension is set manually and fixed

over the whole procedure. Song et al. [22] integrated the

geometric transformation into the online robust principal

component analysis (RPCA) approach for image alignment.

In [22], the object function is directly linearized by per-

forming transformations on the recovered noiseless images.

The basis matrix is updated using stochastic gradient de-

scent according to each recovered image. However, as well

as [18], [7, 22, 30] all assume large errors such as occlusion

and corruption among the images are sparse and separable

with respect to intensity, which may fail in aligning images

with severe intensity distortions.

To address these challenges mentioned above, we pro-

pose an online image alignment method via subspace learn-

ing from image gradient orientations (IGO). The proposed

method is motivated by PCA from gradient orientations

provides more reliable low-dimensional subspace than that

from pixel intensities (see Figs. 1 and 2 for more details).

The principal subspace of corrupted pixel intensities suf-

fers from artifacts (Figs. 2 (a)-(e)), resulting in the poor

quality of reconstruction (Figs. 1 (e)-(f)). In contrast, the

principal subspace of corrupted gradient orientations ap-

pears to be artifact-free (Figs. 2 (f)-(j)), which offers the

reconstruction mainly corresponding to the “face” compo-

nent (Figs. 1 (g)-(h)). Therefore, instead of processing in

the intensity domain like conventional methods, we seek

alignment in the IGO domain such that the aligned IGO of

the newly arrived image can be decomposed as the sum of

a sparse error and a linear composition of IGO-PCA basis

learned from previously well-aligned ones. We solve the

alignment problem efficiently by an iterative linearization

that minimizes the ℓ1-norm of the sparse error. Further-

more, the IGO-PCA basis is adaptively updated based on

thin singular value decomposition (SVD) which takes the

Figure 1: PCA-based reconstruction of pixel intensities and

gradient orientations, respectively. (a)-(b) Artificially oc-

cluded images from the Yale B database [6]. (c)-(d) Cor-

responding occluded gradient orientations. (e)-(f) Recon-

struction of (a)-(b) with the top five principal components

of pixel intensities. (g)-(h) Reconstruction of (c)-(d) with

the top five principal components of gradient orientations.

Figure 2: The top five principal components of (a)-(e) pixel

intensities and (f)-(j) gradient orientations.

shift of IGO mean into consideration. The benefit of our

method is twofold: First, the subspace representation makes

our online alignment much more memory-efficient, because

we only need to maintain the low-dimensional subspace

throughout the whole aligning procedure. Second, the im-

age decomposition and alignment in the IGO domain ben-

efits our method handling the large illumination/occlusion

variations that often occur in real-world images, as we show

in § 3. We validate the efficacy of the proposed method on

extensive challenging datasets through image alignment and

face recognition. Experimental results demonstrate that our

algorithm provides more illumination- and occlusion-robust

image alignment than state-of-the-art methods do.

2. Online robust image alignment

In this section, we first present our robust image align-

ment algorithm with a known basis, then introduce an ef-

ficient method for incrementally updating the basis as new

observations arrive. Furthermore, we discuss the memory

usage of our algorithm and provide implementation details.
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2.1. Robust image alignment in IGO domain

Problem formulation. Suppose we are given n previ-

ously aligned grayscale images I1, I2, ..., In ∈ R
w×h of

certain subject, where w and h are width and height of the

image. When a new image I arrives, our task is to seek an

optimal transformation τ : R2 → R
2 that warps this image

with the previously aligned images.

Conventional methods treat this task as seeking align-

ment in the image intensity domain such that the newly

aligned image can be decomposed as the sum of a sparse er-

ror, and a linear composition of either a subset of previously

aligned images [30] or a low-rank subspace [7]. The align-

ment performances of [7, 30] heavily depend on the qual-

ity of basis images or the subspace estimated from them.

Moreover, both [7, 30] assume large errors such as occlu-

sion and corruption among the images are sparse. However,

in many real-world applications, the quality of input im-

ages are corrupted by spatially varying intensity distortions,

which leads the subspace estimated from the pixel intensi-

ties arbitrarily biased (see Figs. 2 (a)-(e)). In contrast, PCA

from image gradient orientations (IGO) [25] is able to pro-

vide more reliable low-dimensional subspace than that from

pixel intensities (see Figs. 2). The IGO-PCA is statistically

verified and further applied directly for face reconstruction

in [25].

Inspired by [25], instead of processing in the intensity

domain, we seek alignment in the IGO domain such that the

aligned IGO of the newly arrived image can be decomposed

as the sum of a sparse error and a linear composition of

IGO-PCA basis learned from previously well-aligned ones.

We propose a robust incremental alignment method and for-

mulate it into a constrained ℓ1 minimization problem as

min
w,e,τ

||e||1 s.t. vec(Φ ◦ τ) = Uw + e, (1)

where Φ ∈ [0, 2π)w×h is the IGO of the input image I,

U ∈ R
d×k(d = w×h) is a low-rank orthonormal basis esti-

mated from previously well-aligned IGO, w ∈ R
k is the re-

construction weight, and e ∈ R
d measures the dissimilarity

between the warped Φ and the reconstructed gradient orien-

tation with the subspace U. We denote vec : Rw×h → R
d

as the vectorization operator that stacks a matrix into a vec-

tor.

To compute Φ, we first estimate the image gradients with

Gw = hx ∗ I and Gh = hy ∗ I. Here hx and hy are filters

used to approximate the differentiation operator along the

image horizontal and vertical direction, respectively 1. Then

we compute the gradient orientation with

Φ = arctan(Gw/Gh). (2)

1Possible hx and hy can choose Sobel, Prewitt gradient operator, cen-

tral difference estimator or discrete approximation to the first derivative of

the Gaussian.

ADMM solver for linearized convex optimization. The

optimization problem in (1) is non-convex and difficult to

solve directly due to the nonlinearity of the transformation

τ . To tackle this problem, we linearize the constraint by us-

ing the local first order Taylor approximation for each IGO

as Φ◦(τ+∆τ) ≈ Φ◦τ+J∆τ , where ∆τ ∈ R
p is defined

by p parameters and J = ∂
∂ζ
(vec(Φ◦ζ))|ζ=τ ∈ R

d×p is the

Jacobian of Φ with respect to the transformation τ . Thus (1)

can be relaxed into a convex optimization as

min
w,e,∆τ

||e||1

s.t. vec(Φ ◦ τ) + J∆τ = Uw + e.
(3)

In this way, the resulting convex programming in (3) can

be efficiently solved by augmented Lagrangian multiplier

(ALM) method [4]. Specifically, we formulate the follow-

ing augmented Lagrangian function:

L(w, e, ∆τ,y, µ) =||e||1 + yT f(w, e, ∆τ)

+
µ

2
||f(w, e, ∆τ)||22,

(4)

where f(w, e, ∆τ) = vec(Φ◦τ)+J∆τ−Uw−e; y ∈ R
d

is the Lagrangian multiplier and µ is a positive hyperparam-

eter.

Given the current estimated transformation τ , the Jaco-

bian matrix J and the subspace U, each of the subproblem

in (4) can be decoupled by the alternating direction method

of multipliers (ADMM) [3] and calculated as follows:

et+1 = S 1

µ
(vec(Φ ◦ τ) + J∆τ t −Uwt +

yt

µt
),

wt+1 = UT (vec(Φ ◦ τ) + J∆τ t − et+1 +
yt

µt
),

∆τ t+1 = J†(Uwt+1 + et+1 − vec(Φ ◦ τ)−
yt

µt
),

yt+1 = yt + µtf(wt+1, et+1, ∆τ t+1),

µt+1 = ρµt,

(5)

where J† denotes the Moore-Penrose pseudoinverse of J;

S 1

µ
(x) = {[x− 1

µ
]+ − [−x− 1

µ
]+} is the soft thresholding

operator [16], where [·]+ = max(·, 0); ρ > 1 is a penalty

constant which monotonically increases {µt} to speed up

the convergence of the whole algorithm; and superscript t
denotes the iteration. We summarize the ADMM solver for

(3) in Algorithm 1.

2.2. Online subspace update

Before describing our online subspace update strategy,

we briefly demonstrate why U is the principal component

of the low-rank part of aligned IGO. Now suppose we are

given n well-aligned IGO images and their corresponding

{wi, ei, ∆τi}
n
i=1, the optimal subspace U that satisfies the
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Algorithm 1: ADMM Solver for the local convex

problem in (3)

Input : An orthogonal basis U ∈ R
d×k, a warped

and vectorized gradient orientation

x = vec(Φ ◦ τ) ∈ R
d, the corresponding

Jacobian matrix J ∈ R
d×p, the penalty

constant ρ, the tolerance ǫ and maximal

iteration maxIter.

Output: The weight vector w ∈ R
k, the sparse

outliers e ∈ R
d, locally linearized parameter

∆τ ∈ R
p and dual vector y ∈ R

d

1 Initialize: w0 = 0,∆τ0 = 0,y = 0,µ = 1
while t ≤ maxIter do

2 Update sparse part e:

et+1 = S 1

µ
(x+ J∆τ t −Uwt + yt

µt )

3 Update weight w:

wt+1 = UT (x+ J∆τ t − et+1 + yt

µt )

4 Update ∆τ :

∆τ t+1 = J†(Uwt+1 + et+1 − x− yt

µt )

5 Update y:yt+1 = yt + µtf(wt+1, et+1, ∆τ t+1)
6 Update µ:µt+1 = ρµt

7 if ||f(wt+1, et+1, ∆τ t+1)||2 ≤ ǫ then

8 Converge and break

9 end

10 end

11 return w = wt+1,e = et+1,∆τ = ∆τ t+1 and

y = yt+1

constraint of (3) can be formulated as a ℓ2 norm loss mini-

mization problem

min
U

n
∑

i=1

||vec(Φi ◦ τi) + Ji∆τi −Uwi − ei||2. (6)

Let Ri = vec(Φi◦τi)+Ji∆τi−ei denote the low-rank part

of a well-aligned IGO (here Ri is short for R(:,i),i ∈ [1, n]).
Thus the problem of identifying the best U is equivalent

to figure out the principle components of R ∈ R
d×n [9],

which can be efficiently solved by SVD. Note that here we

remove the sparse errors before performing PCA, and hence

leads to more reliable estimation of basis U.

Once m(m ≥ 1) new images are aligned with the current

basis U, we can obtain the corresponding R(:,n+j), (j ∈
[1,m]). Then we incrementally update U by using R(:,n+j)

and some previously stored basis-related variables. Many

algorithms have been developed to efficiently update the

basis vectors as new data arrive [7, 22]. Most of them as-

sume the sample mean is zero or fixed when updating the

eigenbasis. However, in most of real-world applications,

the sample mean may change over time as new samples

come. To tackle this problem, we take the sample mean of

the new data into consideration for subspace update. Differ-

ent from [20], our subspace update also works as only one

sample arrives. To consider the shift of sample mean, we

have the following Lemma:

Lemma 1. Let A = R(:,1:n), B = R(:,n+1:n+m) be the

low-rank estimated data matrices and C = [A B] be a

concatenated matrix of all estimated data. Let scatter ma-

trix be the outer product of the centered data matrix. The

means and scatter matrices of A,B,C are R̄A, R̄B , R̄C

and SA,SB ,SC , respectively. It can be shown that

R̄C =
n

n+m
R̄A +

m

n+m
R̄B ,

SC = SA +

n+m
∑

i=n+1

(Ri − R̄C)(Ri − R̄C)
T

+
nm2

(n+m)2
(R̄A − R̄B)(R̄A − R̄B)

T .

(7)

From Lemma 1, we obtain that the SVD of (C −
R̄C) is equal to the SVD of horizontal concatenation of

(A− R̄A11×n), (B− R̄C11×m) and one additional vector√
nm

n+m
(R̄A − R̄B), where 11×n is a row vector with all ele-

ments equal to 1. Suppose A = UΣVT , the task is to com-

pute the SVD of the concatenation of [A B̂] = U∗Σ∗V∗T ,

where B̂ = [(Rn+1−R̄C)| · · · |(Rn+m−R̄C)|
√
nm

n+m
(R̄A−

R̄B)]. Let B̃ denote the Gram-Schmidt orthonormalization

of B̂ with respect to U, namely B̃ = orth(B̂ −UUT B̂),
we can obtain the update of subspace with the following

Lemma:

Lemma 2. Let Q =

[

Σ UT B̂

0 B̃T B̂

]

, ŨΣ̃ṼT denotes the

thin SVD of Q, the update of basis matrix and eigenvalues

can be calculated with U∗ = [U B̃]Ũ and Σ∗ = Σ̃.

The proof of above lemmas appear in the supplementary.

For completeness, we summarize our method for a newly

arrived image in Algorithm 2.

2.3. Analysis of memory usage

We compare the memory usage between the proposed

method and RASL with a sequence of d-pixel images.

When the Nth image comes, RASL needs to store all the

unaligned images D, aligned images D ◦ τ , the low-rank

component A, the sparse error E and the Lagrangian multi-

plier Y, each of which requires the memory of size dN ;

when calculating A, we assume RASL uses a thin SVD

with k singular values, which suppose to store dk+k2+Nk
elements; for N Jacobian matrix Ji, ∆τi and τi, each needs

dp, p and q elements, respectively. Thus RASL requires

memory of size (5 + p)dN + dk + (k + p+ q)N + k2.

To be fairly compared, we assume the proposed method

uses k basis vectors in the SVD procedure. If we process
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Algorithm 2: Online Robust Image Alignment from

IGO

Input : An initial orthogonal basis U ∈ R
d×k and

the corresponding eigenvalue matrix Σ, a

new unaligned image I and the corresponding

initial transformation τ , filters for difference

operator hx, hy , and the maximal iteration K
Output: The updated subspace U∗ and the

transformation τ∗ for the well-aligned image.

1 Calculate the horizontal and vertical image gradient

Gw = hx ∗ I and Gh = hy ∗ I, respectively

2 Calculate the gradient orientation for the input image:

Φ = arctan(Gw/Gh)
while not converged and iter ≤ K do

3 Calculate the Jacobian matrix of

Φ:J = ∂(Φ◦ζ)
∂ζ
|ζ=τ

4 Update the warped, normalized and vectorized

image with vec(Φ ◦ τ) = vec(Φ◦τ)
||vec(Φ◦τ)||2

5 Estimate the weight w, the locally linearized

transformation parameter ∆τ , sparse outliers e

and dual parameter y with (5) via Algorithm 1

6 Update the eigenbasis U∗, eigenvalues Σ∗ and

mean R̄C according to § 2.2

7 Update the transformation parameter:

τ∗ ← τ +∆τ
8 end

9 return U∗, τ∗

one image per time, when the Nth image arrives, the pro-

posed method needs to store (I,Gw,Gh,Φ) for IGO com-

putation, using d elements for each parameter; for image

alignment procedure in Algorithm 1, our method stores pa-

rameters (e, y, J, Φ ◦ τ , τ , ∆τ , w and U), which requires

memory of (3 + p + k)d + p + q + k elements. Finally

for the subspace update, our method requires to store an

additional parameter group (R̄A, R̄B , R̄C , B̃, B̂, Q, U∗

and Σ∗), which also requires 7d+ (k + 2)2 + dk + k2 ele-

ments. Therefore, the total memory required for our method

is (14 + p+ 2k)d+ 2k2 + 5k + p+ q + 4.

It shows that the memory required by RASL scales with

N , while ours keeps constant. For 100 misaligned images,

each with 100×100 pixels, assuming k = 5 and transforma-

tion G = Aff(2), our method only uses 3% of the memory

of RASL while processing the last image. The ratio is even

smaller for problems of larger size.

2.4. Implementation detail

In Algorithm 1, we set ρ = 2, ǫ = 10−7 and maxIter =
100, respectively. In Algorithm 2, the affine transformation

G = Aff(2) is used. To compute the IGO, we use Sobel

gradient operator. To get a trained orthonormal basis U for

input, we first perform RASL on a small batch of images,

say ten, to obtain the aligned images. Then we estimate the

PCA of the aligned images in IGO domain via thin SVD

to obtain U and Σ as [25]. The number of principal com-

ponents k is automatically determined by an energy ratio

(95% in our experiments) of the sum of singular values in

Σ. The whole algorithm terminates if the number of itera-

tions reach a maximum (K = 100) or once the difference

of cost between two consecutive iterations is smaller than

10−7. In step 6, we update the basis when the input IGO is

well aligned to the current basis, i.e., with the small recon-

struction errors ||e||2 ≤ δ for certain threshold δ = 1.

3. Experiments

In this section, we validate our method on extensive

challenging datasets for many real-world applications. To

demonstrate the efficacy and robustness of our method, we

further compare the performance of three state-of-the-art

methods: SIFT feature-based alignment [14], RASL [18]

and t-GRASTA [7].

3.1. Image alignment

We first demonstrate the utility of our method for incre-

mentally aligning video sequence gore, which contains 140
frames of Al Gore’s facial images obtained by a face de-

tector. Fig. 3 shows the alignment results of 20 uniformly

sampled frames from the gore dataset. It can be observed

that our method can generate quite stable alignment on se-

quential images.

We also test our algorithm on more challenging and un-

constrained images taken from the Labeled Faces in the

Wild (LFW) [10] dataset, which exhibit great variations in

pose and changes in illumination and occlusion. We choose

19 subjects from LFW dataset and each has 35 images. The

images are initially cropped to an 80 × 60 facial frame by

applying the common Viola-Jones face detector [26]. We

verify the alignment performance by visualizing the aver-

age face before and after alignment. We further compare

the standard derivation (STD) of selected landmarks’ co-

ordinates after alignment. A perfect STD would return a

value of zero. For each subject, we annotate the tip of the

nose, left eye and right eye from original unaligned images

as landmarks.

Fig. 4 visualizes the alignment results by our method,

as well as the alignments by SIFT, RASL and t-GRASTA

for comparisons. It can be observed that the average faces

after alignment by our method is significantly sharper than

those before alignment. Furthermore, our method achieves

much clearer alignment performance than t-GRASTA and

SIFT do, especially in the regions of eyes and mouths (see

red and green boxes in Fig. 4). Fig. 5 shows the average

X/Y-direction STD results for each subject, respectively. It

shows the STD of our method is constantly smaller than
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Figure 3: Alignment results of video sequence gore. First row: 20 uniformly sampled frames from the 140-frame gore.

Second row: corresponding aligned frames by our method.

Figure 4: Alignment results of images from LFW. The average faces of different subjects (a) before alignment, (b) after

alignment by our method, (c) by SIFT , (d) by RASL and (e) by t-GRASTA. Our average images are much clearer than SIFT’s

and t-GRASTA’s, especially those marked by red and green boxes. (We encourage you to zoom in for better visualization.)

those of t-GRASTA and SIFT, which further demonstrates

the superior performance of our method over t-GRASTA

and SIFT. These results indicate that the subspace learning

from image gradient orientations and basis update strategy

embedded in our method contribute to the improvement of

image alignment. Meanwhile, our method has nearly the

same alignment performance as RASL, see Figs. 4 and 5.

However, RASL has a high computational cost for sequen-

tial data. On a workstation with Intel Xeon E5-1620 3.70
GHz CPU and 16.0 GB RAM, and with a Matlab implemen-

tation, our method averagely spends 0.7 seconds to align a

newly arrived image, while RASL averagely needs 673.6
seconds to incrementally align all the images for each sub-

ject (images are input into RASL one by one), or 19.2
seconds per image. Moreover, our method is much more

memory-efficient than RASL, as discussed in § 2.3.

3.2. Occlusion and illumination variation

To illustrate the robustness of our method, we perform

extensive experiments on challenging datasets with occlu-

sion and illumination variation. We first verify our method

on dataset Dummy in [18]. We select 30 of 100 images

from Dummy, which appear illumination variation and all

have artificially added occlusions, to conduct alignment.

Fig. 6 visualizes 6 original unaligned images, as well as the

aligned images by different methods. Our method together

with RASL can successfully align the occluded images,

while t-GRASTA or SIFT fails to provide robust alignment.

We further add artificial shadows on images from LFW

dataset and test our method on these images. All added

shadows are generated randomly and are of various shapes

and intensities. Fig. 7 shows some alignment results of a

specific subject - Gloria Macapagal Arroyo. The unaligned

images are shown in Fig. 7 (a), and the images marked with

red boxes are artificially occluded with shadows. The align-

ment results by our method, as well as the alignments by

SIFT, RASL and t-GRASTA, are shown in Figs. 7 (b)-(e),

respectively. It is obviously that our method achieves over-

all best alignment, especially for those images with shad-

ows, whereas neither SIFT, RASL nor t-GRASTA can well

handle images with shadows. SIFT is unstable across large

occlusion and illumination variations, thus not robust to

handle images with various intensity changes. RASL and

t-GRASTA assume that the large errors caused by shadows

or occlusions among the images are sparse, hence they can

then conduct alignment by exploiting the low-rank property
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Figure 5: The STD (in pixels) of selected landmarks after

alignment. (a) The X-direction and (b) Y-direction STDs.

of aligned images. However, many real-world images con-

tain severe intensity distortions, which are not sparse and

difficult to be separated. Therefore, RASL and t-GRASTA

may fail to handle an image with severe intensity distortion

or a batch of images with various shadows or partial occlu-

sions. In contrast, unlike conventional methods [7, 18], we

exploit the low-rank property of aligned images in IGO do-

main, where the aligned IGO of the input image can be truly

decomposed as the sum of a sparse error and a linear com-

position of IGO-PCA basis. In such a way, the intensity dis-

tortions presented in the IGO domain are well separated by

reconstructing the aligned IGO using reliable IGO-PCA ba-

sis. Hence, our method is more practical than [7, 18] in han-

dling real-world applications. It is worth noting that the last

input image in Fig. 7 (a) contains natural shadow in face,

all comparative methods fail in aligning it well whereas our

method aligns it with other images robustly.

3.3. Application to anatomical atlas construction

Image alignment is a fundamental task in medical image

processing. Clinically, one of its most important applica-

tions is to construct population-based atlas to study anatom-

ical variability [23]. However, robust medical image align-

ment for atlas construction remains a challenging task, due

to the large and incremental amount of images and their di-

verse intensity distributions caused by different imaging set-

ting. To demonstrate the feasibility of handling complicated

medical images, we test our method on a dataset containing

28 magnetic resonance (MR) prostate images [28]. Fig. 8

visualizes the alignment results by different methods. It can

be observed that the average image of our method has much

clearer prostate boundary than other methods do, especially

in the blue boxes shown in Fig. 8 (c). This result demon-

Figure 6: Alignment results of Dummy faces. (a) Original

unaligned images. Aligned images (b) by our method, (c)

by SIFT, (d) by RASL and (e) by t-GRASTA.

strates that our method can provide satisfactory alignment

on complicated medical images despite their intensity vari-

ations, which is helpful for the prostate atlas construction.

3.4. Application to face recognition

One of the most significant issues in face recognition is

how to address pose variations. To tackle this problem, one

common way is to align images to a canonical pose prior to

recognition step. In this experiment, we employ the sparse

representation-based classification (SRC) method [29] for

face recognition. Although SRC has achieved impressive

recognition performance on public datasets, it does not deal

with misalignment between training and testing images,

thus is sensitive to the pixel-level misalignment between

images. Here we use SRC to evaluate the efficacy of our

alignment method and further demonstrate our method is

beneficial to practical face recognition applications.

We again use the challenging LFW dataset for this face

recognition experiment. For each subject, we randomly se-

lect 20 images for training and the other 15 for testing. Be-

cause the training images themselves are misaligned, we

first employ our method to align them to a canonical frame.

With the aligned training images for each subject, a test im-

age is then aligned to training set for recognition by SRC.

For comparison purpose, SIFT, RASL, and t-GRASTA are

also first applied to align training images, then align test

images to training set for recognition. Note that because

RASL runs in a batch fashion, we only use it to align train-

ing images, and use [27] to align test images to training set.

The face recognition rates of SRC using the four align-

ment methods are listed in Table 1. The best SRC per-

formance is achieved using our robust alignment method,

which demonstrates that SRC benefits from using our align-

ment as the input. We further compare our result with those

listed in a newly published survey on LFW dataset [10].
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Figure 7: Alignment results of a specific subject from LFW dataset. (a) Unaligned images, the images marked with red boxes

are artificially occluded with shadows. (b) Well-aligned images by our occlusion- and illumination-robust method, (c) results

by SIFT, (d) by RASL and (e) by t-GRASTA.

Figure 8: Alignments of MR prostate images. (a) Some

unaligned prostate images from different subjects, red con-

tours indicate prostate boundaries. The average prostate im-

age (b) before alignment, (c) after alignment by our method,

(d) by SIFT, (e) by RASL and (f) by t-GRASTA.

The recognition rate of SRC using our alignment method

outperforms all the methods with the same “no outside

data for training and testing” protocol, except for one [1]

that further extracts series of discriminative features from

aligned images for recognition. It is worth noting that our

result is achieved by simply combining the proposed align-

ment and conventional SRC together, and both training and

testing images taken from LFW dataset are unconstrained,

thus our competitive recognition rate further demonstrates

the robustness of our alignment method and its promise

for providing more precise alignment for face recognitions.

Specifically, the online mechanism of our robust alignment

is beneficial to practical recognition applications, due to its

ability to enrich the training set by incrementally aligning

and adding newly collected training data, as well as its fa-

cility of robustly aligning testing data with the training set.

4. Conclusion

This work presents an online image alignment method

that can be applied to large and increasing amount of images

Alignment SIFT RASL t-GRASTA Ours

Rec. rate(%) 52.28 88.42 81.40 91.56

Table 1: Recognition rates on the LFW dataset for different

alignment methods and SRC.

despite severe intensity distortions. This alignment problem

is difficult since the images are dynamically increasing and

there are great intensity variations (e.g., illumination varia-

tions, partial occlusion and corruption) between images. To

address this difficult problem, we have proposed an online

image alignment method via subspace learning from im-

age gradient orientations. We seek incremental alignment

in the IGO domain such that the aligned IGO of the newly

arrived image can be decomposed as the sum of an ex-

tremely sparse error and a linear composition of IGO-PCA

basis learned from previously well-aligned ones. The im-

age decomposition and alignment in the IGO domain bene-

fits our method handling the large illumination variations

and intensity distortions. We have validated the efficacy

of the proposed method on extensive challenging datasets

through image alignment and face recognition. The exper-

imental results demonstrate that our algorithm can provide

more illumination- and occlusion-robust image alignment

than state-of-the-art methods do.
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