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Abstract

This work introduces a novel surface registration method

based on foliation. A foliation decomposes the surface into

a family of closed loops, such that the decomposition has

local tensor product structure. By projecting each loop to

a point, the surface is collapsed into a graph. Two home-

omorphic surfaces with consistent foliations can be regis-

tered by first matching their foliation graphs, then matching

the corresponding leaves.

This foliation based method is capable of handling sur-

faces with complicated topologies and large non-isometric

deformations, rigorous with solid theoretic foundation, easy

to implement, robust to compute. The result mapping is d-

iffeomorphic. Our experimental results show the efficiency

and efficacy of the proposed method.

1. Introduction

Surface registration plays a fundamental role in com-

puter vision, it has a broad range of applications, such as

3D face recognition [12], shape retrieval [14], brain corti-

cal surface registration [22], image registration [31], high

resolution tracking of non-rigid motion [53] and so on.

In the past decades, researchers have intensively investi-

gated various surface registration approaches [11, 32], such

as ICP method [7, 4, 15, 43, 51, 21], dense mapping method

[25, 58, 42, 33], graph matching method [18, 20, 27, 8, 9,

37], parameterizatoin based method [3, 44, 52, 57, 10, 55,

1, 49], functional based method [41, 24, 34, 45] and many

other methods (e.g. [7, 12, 36]). Although surface registra-

tion techniques have been advanced greatly, it still remains

challenging to handle surfaces with complicated topologies

and large non-isometric deformations.

In order to tackle these challenges, this work proposes

a novel method to establish diffeomorphisms between sur-

faces with complicated topologies, surface registration via

foliation.
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Figure 1. Foliations on a genus two surface and their correspond-

ing projection graphs.

1.1. Proposed Approach

Foliation Fig. 1 shows the concept of foliation. Intuitive-

ly, a surface foliation decomposes the surface into a family

of non-intersecting loops. Each loop is called a leaf. All the

homotopic leaves form a cylinder, the whole surface is de-

composed into cylinders {C1, C2, C3}, different cylinders

intersect at critical leaves (red leaves Γ1,Γ2), three cylin-

ders meet at the singularities ({z1, z2}). We can shrink each

leaf to a point to “project” the whole surface into a graph,

where each cylinder is mapped to an arc, each critical leaf to

a node. Furthermore, the number of leaves on each cylinder

defines the length of the arc. The graph with the arc length

represents the foliation.

Furthermore, the mapping from the foliation to the cor-

responding graph is a generalized harmonic map. Inverse-

ly, under some mild conditions, given a graph with the arc

length, the harmonic map from the surface to the graph in-

duces a foliation.

Registration Based on Foliation Fig. 2 shows our reg-

istration algorithmic pipeline. Given two genus g sur-

faces, we automatically compute 3g − 3 cutting loops on

938



Figure 2. Surface registration based on foliation.

the surface, which divide each surface into 2g − 2 pairs

of pants (genus 0 surface with 3 boundaries), this process

is called the pants decomposition. Then we construct the

corresponding pants decomposition graph, where each n-

ode represents a pair of pants, each arc represents a cutting

loop. The consistent pants decompositions induce the same

graph. We assign the arc lengths of the graph, compute the

harmonic map from each surface to the graph. The harmon-

ic mappings produce consistent foliations.

Each point on the graph corresponds to a unique leaf

on the source foliation, and a leaf on the target foliation.

This gives the correspondence between the leaves, further-

more, the correspondences between the singularities and the

cylinders. As shown in Fig. 2, the corresponding cylinder-

s are rendered using the same color. By further adjusting

the mapping between each pair of leaves, we can achieve a

global diffeomorphism between the surface.

1.2. Contributions

In summary, the main contributions are as follows:

1. It introduces a novel algorithm to compute surface

registration based on foliations. This is equivalent to

dimension reduction, converts surface mapping to graph

matching and circle matching.

2. The method is capable of dealing with surfaces with

complicated topologies, and large non-isometric deforma-

tions. It can also satisfy the landmark constraints.

3. The method has solid theoretic foundation. The regis-

tration is guaranteed to be diffeomorphic, and the existence

and uniqueness of the foliation is also guaranteed.

4. The method is intrinsic, it converts the Riemannian

metric of the surface to a flat metric (Euclidean geometry)

with cone singularities. Comparing to methods using

Riemannian geometry, it is simple and easy to implement,

robust to triangulations and geometric noises in practice.

To the best of our knowledge, it is the first work to intro-

duce foliation theory for surface registration. The computa-

tion of general foliations is based on non-linear convex op-

timization, hence the convergence and the global optimality

has theoretic guarantees.

The main drawbacks of the current method include the

non-linearity of the algorithm, and it can not directly han-

dle partial matching for surfaces with in inconsistent bound-

aries.

2. Previous Works

Shape matching and registration is a well-studied field

with several recent books and surveys [11, 32]. It is out of

scope for this article to cover all existing shape matching

and registration methods; we concentrate on the most relat-

ed algorithms.

Iterative Closest Points (ICP) Method The ICP based

methods find surface correspondences through an iterative

procedure that starts with an initial correspondence and then

repeatedly improves it by computing an aligning transfor-

mation from the correspondences and then updating the cor-

respondences based on the transformation. These methods

are most commonly used for aligning surfaces related by a

rigid transformation [7], but have also been used for mod-

erate non-rigid deformations [4, 15, 43, 51, 21]. Unfortu-

nately, they do not guarantee that the final map is smooth or

bijective (two points on one surface may map to the same

point on another), and a good initial guess (which is some-

times difficult to obtain) is required to succeed in most cas-

es.

Dense Mapping Method These methods represent a map

between a pair of shapes as a point-to-point correspon-

dence. Since it is infeasible to optimize over such corre-

spondences directly, most methods aim to obtain a sparse

set of point correspondences and extend them to dense map-

pings [25, 58, 42, 33]. Because sparse point correspon-

dences are inherently discrete, common ways to enforce

global consistency include preservation of various quanti-

ties between pairs or sets of points, including geodesic dis-

tances [11, 25], spectral quantities [28, 39, 40, 48, 42], or

a combination of multiple geometric and topological tests

[16, 6].

Graph Matching Based Methods Graph based methods

[18, 20, 27, 8] are popular for surface registration. Reeb

graphs based method can register high genus surfaces[9].

A Reeb graph describes the shape by storing the evolution

of level sets of a given real-valued function associated to the

shape. In general, the function is selected as the height func-

tion, which depends on the embedding of the surface. Our

method is intrinsic, solely depends on the Riemannian met-

ric. Furthermore, the level sets don’t form a foliation, the

Reeb graph method generates more singularities and more

decomposed patches, and is more complicated. Our pro-
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posed foliation produces the least number of singularities

and patches in theory, therefore is simpler.

Li et al. introduces the consistent pants decomposition

method for registration in [37]. The surface is decompos-

es to pairs of pants, then the corresponding pair of pants

are matched using harmonic mapping. In the process, each

pair of pants are further decomposed into two topologi-

cal hexagons. Therefore for a genus g > 1 surface, their

method divides the surface into 4g − 4 patches,ours pro-

duces 3g − 3 cylinders. Hence foliation based method has

lower complexity. We apply their automatic pants decom-

position method in our pipeline.

Parameterization Based Method

Given a set of correct sparse correspondences (defined

by a user or an algorithm), one can use a variety of methods

to find a smooth map interpolating them. A common ap-

proach is to map both surfaces to a canonical domain where

sparse feature points align to each other and then interpo-

late the map in that domain [3]. For example, [44] used a

base coarse mesh (provided by a user) as such a domain.

In their approach, the surface is cut into triangular patches

defined by three geodesic curves, such that each geodesic

curve is mapped to a triangle edge on a coarse base mesh.

An automatic approach for creating the base domain has

been developed [47, 35].

Conformal geometric methods based on the Euclidean

metric have also been extensively studied [5, 57, 10, 55].

The methods in [1] and [2] uses conformal parameteriza-

tion based method for surface registration with landmark

constraints, the algorithms are independent of the choice of

the cut graph. These methods mainly focus on genus zero

surfaces. The method in Wang et al. [52] studied brain mor-

phology with Teichmüller space coordinates where the hy-

perbolic conformal mapping was computed with the Yam-

abe flow method. Lui and Wen [38] also register high

genus surfaces in their hyperbolic uniformization domain-

s. Zeng [57] proposed a general surface registration method

via the Klein model in hyperbolic space where they used

the inversive distance curvature flow method to compute the

hyperbolic conformal mapping. Shi et al. proposed sur-

face registration based on a hyperbolic harmonic map in

[49]. These methods are based on sophisticated curvature

flow method, and the registration is carried out on hyper-

bolic plane. The conformal factor goes to infinity near the

boundary of the hyperbolic disk, therefore, the registration

algorithms are error-prone. Our proposed method uses flat

metric, the computation is simpler and stabler.

Functional Based Method Functional based methods [41,

24, 34] are capable of handling surfaces with complicated

topologies. Partial functional correspondence method [45]

finds the partial matching between two surfaces with non-

rigid, isometric deformations. It selects the corresponding

subsets of the surfaces, and calculates the eigen functions

of the Laplace-Beltrami operator, the corresponding points

have the same values of all eigen functions. This method

can handle complicated and different topology for partial

matching. But this method requires the surfaces are with

non-rigid but near-isometric deformation. The method can

not handle surfaces with large non-isometric deformation,

because the eigen functions will be very different. Our

method is capable of processing shapes with large non-

isometric deformations.

The current work proposes a registration method based

on foliation. The existence and the uniqueness of the so-

lution are with theoretic assurance, and the result map-

ping is guaranteed to be diffeomorphic. The method can

handle surfaces with complicated topologies, and large

non-isometric deformations. Furthermore, the algorithm

is based on flat (Euclidean) metric with cone singularities,

therefore simpler and more robust.

3. Theoretic Background

Our proposed method is based on fundamental concepts

and theorems in conformal geometry. Here we briefly re-

view the basic concepts. Detailed treatments can be found

in [19, 50].

Riemann Surface and Conformal Mapping Given a

complex function f : C → C, f : x + iy 7→ u(x, y) +
iv(x, y), if f satisfies the Cauchy-Riemann equation: ux =
vy and uy = −vx, then f is called a holomorphic function.

If f is invertible, and f−1 is also holomorphic, then f is

called a bi-holomorphic function. A surface is called a Rie-

mann surface, if it is with a complex atlas A, such that all

chart transition functions are bi-holomorphic.

Holomorphic Quadratic Differential

Definition 3.1 (Holomorphic Quadratic Differentials)

Suppose S is a Riemann surface. Let Φ be a complex

differential form, such that on each local chart {zα},
Φ = ϕα(zα)dz

2
α, where ϕα(zα) is a holomorphic function.

All holomorphic quadratic differentials form a linear space

[19]. A point zi ∈ S is called a zero of Φ, if ϕ(zi) vanishes.

A holomorphic quadratic differential has 4g − 4 zeros, as

shown in Fig. 3. For any point away from zero, we can

define a local coordinates

ζ(p) :=

∫ p
√

ϕ(z)dz. (1)

which is the so-called natural coordinates induced by Φ.

Suppose γ ⊂ S is a curve, if ζ(γ) is a horizontal (vertical)

line, then γ is called a horizontal (vertical) trajectory. If

γ goes through the zeros, then it is a critical trajectory. If

all the horizontal trajectories are finite, then Φ is called a

Strebel differential.
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Figure 3. The horizontal trajectories of a Strebel differential in-

duces a foliation on a genus 3 surface.

Relation Between Foliation and Differential Generally

speaking, given a holomorphic quadratic differential Φ, its

horizontal trajectories form a foliation F ; inversely, given a

foliation F , there exists a differential Φ, whose horizontal

trajectories form a foliation F̃ , such that there is an auto-

morphism ϕ of the surface, ϕ maps F̃ to F .

Given a holomorphic quadratic differential Φ, the natu-

ral coordinates in Eqn. 1 induces a flat metric with cone

singularities, which is denoted as |Φ|. Hubbard and Masur

proved the following existence of a Strebel differential with

prescribed type and heights.

Theorem 3.1 (Hubbard and Masur [26]) Suppose S is a

compact Riemann surface with genus g > 1. Given non-

intersecting simple loops Γ = {γ1, γ2, · · · , γ3g−3}, and

positive numbers {h1, h2, · · · , h3g−3}, there exists a u-

nique holomorphic quadratic differential Φ, satisfying the

following :

1. The critical graph of Φ partition the surface into 3g −
3 cylinders, {C1, C2,· · · , C3g−3}, such that γk is the

generator of Ck,

2. The height of each cylinder (Ck, |Φ|) equals to hk, k =
1, 2, · · · , 3g − 3.

4. Algorithm

In this section, we explain every step in the algorithm

pipeline in detail.

4.1. Pants Decomposition

In our current algorithm, the pants decomposition is car-

ried out automatically using the algorithm in [37]. Given a

genus g > 1 closed surface S, we automatically compute

the g handle loops, then find extra 2g − 3 disjoint simple

loops, to form the set of cutting loops {γ1, γ2, · · · , γ3g−3}.
The cutting loops segment the surface into 2g − 2 pairs of

pants, {P1, P2, · · · , P2g−2}, to generate a pants decomposi-

tion of the surface. A pants decomposition can be represent-

ed as a graph G, the so-called pants decomposition graph,

where each pair of pants is represented as a node, each sim-

ple loop is denoted by an edge. Suppose the simple loop

γi connecting two pairs of pants Pj , Pk, then the arc of γi
connects nodes of Pj and Pk. Then we associate a positive

real number hi for each simple loop γi, 1 ≤ i ≤ 3g − 3,

namely, the corresponding edge on the pants decomposition

graph. We use (G,h) denote the pants decomposition graph

G with the heights h = (h1, h2, · · · , h3g−3), and call it the

weighted pants decomposition graph. In our current imple-

mentation, we adapt the uniform heights.

4.2. Strebel Differential

Given a weighted pants decomposition graph (G,h),
consider a map f : (S,g) → (G,h), where the length of

edge γi is hi. We say a point p ∈ S a regular point, if its

image is not any node of G, otherwise a critical point. The

set of all critical points is denoted as Γ. Then we can define

the harmonic energy of the mapping f ,

E(f) :=

∫

S\Γ

|∇gf |2dAg. (2)

The critical point of the harmonic energy is called a har-

monic map. Wolf [56] proved the existence and the unique-

ness of the harmonic map. Furthermore, the harmonic map

induces a holomorphic quadratic form Φ ( Hopf differential

)

Φ = 〈fz, fz〉dz2.
By Theorem [26], the horizontal trajectories of Φ form a

foliation F . The projection graph of F is exactly (G,h).
In practice, a surface is approximated by a triangular

mesh M = (V,E, F ). We use [vi, vj ] to represent an

edge connecting the vertices vi and vj . The weighted graph

(G,h) is with a flat metric, the length of the edge repre-

senting the loop γi is hi. The harmonic energy of a map

f : M → (G,h) is given by

E(f) :=
1

2

∑

[vi,vj ]

wijd(f(vi), f(vj))
2,

where d(·, ·) is the shortest distance between two points on

the graph, wij is the cotangent edge weight. Suppose two

faces [vi, vj , vk] and [vj , vi, vl] share the edge [vi, vj ], then

wij = cot θijk + cot θjil ,

where θ
ij
k represents the corner angle at the vertex vk in the

face [vi, vj , vk].
We use the non-linear heat flow method to compute the

harmonic map. First, we deform γi to sweep a cylinder

Ci, such that the union of all the cylinders cover the whole

surface. Second, each cylinder Ci is mapped to the edge

γi, this constructs the initial map f . Third, we diffuse the

map to reduce the harmonic energy. At each step, we move

the image of vertex to the weighted geodesic center of the

images of its neighbors. Suppose after the k-th iteration,
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we have obtained the mapping fk : M → G already, the

vertices {vj}’s are adjacent to the vertex vi, the weighted

geodesic center of {fk(vj)}’s is

ck(vi) = argminq∈G

n
∑

j=1

wijd(fk(vj), q)
2.

The diffusion process moves the image of vi to the weight-

ed geodesic center, fk+1(vi) ← ck(vi). The existence and

the uniqueness of the harmonic map is proven in Wolf’s

work [56].

4.3. Registration

Given two surfaces (S,g) and (T ,h), we would like

to find a diffeomorphism ϕ : S → T . We automatically

compute the pants decompositions on the surfaces using the

automatic algorithm in [37], with the corresponding pants

decomposition graphs GS and GT . Then the two graph-

s are isomorphic, GS
∼= GT . We set the height vector

hS and hT respectively, then compute the harmonic maps

fS : (S,g) → (GS ,hS) and fT : (T ,h) → (GT ,hT ).
The harmonic maps induce the Strebel differentials ΦS and

ΦT . The critical trajectories of ΦS are ΓS , those of ΦT

are ΓT . The critical trajectories partition the surfaces into

2g − 2 cylinders,

S \ ΓS =

2g−2
⋃

k=1

CkS , T \ ΓT =

2g−2
⋃

k=1

CkT

The Strebel differentials ΦS and ΦT induce flat metrics,

|ΦS | and |ΦT | respectively.

The restriction of ΦS on each cylinder CkS is a harmonic

function, then we can define a harmonic 1-form

ωk := dΦS |Ck
S

,

then we use the Hodge star operator to act on ωk to get the

conjugate harmonic 1-form ∗ωk, then pair them to form a

holomorphic 1-form Ωk := ωk +
√
−1∗ωk. Then the union

of all Ω2
k’s give the Strebel differential ΦS , ΩkΩ̄k gives the

flat metric |ΦS |. We use the method in [30] to compute the

Hodge star operator and discrete holomorphic 1-form Ωk.

For each pair of flat cylinders, we can construct a har-

monic map using conventional harmonic mapping method

[54]

ϕk : (CkS , |ΦS |)→ (CkT , |ΦT |),
with consistent boundary conditions, such that the zero

points of ΦS on the boundaries of CkS are mapped to the

zero points of ΦT on the boundaries of CkT .

All the harmonic maps ϕk’s are glued together to form a

global piecewise harmonic map ϕ : (S, |φS |)→ (T , |φT |).
By construction, the mapping ϕ is a homeomorphism. Fur-

thermore, the global map can be further diffused under the

metric (|φT | on the target surface) to become a global har-

monic map. According to the harmonic map theorem [46],

the harmonic map exists and is unique, furthermore diffeo-

morphic. Details can be found in Algorithm 1.
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(e) (f) (g) (h)
Figure 4. Registration between the eight surface and the amphora

surface.
Fig. 2 and Fig. 4 illustrate the process of surface regis-

tration. Fig. 4 shows a pair of genus two surfaces, the eight

surface (a) and the amphora surface (c). The pants decom-

positions are automatically computed, the cutting loops are

{γ1, γ2, γ3} (blue curves in frames (a) and (c)) on both sur-

faces, the pants decomposition graph is shown in (b) and

(d). The user specifies the height function, and compute the

harmonic maps from the surfaces to the graphs, which in-

duces foliations as shown in (a) and (c), the zero points are

{z1, z2}, the critical trajectories are {Γ1,Γ2}, the cylinders

are {C1, C2, C3}. The corresponding cylinders are regis-

tered using harmonic maps with consistent boundary con-

ditions, under the flat metrics induced by the Strebel dif-

ferentials. The piecewise harmonic maps are glued togeth-

er, and smoothed out. The resultant global diffeomorphism

is illustrated by consistent color map in frames (e) and (f),

the source point and the image point share the same col-

or. Frame (g) and (h) show the mapping using consisten-

t texture mapping within each cylinder. Each checker has

an alphabetic and numerical label, which shows the corre-

spondence and the distortions of the mapping. By visual

inspection, we can see the smoothness of the registration.

5. Experimental Results

In this section, we report our experimental results. We

have tested our algorithm on surfaces scanned from real life

[17] and reconstructed from medical images. Our algorithm

is implemented using generic C++, the numerical computa-
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Algorithm 1 Surface Registration Algorithm Pipeline.

Require: : Closed surfaces S and T with genus g > 1
Ensure: : A diffeomorphism ϕ : S → T

1. Construct the pants decomposition of S, with the graph GS , assign

the height function hS ,

2. Construct the pants decomposition of T , with the graph GT , assign

the height function hT ,

3. Compute the harmonic map uS : S → GS , which induces a Strebel

differential ΦS with critical trajectory ΓS ,

6. Compute the harmonic map uT : T → GT , which induces a

Strebel differential ΦT with critical trajectory ΓT ,

7. Slice S along the critical trajectories ΓS to obtain cylindrical de-

composition, S \ ΓS = ∪2g−2

k=1
Ck

S
,

8. Slice T along the critical trajectories ΓT to obtain cylindrical de-

composition, T \ ΓT = ∪2g−2

k=1
Ck

T
,

for all k = 1, 2, . . . , 2g − 2 do

9. Construct a harmonic maps ϕk : (Ck
S
, |ΦS |) → (Ck

T
, |ΦT |)

end for

10: Glue all the local harmonic maps together to form the global map

ϕ : (S, |ΦS |) → (T , |ΦT |).
11: Diffuse ϕ to a harmonic map using non-linear heat diffusion

method.

tion is based on Eigen library [23]. All our experiments are

performed on a desktop computer with Intel(R) Core(TM)

i7-4770 3.4GHz CPU and 16GB RAM.

5.1. Robustness Testing

In order to test the robustness of our foliation based

method, we conducted an experiment as shown in Fig. 5.

The input genus 2 mesh is with good quality triangulation,

the foliation is calculated as shown in the top row. We mod-

ify the connectivity to reduce the triangulation quality to

introduce skinny faces, but foliation is slightly affected as

shown in the middle row. Then we add geometric noises

to the shape by randomly moving every point along its nor-

mal, the perturbation distance is about 3% of the diagonal of

the bounding box. The foliation of the bumpy surface looks

very similar to original one. Because the computation of fo-

liations is equivalent to solve an elliptic partial differential

equation, the solution is stable and robust to the triangula-

tion quality and geometric noise.

5.2. High Genus Testing

Fig. 6 and Fig. 7 show the registration result between the

eight model and the girl sculpture. Fig. 6 frame (a) and (c)

show the foliations, (b) and (d) illustrate the registration by

consistent color encoding, which shows the smoothness of

the mapping. Fig. 7 shows the correspondence by consis-

tent texture mapping. Each checker on the texture has both

alphabetic and numerical labels. By examining the label-

s of the checkers, one can verify the correspondence and

visualize the distortions.

Similarly, Fig. 8 shows the registration result between

the genus two surfaces, the amphora model and the star cup.

Fig. 2 shows the mapping between genus 4 surfaces. These

Figure 5. Robustness testing.

experiments demonstrate that our method can handle high

genus surfaces.

(a) (b)

(c) (d)
Figure 6. The foliation of the eight surface (a), the foliation of

girl sculpture surface (b). The mapping is illustrated by consistent

color encoding (c) and (d).

5.3. Landmarks Constraints Testing

Fig. 9 shows registration of surfaces with feature points

and bundaries. The 11 cat models from TOSCA dataset-

s [13] are with different poses, and with non-rigid but near-

isometric deformations. There are 7 features points like the

tips of the ears and the tail, 2 boundary landmark curves,

which are treated as constraints for the registration. Each cat

surface is decomposed into 15 cylinders, the corresponding

cylinders are color-encoded similarly. By visual verifica-

tion, we can see the correspondences among the leaves, and
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Figure 7. The diffeomorphism between the eight surface and the

girl sculpture.

the features and landmarks. Some cats models have self-

intersections, which doesn’t affect our algorithm, since our

method solely depends on the Riemannian metric, not the

embedding.

Fig. 10 and 11 show another example for registering

genus zero surfaces with landmark curves. The human cor-

tical surface is with three consistent landmark Succi curves

(red curves) in the top row in Fig. 10. Then we perform

double covering technique [29] to covert each of them to a

genus two closed surface and compute the foliation on the

double cover, as shown in the bottom row in Fig. 10. The

registration results between two cortical surfaces is illustrat-

ed by consistent color-encoding in Fig. 11.

We have perform the registration between each pair of

cortical surfaces in a database containing 40 brains, and all

780 registrations are carried out automatically and success-

fully. This further demonstrates the robustness of our algo-

rithm.

5.4. Efficiency Testing

We report the running time of our algorithm in this sec-

tion. The time of computing the foliation are shown in

Table 1. The timing for the registration in the algorithm

pipeline are as follows: the mapping between the eight sur-

face to ampora model is 2.32s; eight surface to the girl s-

culpture 30.188s; the star cup model to the amphora model

64.244s; the cortical surfaces 205.05s.

5.5. Comparison

We compare our method with the hyperbolic harmonic

map algorithm introduced in [49] in terms of robustness,

efficiency and accuracy.

Figure 8. Registration between the star cup surface and the am-

phora surface. The first row shows the foliation on both model.

The second row is the registration result shown in color coding.

The third row shows the mapping result using consistent texture

mapping.

Model # of vertices # of faces Time(second)

eight 3776 7556 5.6

amphora 10565 21134 15

starcup 31272 62548 33

brain 30988 61972 70

cat 27894 55712 359

sculpture girl 80000 160004 259
Table 1. The computation time of foliations of different models.

The hyperbolic harmonic map algorithm depends on hy-

perbolic Ricci flow, which is sensitive to the meshing qual-

ity. It may fail on surfaces with low mesh qualities. In

contrast, our method is based on harmonic mapping, which

is more robust to the meshing quality and succeeds in all

cases.

The Ricci flow method is highly non-linear, which is

time-consuming with the total time 310s; our method is

more efficient with the total time 275s on the same mod-

el.
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Figure 9. Registration with feature points and boundaries.

front view back view

Figure 10. The landmark curves (top row) and the foliation (bot-

tom row) on a human brain surface.

Furthermore, we measure the registration quality by the

curvature distortion metric. Basically, a mapping between

two surfaces will pull back the Gaussian curvature and

mean curvature on the target to the source. Then on the

source surface, we compute the L2 distance between the

source curvature and the pulled-back curvature, which is

the curvature distortion distance. If the registration is an

isometric mapping, then the L2 distance of Gaussian cur-

vatures is 0; if the registration is a rigid motion in R
3, then

both Gaussian and mean curvature distances are 0. We com-

pute the distribution of the curvature difference, and show

the histograms in Fig. 12. It is obvious that the curvature

differences distribution of our method highly concentrates

near the 0, the distribution of the hyperbolic harmonic map-

ping method in [49] is much more spread out. This demon-

strates that our method achieves higher accuracy.

Figure 11. The color-encoded registration results of the human cor-

tical surfaces. The first row shows the source brain while the sec-

ond row shows the target.
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Our method

Hyperbolic Harmonic Mapping

Figure 12. The distribution of the curvature difference. The last

purple bar shows the number of vertices whose curvature differ-

ence are equal or greater than 150 in the hyperbolic harmonic map-

ping method.

6. Conclusion

This work introduces a novel surface registration algo-

rithm based on foliation theory. The surface is decomposed

into a family of leaves (loops), the arrangement of which is

represented as a graph. Surface registration is carried out

by matching the graphs first, then match the leaves. This

method can handle surfaces with complicated topologies

and large non-isometric deformations; it has rigorous the-

oretic foundation to guarantee the existence and the unique-

ness of the solution, the resulting mapping is diffeomorphic;

the algorithm is simple to implement, robust to compute.

Experimental results demonstrates the efficinecy and effica-

cy of the proposed method.

On a surface, there are infinite many foliations. In theo-

ry, given a pair of homeomorphic surfaces, one can choose

unique foliations on each of them, such that the mapping

has the least distortions. In the future, we will explore how

to find the optimal foliations to improve the mapping quali-

ties.
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