
Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively

Combining Object Detectors

Hong-Yu Zhou Bin-Bin Gao Jianxin Wu

National Key Laboratory for Novel Software Technology

Nanjing University, China

{zhouhy,gaobb}@lamda.nju.edu.cn, wujx2001@nju.edu.cn

Abstract

Object detection aims at high speed and accuracy simul-

taneously. However, fast models are usually less accurate,

while accurate models cannot satisfy our need for speed.

A fast model can be 10 times faster but 50% less accurate

than an accurate model. In this paper, we propose Adaptive

Feeding (AF) to combine a fast (but less accurate) detector

and an accurate (but slow) detector, by adaptively deter-

mining whether an image is easy or hard and choosing an

appropriate detector for it. In practice, we build a cascade

of detectors, including the AF classifier which make the easy

vs. hard decision and the two detectors. The AF classifier

can be tuned to obtain different tradeoff between speed and

accuracy, which has negligible training time and requires

no additional training data. Experimental results on the

PASCAL VOC, MS COCO and Caltech Pedestrian datasets

confirm that AF has the ability to achieve comparable speed

as the fast detector and comparable accuracy as the accu-

rate one at the same time. As an example, by combining the

fast SSD300 with the accurate SSD500 detector, AF leads

to 50% speedup over SSD500 with the same precision on

the VOC2007 test set.

1. Introduction

Speed and accuracy are two main directions that curren-

t object detection systems are pursuing. Fast and accurate

detection systems would make autonomous cars safer, en-

able computers to understand scene information dynamical-

ly, and help robots act more intelligently.

The community have strived to improve both speed and

accuracy of detectors. Most recent state-of-the-art detec-

tion systems are based on deep convolutional neural net-

works. The basic pipeline of these modern detectors can be

summarized as: generate bounding box proposals, extract

features for each proposal, and apply a high-quality classifi-

er. To obtain higher accuracy, better pretrained models, im-

Table 1: Speed (fps) and accuracy (mAP) of various modern de-

tection systems. “07+12” means these models are trained on the

combined train and validation sets of VOC07 and VOC12. The

models are evaluated on the VOC07 test set. We measure the speed

with batch size 1.

Method train set FPS mAP

Fast-Yolo [22] 07+12 154 52.7

Yolo [22] 07+12 45 63.4

SSD300 [18]1 07+12 46 72.1

SSD500 [18]1 07+12 19 74.9

R-FCN [4] 07+12 8 79.0
1
https://arxiv.org/pdf/1512.02325v2.pdf.

proved region proposal methods, context information, and

novel training strategies can be utilized. But, these methods

often suffer from high computational costs, e.g., tens of t-

housands of region proposals are required to obtain high ac-

curacy. On the other hand, there are a few works focusing

on building faster detectors by hacking regular stages de-

signed for traditional systems. YOLO replaces the general

region proposal procedures by generating bounding boxes

from regular grids [22]. Single Shot MultiBox Detectors

(SSD) make several improvements on existing approaches,

and the core of it is to calculate category scores and box

offsets at a fixed set of bounding boxes using small and sep-

arated convolution kernels [18]. Although these approaches

speed up the detection process, their accuracy rates are stil-

l lower than those slow but accurate detectors. In fact, as

shown in Table 1, accuracy drops as speed increases.

We humans are able to adaptively tune between detec-

tion speed and recognition accuracy. When you step into

the kitchen, it might seem easy to find the cabinet in few

milliseconds, but it surely will cost you longer to locate the

toaster. However, most modern detection models “look at”

different input images in the same way. Specifically, the

time cost is nearly the same across different images. For

example, regardless of the number of persons in the fore-

3505

https://arxiv.org/pdf/1512.02325v2.pdf

ground, the region proposal network in Faster R-CNN [23]

generates tens of thousands of proposals which will defi-

nitely decrease the processing speed in images containing

only few or even no people.

In this paper, we propose to adaptively process different

test images using different detection models, in which we

utilize two detectors: one fast but inaccurate, and one ac-

curate but slow. We first decide whether an input image is

“easy” (suitable for the fast detector) or “hard” (for which

the accurate detector is desirable), such that the test image

can be adaptively fed to different detectors. We hope the

entire detector to be as fast as the fast detector while main-

taining the accuracy in the accurate one.

To make this promising tradeoff, we propose a novel

technique, adaptive feeding (AF), to efficiently extract fea-

tures that are useful for this purpose and to learn a classifier

that is simple and fast. Specifically, we build a cascade of

object detectors, in which an extremely fast detector is first

used to generate few instance proposals, based on which the

AF classifier is able to adaptively choose either the fast or

the accurate model to finish the detection task. Experiments

(including timing and accuracy analyses) on several detec-

tor pairs and datasets show that there are three benefits in

our AF pipeline:

• The AF detector runs much faster than the accurate

model (in many cases its speed is similar to or com-

parable to the fast model). Meanwhile, the accuracy of

AF is much higher than the fast model (in many cases

close to or comparable to the accurate model). Hence,

by combining a fast (but inaccurate) and an accurate

(but slow) model, we simultaneously achieve fast and

accurate detection in AF.

• AF can directly utilize existing models even with dif-

ferent architectures. And there is no need for addition-

al training data.

• AF employs an imbalanced learning framework to dis-

tinguish easy from hard images, in which it is easy to

adjust the tradeoff between the speed and accuracy of

the combined system.

2. Related Work

Object detection is one of the most fundamental chal-

lenges in computer vision, which generally consists of fea-

ture extraction at various locations (grids or proposals) and

classification or bounding box regression. Prior to fast

R-CNN, these two steps were usually optimized separate-

ly. Fast R-CNN [12] employed an end-to-end learning

approach to optimize the whole detector, and Faster R-

CNN [23] further incorporated the proposal generation pro-

cess into learning. Unlike these methods, we focus on the

utilization of pretrained models. In this section, we review

existing methods, in particular those trying to accelerate the

detection.

Detection systems. The deformable parts model (DP-

M) is a classic object detection method based on mixtures

of multiscale deformable part models [10], which can cap-

ture significant variations in object appearances. It is trained

using a discriminative procedure that only requires bound-

ing boxes for the objects. DPM uses disjoint steps and his-

togram of gradients features [5], which is not as competitive

as ConvNet-based approaches.

R-CNN [13] starts another revolution of object detection

after DPM. R-CNN is among the first to employ deep fea-

tures into detection systems, and obtained significant im-

provements over existing detectors at its time. Howev-

er, the resulting system is very slow because features are

extracted from every object proposal. Compared with R-

CNN, Fast R-CNN [12] not only trained the very deep VG-

G16 [27] network but also uses ROI pooling layer [14]

to perform feature extraction, and was 200× faster at test

time. After that, to speed up the proposal generation

process, Faster R-CNN [23] proposed the region propos-

al network (RPN) to generate bounding box proposals and

thus achieves improvements on both speed and accuracy.

Recently, ResNet [15] begins to replace the VGG net in

some detection systems, such as Faster R-CNN [23] and

R-FCN [4]. However, state-of-the-art accurate detectors are

in general significantly slower than real-time.

Fast detectors. Accelerating the test process is a hot

research topic in object detection. As rich object categories

often have many variations, few research focus on the speed

optimization prior to DPM. Fast detectors mainly focused

on detecting a specific object, such as face and human detec-

tors [34, 29]. After DPM was invented, many DPM-based

detectors [24, 30, 6] focused on optimizing different parts

in the pipeline. Dean et al. [6] exploited a locality-sensitive

hashing method which achieves a mean average precision

of 0.16 over the full set of 100,000 object classes. Yan et al.

[30] accelerated three prohibitive steps in the cascade ver-

sion of DPM, and then get an 0.29 second average time on

PASCAL VOC 2007 while maintaining nearly the same per-

formance as DPM. Sadeghi and Forsyth [24] reimplement-

ed the deformable parts model and achieved a near real-time

version.

In recent years, after R-CNN’s invention, many works

tend to speed up the detection pipeline by importing new

functional layers in deep models. However, it is not until

recently that we begin to approach real-time detection. Y-

OLO [22] framed object detection as a regression problem

to spatially separated bounding boxes and associated class

probabilities, and proposed a unified architecture which is

extremely fast. The SSD models [18] leave separated con-

volution kernels in charge of default proposal boxes with

different size and ratios. Both YOLO and SSD share some-

3506

thing in common: a) decrease the number of default bound-

ing box proposals; b) employ a unified network and incor-

porate different stages into the same framework. These fast

detectors are, however, less accurate than slow but accurate

models such as R-FCN (c.f . Table 1).

Recently, there are also some researches utilizing cas-

caded and boosting methods [26] [1] [21] [32] [28]. Shri-

vastava et al. [26] make the traditional boosting algorithm

available on deep networks which achieves higher accuracy

and maintain the same detection speed. Similar to ours, An-

gelova et al. [1] is based on sliding window and processes d-

ifferent image regions independently. However, recent deep

detectors use fully-convolutional networks and take the w-

hole image as input. On the contrary, our adaptive feeding

method make a choice on the image level (not the region

level) and thus saves a lot of time.

The proposed adaptive feeding method follows a differ-

ent route: to seek a combination of two detection systems

with different strengths. In this paper, we tackle such a sit-

uation: one detector is fast, the other is slow but more accu-

rate, which widely exist as aforementioned. Our approach

looks a bit like the ensemble methods because both of them

rely on the diversity of different models. However, ensem-

ble methods often suffer from enormous computations and

are difficult to implement in real-time, while our method

approaches the accuracy advantage of the accurate detector

and maintains the speed advantage of the fast one.

3. Motivation: “Easy” vs. “Hard” Images

Given a fast and an accurate detector, the motivation and

foundation of adaptive feeding is the following empirical

observation: although on average the accurate model has

higher accuracy than the fast model, in most images the fast

model is as precise as the accurate one (and in few cases it

is even better). For convenience, we use “easy” to denote

these images for which the fast detector is as precise as the

accurate one, and the rest the “hard”. Furthermore, when

combining these detectors, we call the fast model the basic

model, and the other more accurate detector as the partner

model. In Figure 1, examples are shown for cases where the

basic model is better than, same as or worse than the partner

model.

In order to create groundtruth labels for the easy vs. hard

distinction, we apply the mean average precision (mAP) de-

tection evaluation metric to one single image. In the PAS-

CAL VOC Challenge [9, 8], the interpolated average pre-

cision [25] (AP) is used to evaluate detection results. A

detection system submits a bounding box for each detec-

tion, with a confidence level and a predicted class for each

bounding box. For a given class, the precision/recall curve

is computed from a method’s ranked output based on the

confidence scores. The AP metric summarizes the shape

of precision/recall curve, and a further mAP (mean average

Table 2: Easy vs. hard ratios under different settings. Basic and

Partner models are trained on VOC07+12 trainval.

Basic Partner Set
P2 − P1

≤ 0 (Easy) > 0 (Hard)

SSD300 SSD500 07+12 trainval 83.7% 16.3%

SSD300 SSD500 07 test 81.4% 18.6%

SSD300 R-FCN 07+12 trainval 89.4% 10.6%

SSD300 R-FCN 07 test 78.6% 21.4%

precision) averages the AP in all classes. In PASCAL VOC

and MS COCO [17], mAP is calculated by the formula

mAP =
1

N

N
∑

i=1

APi , (1)

where N is the number of classes in the dataset.

However, our evaluation target is a single image. Hence,

we apply Equation 1 but focus on one image (N = 1), as

P =
1

S

S
∑

i=1

APi , (2)

where S is the number of classes in this image, APi is the

average precision for class i in this image, and P represents

the mean average precision in this image. In the rest of

this paper, we call Equation 2 mAPI, which stands for mean

Average Precision per Image.

Given two models m1 and m2, we assume m2 is more

accurate than m1, but m1 runs much faster than m2. We

evaluate both models on a set of M images, which returns

{P1,1, P1,2, . . . , P1,M} and {P2,1, P2,2, . . . , P2,M}, where

Pi,j is the mAPI for model i (i ∈ {1, 2}) and image j (1 ≤
j ≤ M). We then split the difference set into two parts, the

easy and the hard, according to a simple rule: if P2,j > P1,j

(i.e., if the accurate model has larger mAPI on image j than

the fast one), this image is a “hard” one; if P2,j ≤ P1,j

(i.e., if the fast model performs as good as or better than the

accurate detector), this image is an “easy” one.

We can now collect statistics about easy vs. hard images

with the groundtruth labels defined, as shown in Table 2 for

different setups. In Table 2, SSD300 and SSD500 are the

SSD models applied to different input image sizes (300 ×
300 and 500 × 500, respectively) [18]. Results in Table 2

show that most (around 80%) images are easy.

That is, for a large proportion (80% or so) of easy im-

ages, we can use m1 (the fast model) for detection, which

has both fast speed and accurate results; for the rest small

portion (20% or so) of hard images, we apply m2 (the slow

accurate detector) to maintain high accuracy. However, s-

ince the percentage of hard examples is small, they will not

significantly reduce the overall detection speed.

3507

(a) P2 − P1 < 0 (b) P2 − P1 = 0 (c) P2 − P1 > 0

Figure 1: Easy and hard images. In each figure, the left picture is the results of SSD300, and the right of R-FCN. SSD300 (the fast model)

is better than, same as, or worse than R-FCN (the accurate detector) in Figure 1a, 1b, 1c, respectively. P1 and P2 stands for mAPI of the

fast and accurate detector for the image in consideration, respectively. (Best if viewed in color.)

4. Adaptive Feeding

The proposed adaptive feeding (AF) is straightforward

if we know how to separate easy images from hard ones.

Figure 2 shows the framework which mainly contains three

parts: instance proposals, a binary classifier and a pair of de-

tectors. At the first step, an instance generator is employed

to generate instance proposals, based on which the binary

classifier decides either to feed a test image to the basic or

the partner. In this section, we propose techniques for how

to make this decision.

4.1. Instance Proposals: Features for easy vs. hard

Since the label of “easy” or “hard” is determined by

the detection results, we argue that instances in the image

should play a major role. This encourages us to put an in-

stance generator at the first stage in AF (Figure 2) to extract

features for easy vs. hard classification. To obtain both high

speed and accuracy in the following classification, we re-

quire that these proposals carry predicted class labels which

will provide detailed information; and, just a few of them

are able to describe the whole image well. As a result, an

extremely fast detector with reasonable accuracy should be

the first choice. In this paper, we use Tiny YOLO, an im-

proved version of Fast YOLO [22], as our instance genera-

tor. Tiny Yolo takes less than 5ms to process one image on

a modern GPU and achieves 56.4% mAP on VOC07, which

makes the features powerful and fast to extract.

The proposals generated by the instance generator that

have top confidence values contain a lot of information

about objects in an image. Specifically, one proposal in-

clude three components: C (predicted class label), S (con-

fidence score) and B (bounding box coordinates). We ex-

tract features based on the top K proposals with highest

confidence scores to determine whether this image is easy

or hard using a binary linear support vector machine (SVM)

classifier. Since the feature length is small if K is small, the

rest SVM classification takes little time (less than 0.1ms)

per image, and is negligible.

Ablation Analysis. Several ways are available to orga-

nize information in {C, S,B} into a feature vector. Ab-

lation studies are carried out to find out the best practice

using the PASCAL VOC07 dataset (which has 20 classes),

with results in Table 3. For the simplest case, we utilize

an VGG-16 model pretrained on ImageNet to do the binary

classification and report the mAP in row 0. We can see that

the basic image classification model usually has bad perfor-

mance on this simple task.

The predicted class labels of K proposals (C) can for-

m a 20-dim histogram (denoted as “20” in Table 3), or K

20-dim confidence vectors (one for each proposal, denoted

as “20-prob”). Comparing rows 3 and 6, we find that the

histogram of predicted classes is not only shorter, but also

more accurate. We believe the confidence for each proposal

(S, denoted as “conf” in Table 3) is useful and it is included

in all setups of Table 3. The B information are reorganized

to have two formats: “4s” and “4c”. A comparison between

row 2, 1 and 6 shows that removing these coordinates will

reduce the mAP by at most 0.4%, and those features includ-

ing bounding box size are more powerful (comparing row

1 with row 6). Summarizing observations from these ex-

periments, we use “20+(conf+4s)×K” as our features. The

coordinates are normalized to be within 0 and 1.

We also evaluated the effect of K. Comparing rows 4, 5

and 6, we find that too many proposals (K = 50) not only

reduces speed, but also lowers accuracy. Too few (K = 10)

proposal also lead to lower accuracy. Hence, we choose

K = 25 to extract our feature vector on Pascal VOC dataset,

which is the last row in Table 3.

4.2. Learning the easy vs. hard classifier

It is not trivial to learn the easy vs. hard SVM classifier,

even after we have fixed the feature representation. This

classification problem is both imbalanced [19] and cost-

sensitive [7], whose training requires special care.

As shown in Table 2, most images are easy (i.e., suit-

able for the fast detector). Hence, a classifier with low error

rate may make a lot of errors in the hard images. For ex-

ample, if the classifier simply classifies all images as easy,

its classification accuracy is around 80% (could even be as

3508

0

5

10

score_1 xmin_1 ymin_1 w_1 h_1
score_2 xmin_2 ymin_2 w_2 h_2

score_k xmin_k ymin_k w_k h_k

…
…

…
…

…
…

…
…

…
…

Instance Proposals Hard or Easy ?

ea
sy

ha
rd

Fast or Accurate ?

Basic

Partner
Figure 2: The proposed adaptive feeding framework.

Table 3: Ablation studies about features of easy vs. hard classi-

fication. ‘20”: histogram of predicted classes in top K proposals;

“20-prob”: predicted class probabilities for one proposal; “conf”:

confidence score for one proposal; “4c”: (xmin, ymin, xmax, y-

max), where (xmin, ymin) and (xmax, ymax) are coordinates of

the top left and bottom right corners, respectively; “4s”: (xmin,

ymin, w, h), where (w, h) is the size of each proposal; “×K”:

concatenate information from top K proposals;; “Acc.” and “Re-

call”: accuracy and recall of the easy vs. hard classification. Note

that SVM is trained on 07+12 trainval. And “easy” and “hard”

images are balanced during the training process.

Feature Acc. Recall 07 mAP FPS

0 raw inputs 56.3 54.2 72.5 -

1 20+(conf+4c)×25 74.0 78.9 74.5 25

2 20+(conf)×25 72.9 77.2 74.3 25

3 (20-prob+conf+4s)×25 73.5 77.6 74.4 27

4 20+(conf+4s)×10 76.6 79.7 74.7 27

5 20+(conf+4s)×50 76.2 79.8 74.8 26

6 20+(conf+4s)×25 75.3 80.0 75.0 27

high as 89.4%, c.f . Table 2). However, this simple classifier

will reduce AF to the fast detector, whose detections are not

accurate enough.

Beyond the classification accuracy, we also want the

classifier to correctly predict a high percentage of hard ex-

amples. This requires a high recall, which is the percent-

age of positive examples (y = 1, i.e., hard images) to be

correctly classified. A high recall ensures that the slow ac-

curate detector is applied to appropriate examples such that

the AF detection results will be accurate.

A simple approach to solve the class imbalance problem

is to assign different resampling weights for hard and easy

images. Because we use SVM as our easy vs. hard classifi-

er, this can be equivalently achieved by assigning different

misclassification costs for hard and easy images. Suppose

we have a set of training examples (xi, yi) (1 ≤ i ≤ n),

where xi is the AF features extracted for the i-th image, and

yi ∈ {−1, 1} is its label (easy or hard). A linear classifier

sgn(wT
x+ b) is learned by solving the following standard

SVM problem:

min
w,b

1

2
w

T
w + C

n
∑

i=1

ξi (3)

s.t. yi
(

w
T
xi + b

)

≥ 1− ξi, ξi ≥ 0, 1 ≤ i ≤ n , (4)

in which C > 0 is a hyperparameter that balances between

large margin and small empirical error, and ξi is the cost

associated with the i-th image xi.

In this standard SVM formulation, easy and hard images

are treated equally. In order to obtain high recall, a classic

method is to assign different weights for different images.

We fix the resampling weight for easy images as c
−1 = 1

and the resampling weight c+1 > 1 for hard images [7]. A

larger c+1 value puts more emphasis on the correct classi-

fication of hard images, and hence will in general lead to

higher recall. The SVM problem is now

min
w,b

1

2
w

T
w + C

n
∑

i=1

cyi
ξi (5)

s.t. yi
(

w
T
xi + b

)

≥ 1− ξi, ξi ≥ 0, 1 ≤ i ≤ n . (6)

Ablation Analysis. We start c+1 from the balanced re-

sampling ratio (i.e., ratio between the number of easy and

hard images), and gradually decrease it. In the pair of SS-

D300 vs. SSD500, as shown in Figure 3a and Figure 4a,

treating easy and hard examples equally (c+1 = 1) leads to

a low recall rate and low detection mAP, but the detection

speed is very fast. When c+1 gradually increases, the clas-

sification accuracy and fps gradually decrease but the recall

rate keeps increasing. Accordingly, the detection becomes

more accurate, but at the price of dropped detection speed.

The same trends hold for SSD300 vs. R-FCN, too, as shown

in Figure 3b and Figure 4b.

We note that it is a practical method to adjust the tradeoff

between detection speed and accuracy by adjusting the re-

3509

(a) SSD300 vs. SSD500 (b) SSD300 vs. R-FCN

Figure 3: Impact of sampling weights on accuracy and recall of

hard images of easy vs. hard classification. The experiments are

performed on VOC07 test.

(a) SSD300 vs. SSD500 (b) SSD300 vs. R-FCN

Figure 4: Impact of sampling weights on mAP and FPS. The

experiments are performed on VOC07 test.

sampling weight c+1. When you care more about the preci-

sion, a balanced weight could be the first choice, otherwise

a lower weight might fit the situation. However, in both

cases, our AF achieves considerable speed-up ratio.

5. Experimental Results on Object Detection

We evaluate our method on the VOC 2007 test set, VOC

2012 test set [8] as well as MS COCO [17]. We demonstrate

the effect on achieving fast and accurate detections when

combining two models using our AF approach.

5.1. Setup

We implement the SVM using scikit-learn [20] and set

C = 1. We use the LIBLINEAR solver in the primal s-

pace. We use the default mode in scikit-learn for setting

the resampling weight. For the basic and partner models,

we directly use those publicly available pretrained detection

models without any change if not specifically mentioned.

All evaluations were carried out on an Nvidia Titan X GPU

card, using the Caffe deep learning framework [16].

For all experiments listed below, we utilize the Tiny Y-

OLO detector as the instance generator if not otherwise

specified. We choose Tiny YOLO because it is one of the

fastest deep learning based general object detectors. SS-

D300 is used as the basic model because it runs fast and

performs well. On the other side, SSD500 and R-FCN are

Table 4: VOC 2007 test set detection mAP (%). All detectors and

the instance generator are trained on VOC07+12 trainval. SVM is

trained on VOC07+12 trainval. The Speed-Up Ratio (SUR) and

Decreased mAP (DmAP) are all based on partner model. A: the

accurate mode. F: the fast mode. W: the sampling weight of easy

to hard when training SVM.

Method W mAP FPS SUR DmAP

SSD300 - 72.1 46 - -

SSD400 - 74.0 32 - -

SSD500 - 74.9 19 - -

Simple Ensemble - 73.0 19 - -

R-FCN - 79.0 8 - -

300-500-A 5.13 75.0 27 42% -0.1

300-500-F 3 74.4 33 74% 0.5

300-R-FCN-A 8.43 78.3 17 113% 0.7

300-R-FCN-F 5 76.9 24 200% 2.1

the partner models in different experiments, because their

detections are more accurate than SSD300.

On the PASCAL VOC datasets, these models are trained

on VOC07+12 trainval, and tested on both VOC07 test and

VOC12 test. For the sake of fairness, we don’t train with ex-

tra data (VOC07 test) when testing on VOC12 test. We also

conduct experiments on MS COCO [17] and report num-

bers from the test-dev 2015 evaluation server.

5.2. PASCAL VOC 2007 results

On this dataset, we perform experiments on two pairs

of models: SSD300 vs. SSD500 and SSD300 vs. R-FCN,

and compare against SSD300, SSD500 and R-FCN. Specif-

ically, the training data is VOC07+12 trainval (16551 im-

ages) and test set is VOC07 test (4952 images). Experi-

mental results are displayed in Table 4. Since we do not

have an independent validation set, we train the SVM on

VOC07+12 trainval. We randomly split the 16551 images

into two parts, where the first part contains 13,000 images

and the second keeps the rest 3,551 images. We train our

SVM on the 13k set and validate it on the 3.5k images. We

use 20+(conf+4s)×25 as the features for SVM learning be-

cause it performs the best among different types of features

in Table 3.

We provide two modes during the combination: accurate

(A) or fast (F). The accurate mode takes a balanced sam-

pling weight (5.13 for SSD500, and 8.43 for R-FCN), while

the fast mode uses a lower weight (3 and 5, respectively).

Compared with SSD500, 300-500-A has a slightly higher

performance because the classifier makes the right choice

for those images fit for the basic model. 300-R-FCN-F even

outperforms SSD500 by two percent points while runs 5f-

ps faster. If we compare AF with R-FCN, 300-R-FCN-A

achieves 113% speed-up ratio at a slight cost in mAP (0.7

3510

points). As additional baselines, we also make experiments

on SSD400 and a simple ensemble of SSD300 and SSD500.

We implement SSD400 following the instructions in [18].

300-500-F surpass SSD400 by 0.4 points while reaches the

same speed with negligible training cost. The Simple En-

semble method brutely combines the detection results of

SSD300 and SSD500 but its mAP is worse than SSD500.

5.3. PASCAL VOC 2012 results

The same two pairs of detectors are evaluated on the

VOC12 test set. Accurate and fast modes are both per-

formed, respectively. For consideration of consistence, we

take the same group of sampling weights for all four com-

binations: 5.13 for 300-500-A, 3.0 for 300-500-F, 8.43 for

300-R-FCN-A, and 5.0 for 300-R-FCN-F. Similar to VOC

2007 test, the SVM classifier is also trained on instance pro-

posals from VOC07+12 trainval.

Table 5 shows the results on VOC 2012 test. The AF

approach shows different effects in different pairs. For the

accurate mode, 300-500-A improves the mAP from 68.9%

(SSD300) to 71.1% which is the same as SSD500, but is

8fps faster than SSD500 (about 42% speed-up ratio). Even

though its speed (27fps) is slower than the basic model (SS-

D300, 46fps), its speed is still faster than what is required

for real-time processing. 300-R-FCN-A runs twice as fast

as R-FCN, while only loses 1.0 mAP. For the fast mode,

300-500-F runs much faster while keeps comparable pre-

cision with SSD500. 300-R-FCN-F not only performs 2.0

points higher but also is 5fps faster when compared with

SSD500.

5.4. MS COCO results

To further validate our approach, we train and test our

approach on the MS COCO dataset [17]. All models are

trained on trainval35k [2] (including Tiny YOLO). For con-

venience, we use minival2014 (about 5,000 images) to train

the SVM. Note that minival2014 is not contained in train-

val35k. Since there are 80 classes in MS COCO, we take

the top 50 proposals and the feature is (80+(conf+4s)×50)

for SVM learning. This datasets exhibits different proper-

ty than the PASCAL VOC datasets. From Table 6, in both

pairs, the ratio of easy to hard images is only slightly larger

than 1, which can be explained by the fact that MS COCO is

“harder” than PASCAL VOC, because there are many smal-

l objects in it. However, although this ratio is not as large

as that in VOC datasets, the adaptive feeding method still

achieves convincing results.

Table 7 shows the AF results on MS COCO test-dev

2015. For the accurate mode, on the standard COCO eval-

uation metric, SSD300 scores 20.8% AP, and our approach

improves it to 23.7%. It is also interesting to note that, since

SSD500 and R-FCN are better at small and medium sized

objects, our approach improves SSD300 mainly on these t-

Table 6: Statistics on COCO minival2014.

Basic Partner Set
P2-P1

≤ 0 (Easy) > 0 (Hard)

SSD300 SSD500 minival2014 53.6% 46.4%

SSD300 R-FCN minival2014 51.7% 48.3%

Table 7: MS COCO 2015 test-dev detection AP (%). The SSD

results are from [18]. R-FCN is trained by ourselves because the

model in [4] hasn’t been released yet (slightly lower results than

the official ones).

Method W test FPS AP AP50 AP75 APS APM APL

SSD300 - test-dev 46 20.8 38.0 20.5 3.9 18.5 38.7

SSD500 - test-dev 19 24.4 43.7 24.7 7.2 25.3 40.1

R-FCN - test-dev 8 28.6 48.8 30.1 8.8 31.4 44.1

300-500-A 1.16 test-dev 25 23.7 42.7 23.9 6.6 23.7 39.8

300-500-F 2 test-dev 31 23.0 41.6 23.1 6.0 22.2 39.5

300-R-FCN-A 1.07 test-dev 15 27.0 47.4 29.2 7.5 29.9 43.1

300-R-FCN-F 2 test-dev 21 26.2 46.7 27.9 6.3 28.8 41.9

Table 8: We categorize features into groups, which are de-

fined in Table 3. The table below shows the sum of weights

in each group (there are 20 and 80 classes in VOC and CO-

CO, respectively). For better comparison, we normalize the

sum of weights to 1.

Method dataset class conf xmin ymin width height

300-500 voc 0.22 1.46 0.08 0.02 -0.55 -0.23

300-R-FCN voc 0.25 1.58 0.13 0.05 -0.89 -0.12

300-500 coco 0.31 1.46 -0.02 -0.05 -0.37 -0.33

300-R-FCN coco 0.36 1.48 -0.05 -0.01 -0.60 -0.18

wo parts.

5.5. Feature Visualization

In this part, we want to find what makes an input image

an “easy” or “hard” one. To achieve this goal, a visualiza-

tion of the learned SVM model is needed. We use linear

SVM and set +1 for hard while -1 for easy ones. Features

are learned on VOC07+12 trainval and COCO minival, re-

spectively. We only report results for the natural balanc-

ing weights, and it is worth noting that there can be small

changes when employing different class weights.

From Table 8, we can see that "conf" (confidence in top-k

proposals) is the most influential factor. Thus, many high-

confidence proposals make the input image a "hard" one.

This fits our intuition: an image with many objects might

be hard for a detector.

There are some other interesting observations 1) large

proposal hints "easy" images. We argue that images with

3511

Table 5: VOC 2012 test detection AP (%), mAP and speed (in FPS). All detectors and the instance generator are trained on VOC07+12

trainval.

Method W mAP FPS aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast R-CNN - 70.0 7 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

R-FCN - 74.9 8 84.5 80.4 77.6 64.0 60.1 79.2 78.9 91.5 55.8 78.3 57.8 89.6 84.0 83.7 83.0 54.5 79.0 65.1 83.2 69.3

SSD300 - 68.9 46 82.7 75.3 68.8 52.7 40.5 78.7 72.4 87.3 48.2 72.1 58.4 84.0 79.1 80.2 75.9 41.7 70.6 66.1 80.3 63.3

SSD500 - 71.1 19 83.1 77.4 72.4 54.7 48.2 78.5 77.1 87.5 51.5 75.0 56.1 84.9 82.2 81.8 79.7 45.2 75.4 63.8 81.8 66.1

300-500-A 5.13 71.1 27 83.9 77.7 71.3 54.7 46.8 78.7 77.0 87.6 51.7 75.4 57.0 85.1 82.4 82.1 79.3 44.3 74.9 65.6 81.3 65.3

300-500-F 3 70.8 33 83.9 77.0 70.1 54.3 46.0 79.0 76.2 87.3 51.2 74.7 58.0 84.7 82.0 81.7 78.7 44.4 74.3 65.5 80.8 65.6

300-R-FCN-A 8.43 73.9 17 84.8 80.4 73.6 62.0 54.2 79.7 78.9 88.7 53.2 77.4 58.0 86.7 84.0 85.3 82.4 51.8 78.3 66.9 83.2 68.3

300-R-FCN-F 5 73.0 24 84.0 78.9 72.0 60.7 51.0 79.2 78.1 88.2 52.2 76.4 58.4 86.1 83.8 84.6 81.5 50.9 77.6 67.2 82.9 65.8

large objects often have few instances, especially in VOC

and COCO; 2) "easy" images prefer shorter proposals

(w>h) while "hard" images like taller instances; 3) xmin

and ymin have small weights, hence positions of proposals

have small impact.

6. Pedestrian Detection

Since pedestrian detection can be regarded as a special

case of object detection, we also apply our adaptive feed-

ing approach to existing detectors on the Caltech Pedestrian

dataset.

The basic model employs a stand-alone region propos-

al network (RPN). The original RPN in Faster R-CNN [23]

is developed as a class-agnostic detector with multi-scale

anchors to describe different ratios of objects at each posi-

tion. Zhang et al. [33] found that a single RPN also comes

with good performance in pedestrian detection. In our ex-

periments, we build RPN based on VGG-16 and follow the

strategies in [33] when designing anchors on the Caltech

Pedestrian dataset. For the partner model, we directly use

CompACT [3], which proposed a novel algorithm for learn-

ing a complexity-aware cascade. In our case, we make use

of CompACT-Deep which incorporates CNN features into

the cascading detectors.

Note that RPN achieves an MR (missing rate) of 15.2%

on the Caltech Pedestrian testset at 10fps. CompACT-Deep

reaches 12.0% MR, but is 7fps slower than RPN. The easy

to hard ratio between these two detectors is 4.25, which

seems to be a good situation for AF. RPN is also used as

an instance generator here, which means every input im-

age should first pass the RPN to make a decision. For

the feature inputs to SVM, we employ a similar format:

((conf+4s)×25). The settings of linear SVM are the same

as those in object detection.

Experimental results are reported in Table 9. With RPN

as the basic model, AF achieves satisfying speed-up ratio

while maintaining acceptable miss rate. With a sampling

weight of 4.25, the accurate mode is 67% faster than the

original CompACT-Deep model, at a cost of 0.5 higher M-

R. When the weight drops to 3, RPN-CompACT-F has 2.0

Table 9: MR (%) of AF on Caltech Pedestrian dataset. The

Speed-Up Ratio (SUR) and Decreased MR (DMR) are all based

on the partner model.

Method W MR FPS SUR DMR

RPN - 15.2 10 - -

CompACT-Deep - 12.0 3 - -

RPN-CompACT-A 4.25 12.5 5 67% 0.5

RPN-CompACT-F 3 13.1 7 133% 1.1

points lower miss rate than RPN at a comparable running

speed. These experiments also show that the basic model

can be used as an instance generator.

7. Conclusions

We presented adaptive feeding (AF), a simple but effec-

tive method to combine existing object detectors for speed

or accuracy gains. Given one input image, AF makes a

choice on either the fast (but less accurate) or the accu-

rate (but slow) detector should be applied. Hence, AF can

achieve fast and accurate detection simultaneously. The

other advantage of AF is that it needs no additional train-

ing data and the training time is negligible. By combining

different pairs of models, we reported state-of-the-art result-

s on the PASCAL VOC, MS COCO and Caltech Pedestrian

datasets when detection speed and accuracy are both taken

into account.

Though we used pairs of models (one basic and one

partner model) throughout this paper, we believe AF can

be used with combinations of more than two region-based

ConvNet detectors. For example, a triplet combination can

adds an extra model, which is more accurate but slower than

those models in our experiments [11, 31], to further improve

the detection accuracy without losing AF’s speed benefits.

Acknowledgements

This work was supported in part by the National Natural

Science Foundation of China under Grant No. 61422203.

3512

References

[1] A. Angelova, A. Krizhevsky, V. Vanhoucke, A. S. Ogale,

and D. Ferguson. Real-Time Pedestrian Detection with Deep

Network Cascades. In BMVC, pages 32.1–32.12, 2015. 3

[2] S. Bell, C. L. Zitnick, and R. Girshick. Inside-Outside Net:

Detecting Objects in Context with Skip Pooling and Recur-

rent Neural Networks. In CVPR, pages 2874–2883, 2016.

7

[3] Z. Cai, M. Saberian, and N. Vasconcelos. Learning

Complexity-Aware Cascades for Deep Pedestrian Detection.

In ICCV, pages 3361–3369, 2015. 8

[4] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object Detection

via Region-based Fully Convolutional Networks. In NIPS,

pages 379–387, 2016. 1, 2, 7

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, volume 1, pages 886–893. IEEE,

2005. 2

[6] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijaya-

narasimhan, and J. Yagnik. Fast, Accurate Detection of

100,000 Object Classes on a Single Machine. In CVPR,

pages 1814–1821, 2013. 2

[7] C. Elkan. The Foundations of Cost-Sensitive Learning. In

IJCAI, volume 2, pages 973–984, 2001. 4, 5

[8] M. Everingham, S. M. Ali Eslami, L. Van Gool,

C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL

Visual Object Classes Challenge: A Retrospective. IJCV,

111(1):98–136, 2015. 3, 6

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The PASCAL Visual Object Classes (VOC)

Challenge. IJCV, 88(2):303–338, 2010. 3

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object Detection with Discriminatively Trained Part

Based Models. PAMI, 32(9):1627–1645, 2010. 2

[11] S. Gidaris and N. Komodakis. Object detection via a multi-

region and semantic segmentation-aware CNN model. In IC-

CV, pages 1134–1142, 2015. 8

[12] R. Girshick. Fast R-CNN. In ICCV, pages 1440–1448, 2015.

2

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, pages 580–587, 2014. 2

[14] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. PAMI,

37(9):1904–1916, 2015. 2

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning

for Image Recognition. In CVPR, pages 770–778, 2016. 2

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolution-

al Architecture for Fast Feature Embedding. In ACM MM,

pages 675–678, 2014. 6

[17] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,

J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollar.

Microsoft COCO: Common Objects in Context. In arXiv

preprint arXiv:1405.0312v3, 2014. 3, 6, 7

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Christian,

F. Cheng-Yang, and C. Alexander. SSD: Single Shot Multi-

Box Detector. In ECCV, pages 21–37, 2016. 1, 2, 3, 7

[19] X.-Y. Liu, J. Wu, and Z.-H. Zhou. Exploratory under-

sampling for class-imbalance learning. IEEE Trans. on

Systems, Man, and Cybernetics – Part B: Cybernetics,

39(2):539–550, 2009. 4

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, et al. Scikit-learn: Machine learning in Python.

JMLR, 12(Oct):2825–2830, 2011. 6

[21] H. Qin, J. Yan, X. Li, and X. Hu. Joint Training of Cascaded

CNN for Face Detection. In CVPR, pages 3456–3465, 2016.

3

[22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

Only Look Once: Unified, Real-Time Object Detection. In

CVPR, pages 779–788, 2016. 1, 2, 4

[23] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal

Networks. In NIPS, pages 91–99, 2015. 2, 8

[24] M. A. Sadeghi and D. Forsyth. 30Hz Object Detection with

DPM V5. In ECCV, pages 65–79, 2014. 2

[25] G. Salton and M. J. McGill. Introduction to Modern Infor-

mation Retrieval. McGraw-Hill, Inc. New York, 1986. 3

[26] A. Shrivastava, A. Gupta, and R. Girshick. Training Region-

Based Object Detectors with Online Hard Example Mining.

In CVPR, pages 761–769, 2016. 3

[27] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 2

[28] S. Teerapittayanon, B. McDanel, and H. Kung. BranchyNet:

Fast Inference via Early Exiting from Deep Neural Network-

s. In ICPR, pages 2464–2469, 2016. 3

[29] P. Viola and M. Jones. Rapid Object Detection using a Boost-

ed Cascade of Simple Features. In CVPR, pages 511–518,

2001. 2

[30] J. Yan, Z. Lei, L. Wen, and S. Z. Li. The Fastest Deformable

Part Model for Object Detection. In CVPR, pages 2497–

2504, 2014. 2

[31] B. Yang, J. Yan, Z. Lei, and S. Z. Li. Craft objects from

images. In CVPR, 2016. 8

[32] F. Yang, W. Choi, and Y. Lin. Exploit All the Layers: Fast

and Accurate CNN Object Detector with Scale Dependent

Pooling and Cascaded Rejection Classifiers. In CVPR, pages

2129–2137, 2016. 3

[33] L. Zhang, L. Liang, X. Liang, and K. He. Is Faster R-CNN

Doing Well for Pedestrian Detection? In ECCV, pages 443–

457, 2016. 8

[34] Q. Zhu, Y. Mei-Chen, K.-T. Cheng, and S. Avidan. Fast hu-

man detection using a cascade of histograms of oriented gra-

dients. In CVPR, pages 1491–1498, 2006. 2

3513

