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Abstract

Many existing person re-identification (PRID) methods

typically attempt to train a faithful global metric offline to

cover the enormous visual appearance variations, so as to

directly use it online on various probes for identity match-

ing. However, their need for a huge set of positive training

pairs is very demanding in practice. In contrast to these

methods, this paper advocates a different paradigm: part

of the learning can be performed online but with nominal

costs, so as to achieve online metric adaptation for differ-

ent input probes. A major challenge here is that no posi-

tive training pairs are available for the probe anymore. By

only exploiting easily-available negative samples, we pro-

pose a novel solution to achieve local metric adaptation ef-

fectively and efficiently. For each probe at the test time, it

learns a strictly positive semi-definite dedicated local met-

ric. Comparing to offline global metric learning, its com-

putational cost is negligible. The insight of this new method

is that the local hard negative samples can actually pro-

vide tight constraints to fine tune the metric locally. This

new local metric adaptation method is generally applica-

ble, as it can be used on top of any global metric to enhance

its performance. In addition, this paper gives in-depth the-

oretical analysis and justification of the new method. We

prove that our new method guarantees the reduction of the

classification error asymptotically, and prove that it actu-

ally learns the optimal local metric to best approximate the

asymptotic case by a finite number of training data. Ex-

tensive experiments and comparative studies on almost all

major benchmarks (VIPeR, QMUL GRID, CUHK Campus,

CUHK03 and Market-1501) have confirmed the effective-

ness and superiority of our method.

1. Introduction

Person re-identification (PRID) generally refers to eval-

uating the similarity of a probe image from an unknown

person against a set of gallery images with known identi-

ties. The gallery images may be obtained from different

Figure 1. The overall idea of our proposed online local metric

adaptation approach. Unlike existing methods that learn a single

global metric for all probes, we exploit negative samples to learn

a dedicated local metric for each online probe.

cameras at a different time. This has been a critical yet very

challenging task in video surveillance [25]. The difficulties

are mainly due to the large and complex variations in the

visual appearances of a person under various views, poses,

illumination and occlusion conditions.

Recent attempts were based on learning a visual metric

to better capture the visual similarities [15, 12, 14, 20, 35,

36], and reported encouraging results. The training data for

such metric learning are generally sample pairs: a positive

pair refers to two images of the same identity, and a negative

pair otherwise. These methods typically attempt to train a

faithful global metric offline, hoping to cover the enormous

visual appearance variations so as to directly use it online

for all test probes. Thus they demand a huge set of positive

training pairs. Unfortunately, in practice, although it is rela-

tively easy to collect negative pairs, it is in general difficult

to obtain many positive pairs for a specific person. There-
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fore, the metrics learned from insufficient positive training

data are likely to be biased. In addition, it is computation-

ally intensive to learn a strictly positive semi-definite (PSD)

global metric, while ignoring the PSD constraint leads to

unstable and noisy metrics [15].

In contrast to these methods, this paper advocates a dif-

ferent paradigm: shifting part of the metric learning to on-

line local metric adaptation. Specifically, for each online

probe at the test time, our new approach learns a dedicated

local metric with a nominal computational cost. Combin-

ing a global metric with local metric adaptation achieves an

adaptive nonlinear metric. In our approach, its online learn-

ing is special, because there are no positive training pairs

available at all for the probe, as its identity is unknown.

An attractive property of our new method is that it only

uses negative data from a negative sample database (NDB).

We call it OL-MANS for short of online local metric adap-

tation via negative samples. For a given test probe, a subset

of samples from NDB are selected to form informative neg-

ative pairs with this test probe. These selected samples from

NDB are visually similar to the probe, but are guaranteed to

have different identities from the probe (at least with a very

large probability). These negative samples provide effective

local discrimination for further constraining the local metric

tuning, by pushing away local false positives, as illustrated

in Fig. 1. For each probe, our new method learns a strictly

positive semi-definite local metric efficiently, via solving

a kernel SVM problem. Comparing to offline global met-

ric learning, the computational cost of the proposed online

learning is negligible. Moreover, our method is generally

applicable, and can be used on top of any global metric.

A significant property of our new method is that it is jus-

tified and backed up with a theoretical guarantee to improve

the performance of the global metric. This paper gives

in-depth theoretical analysis to well justify the proposed

method. We first prove that this new method guarantees the

reduction of classification error asymptotically when there

are an infinite number of training data. Then we pursue

the best approximation of the asymptotic case by using a

finite number of training data. We prove that the learning

objective of the proposed local metric adaptation is equiv-

alent to the optimal approximation of the asymptotic case.

In addition, we also provide consistency and sample com-

plexity analysis. This indicates that the learned local metric

is bound to improve the PRID performances. These proper-

ties have been confirmed to be very effective and practical

by our extensive experiments and comparative studies on

several PRID benchmarks, including VIPeR, QMUL GRID,

CUHK Campus, CUHK03 and Market-1501.

2. Related Work

Existing metric learning-based PRID methods either

learn a single global metric or a local discrimination. Zheng

Figure 2. The improvement of ranking by our OL-MANS on

VIPeR [7]. BLUE boxes: input probes, RED: gallery targets. For

each case, top row is the ranking result from the baseline [15], and

bottom row is our ranking result. (Best view in color and enlarged)

et al. [35] proposed a relative distance comparison (PRDC)

method to maximize the probability of a positive pair to

have a smaller distance than a negative pair. Hirzer et

al. [8] relaxed the PSD constraint to simplify the computa-

tion. Liao et al. [14] learned a discriminant subspace and a

global distance metric simultaneously for dimension reduc-

tion and optimal dimensionality. A logistic metric learning

called MLAPG was proposed by Liao et al. [15] for a global

PSD metric via an asymmetric sample weighting strategy.

There were methods based on local strategies. Zhang

et al. [29] formulated the PRID problem as a local dis-

tance comparison problem to handle the multi-modal dis-

tributions of the visual appearances. Li et al. [12] proposed

the Locally-Adaptive Decision Functions (LADF) which in-

tegrates a traditional distance metric with a local decision

rule. Pedagadi et al. [22] employed the Local Fisher Dis-

criminant Analysis (LFDA) which combines the fisher dis-

criminant analysis (FDA) and Local Preserving Projections

(LPP) to exploit the local geometrical information of sam-

ples. Liong et al. [16] developed a regularized local met-

ric learning (RLML) method to combine global and local

metrics, so as to utilize the local data distribution to alle-

viate over-fitting. Zhang et al. [31] proposed LSSCDL to

learn a specific SVM classifier for each training sample,

then the weight parameters of a new sample can be inferred.

A novel multi-task maximally collapsing metric learning

(MtMCML) model was proposed by Ma et al. [20].

In contrast to methods learning a global metric, our pro-

posed method is mainly focused on learning local metrics

specifically adaptive to individual test probes. Different

from RLML that requires clustering in advance to obtain

the local data distributions, our new approach does not need

clustering but is rather instance-based learning, and thus

avoiding the risk of inaccurate clustering results. Also note

that MtMCML learning still follows the global manner al-

though it learns different metrics for different cameras. In

contrast to LADF that needs a large number of positive sam-

ple pairs to drive the local decision function learning, our

new approach only uses negative sample pairs which are

much easier to obtain. LSSCDL also requires a lot of pos-

itive training pairs for offline learning, but ours performs

online learning per probe without the requirement of posi-
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tive pairs.

3. Online Local Metric Adaptation via Nega-

tive Samples (OL-MANS)

3.1. Problem Setup

A single-shot PRID dataset consists of n pairs of identity

images {(xp
i , x

g
i )}

n

i=1 collected from two different disjoint

cameras: xp
i is from the probe camera and xg

i is from the

gallery camera. The index i = {1, 2, ..., n} represents the

identity label of n different persons. For training and testing

in PRID, all identity pairs can be divided into two disjoint

subsets {u1, u2, ..., um′} and {v1, v2, ..., vm} where n =
m+m′ and

Xtrain = X
p
train ∪ X

g
train =

{

xp
ui

}m′

i=1
∪
{

xg
ui

}m′

i=1

Xtest = X
p
test ∪ X

g
test =

{

xp
vi

}m

i=1
∪
{

xg
vi

}m

i=1

(1)

So that Xtrain is used as the training set and Xtest is the

test set. In our algorithm, an additional negative sample

database, denoted by Yneg = {yi}
k

i=1, is needed, and will

be discussed shortly in Sec. 3.3.

3.2. Conventional Global Metric Learning

Conventional learning-based PRID methods [14, 35, 26,

15] aim to learn a single global Mahalanobis distance metric

MG by using the training set Xtrain. The learned metric

MG projects the original samples into another feature space,

and the matching between one probe xp
i and one gallery

image xg
j at test stage is measured by:

dMG

(

xp
i , x

g
j

)

=
∥

∥xp
i − xg

j

∥

∥

2

MG
=

(

xp
i − xg

j

)T
MG

(

xp
i − xg

j

)

(2)

where MG = WT W � 0 needs to be positive semi-definite,

as W is the learned projection. Different methods adopt

different loss functions to learn MG, and a good solution

to MG should align the similarity structure in the projected

feature space, so as to pull the samples from the same iden-

tity group closer and to make different identities more dis-

criminative. Due to the fact that the global metric does not

aim to fit the local distributions for all the samples specif-

ically, it may lead to large biases and distortions in some

places in the feature space. As illustrated in Fig. 1, our new

approach puts an instance-based online local metric adapta-

tion on top of the global metric.

3.3. Instance­based OL­MANS

In this paper, we propose an online local metric adap-

tation algorithm called OL-MANS to adaptively adjust the

metric dedicated to specific test probes with minimum on-

line training by utilizing only negative training samples.

Specifically, for a probe image xp
vi

in the probe set X
p
test,

we aim to learn a local Mahalanobis distance Mi
L only using

Figure 3. The local metric Mi
L for x̂p

vi
can push the closest nega-

tive sample ŷj of x̂p
vi

away from the local region Ω(x̂p
vi
)

the samples in a negative sample database Yneg as training

data. This negative sample database provides rather faithful

negative samples to the tests with a large probability. There

are many ways to collect Yneg , e.g., data from a different

benchmark can be used, or false positive matches from im-

ages that do not contain humans. The insight here is that all

such negative samples are “hard negatives” for the probes.

In this research, we have investigated how Yneg influences

the performance. This study is presented as the supplemen-

tary material due to the page limit.

As the global projection W learned by the global metric

learning maps X
p
test to a low dimensional subspace X̂

p

test =
WX

p
test =

{

x̂p
vi

}m

i=1
, we propose to further adjust the local

similarity for each specific x̂p
vi

by an online learned local

metric Mi
L which is solely learned from Yneg .

We propose to pursue an optimal PSD Mahalanobis met-

ric Mi
L for the local adaptation, by maximizing the distance

to the closest (or “hardest” conceptually) negative sample

of x̂p
vi

, as shown in Fig. 3:

Mi
L = arg max

Mi
L
�0

(

min
1≤j≤k

(

x̂p
vi
− ŷj

)T
Mi

L

(

x̂p
vi
− ŷj

)

)

(3)

where ŷj = Wyj is the projected negative sample based on

the global metric. We regularize Mi
L for a stable solution.

This can be done via minimizing the norm under a fixed

margin constraint, instead of maximizing the margin under

a fixed norm constraint [6], so the alternative objective is:

Mi
L = argmin

Mi
L

1

2

∥

∥Mi
L

∥

∥

2

sub to :
(

x̂p
vi
− ŷj

)T
Mi

L

(

x̂p
vi
− ŷj

)

≥ 2, ∀1 ≤ j ≤ k

Mi
L � 0

(4)

where the constant 2 is arbitrary only for manipulation con-

venience. While this is a convex semi-definite programming

problem, it can be very slow for high dimensional data, even

for the state-of-the-art PSD solvers.

In the proposed OL-MANS approach, we relax the PSD

constraint requiring Mi
L � 0, but we prove below that the

relaxed objective is equivalent to a kernel SVM problem

with a quadratic kernel. And thus the solution is still a PSD

metric. In addition, it can be readily solved with off-the-
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shelf SVM solvers such as LIBSVM [2]. More importantly,

we also prove that this learning objective is equivalent to

the best approximation to the asymptotic classification er-

ror, which is proved to be lower than the global metric (de-

tails see Sec. 4 and supplementary materials).

Theorem 1 The solution to Eqn. 4 is equivalent to a kernel

SVM with k(x, y) = 〈x, y〉
2

on {ỹ0, ỹ1, ỹ2, ..., ỹk} where

ỹj = x̂p
vi
− ŷj (for j ≥ 1), and ỹ0 = x̂p

vi
− x̂p

vi
= 0.

Proof 1 Define auxiliary labels by:

ζj =

{

−1, j = 0
1, j 6= 0

(5)

so the objective Eqn. 4 can be rewritten as:

M
i
L = argmin

M
i
L

1

2

∥

∥M
i
L

∥

∥

2

sub to : ζj
(

ỹTj M
i
Lỹj − 1

)

≥ 1, ∀ 0 ≤ j ≤ k
(6)

Eqn. 6 is exactly an SVM problem with quadratic kernel

and with bias fixed to one. Next we prove the solution to

objective Eqn. 6 is exactly the same as that to the original

objective Eqn. 4. Consider the dual of the SVM, the optimal

solution M
i
L has the form:

M
i
L =

k
∑

j=0

αjζj ỹj ỹ
T
j , αj ≥ 0 (7)

Since ỹj ỹ
T
j is PSD for j ≥ 1 ( ỹ0ỹ

T
0 = 0 ) and ζj = 1 for

j ≥ 1, so we have:

M
i
L =

k
∑

j=0

αjζj ỹj ỹ
T
j =

k
∑

j=1

αj ỹj ỹ
T
j � 0 (8)

It is obvious that the positive semi-definiteness of Mi
L is

guaranteed even if no PSD constraint is explicitly imposed

in our learning objective Eqn. 6.

3.4. Person Re­identification via OL­MANS

At the online test stage, for a probe xp
vi

from X p
test and

one gallery image xg
vj

from X g
test, our method combines a

global metric MG (with flexible choices) with our local met-

ric adaptation Mi
L to achieve an adaptive nonlinear metric:

d(xp
vi
, xg

vj
) = dMG

(xp
vi
, xg

vj
) + λdML

(xp
vi
, xg

vj
)

= (xp
vi
− xg

vj
)T WT (I + λMi

L)W(xp
vi
− xg

vj
)

(9)

where MG = WT W is an learned global metric and Mi
L is

the local metric adaptation specific for xp
vi

. λ is the weight-

ing parameter which can be decided by cross-validation. In

this paper, we set λ by Eqn. 10 in all the experiments (de-

tails please see the supplementary materials).

λ = max
1≤j≤m′

(

dMG
(xp

vi
, ygvj

)
)

/ max
1≤j≤m′

(

dML
(xp

vi
, ygvj )

)

(10)

4. Theoretical Analysis and Justification

We first prove that the asymptotic error by using the

proposed OL-MANS is bound to be lower than that with-

out. When the negative samples are truly hard negative

ones, the asymptotic error by using OL-MANS can be very

close to the Bayesian error (Sec. 4.1). Besides this theoret-

ically meaningful result, we prove that this strong asymp-

totic error can actually best approximated by using finite

data, which is practically also meaningful. More impor-

tantly, we prove that this approximation is actually achieved

by OL-MANS (Sec. 4.2). We also present its consistency

and sample complexity analysis in Sec. 4.3.

4.1. Asymptotic Error is Reduced

The core of PRID is indeed a two-class (ω+ and ω−)

1-Nearest neighbor (NN) classification problem by using

the gallery set D. If there is infinite number of data, it is

well-known that its asymptotic error P(e|x) is bounded by

2 times the Bayesian error [4]:

P∗ ≤ P(e|x) = 2P (ω+|x)P (ω−|x) ≤ 2P∗ (11)

where P∗ is the Bayesian error. In our work, we prove that

by adding the hard negative samples xa to D to form an aug-

mented dataset Da, the asymptotic error Pa(e|x) by using

Da is always smaller than P(e|x):

Pa(e|x) ≤ P(e|x) (12)

Theorem 2 For an input x, its NN is x′ in Da. Define the

probability that x′ is an augmented data xa, i.e., x′ ∼ xa

as P (x′ ∼ xa) = q; otherwise, x′ is not an augmented data

xa, i.e., x′¬xa, P (x′¬xa) = 1 − q, where 0 ≤ q ≤ 1. The

asymptotic error Pa(e|x) by using Da is:

Pa(e|x) =
(2− q)P(e|x)

2− 2qP(e|x)
≤ P(e|x) (13)

Proof 2 Due to the page limit, please see the proof in the

supplementary materials.

Since q is the probability of P (x′ ∼ xa), 0 ≤ q ≤ 1. If

q = 0 which indicates that the augmented negative data are

useless, then we have P a(e|x) = P (e|x). Another extreme

is when q = 1 implying the negative data are abundant and

effective to constrain the classification, then we have 1

Pa(e|x) =
P(e|x)

2[1− P(e|x)]
≤ P(e|x) (14)

In this case, when P(e|x) is very small, we have

Pa(e|x) ≃
P(e|x)

2
≃ P∗(e) (15)

The asymptotic error of our negative-augmented approach

can be very close to the Bayesian error.

1P(e|x) ≤
1

2
is always true.
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4.2. Finite Approximation to Pa(e|x)

The asymptotic error Pa(e|x) in Eqn. 13 is only mean-

ingful when the sample size is infinite, n → ∞. However,

in practice, only finite number of samples are available. To

make it practically meaningful, we prove that it can be best

approximated by the practical error rate Pn(e|x) (n is fi-

nite) by finding a local metric ML. And this local metric

turns out to be the one for the proposed OL-MANS.

Still consider the 2-class 1-NN rule scenario (on the

negative-augmented data Da). To make the notation less

cluttered, here we use P(e|x) to indicate Pa(e|x) without

confusion. Given a sample x and its nearest neighbor x′

from the finite dataset containing n samples. The probabil-

ity of error for x is:

Pn(e|x) = P (ω+|x)P (ω−|x
′) + P (ω−|x)P (ω+|x

′)

= P(e|x) + [P (ω+|x)− P (ω−|x)][P (ω+|x)− P (ω+|x
′)]

Our goal is to find a best local metric Mx for x such that

the conditional MSE minMx
E{[Pn(e|x) − P(e|x)]2|x} is

minimized. Since [P (ω+|x) − P (ω−|x)] is constant for a

given x, so the minimization is equal to:

min
Mx

E{[P (ω+|x)− P (ω+|x
′)]2|x} (16)

Because P (ω+|x
′) ≃ P (ω+|x) + ∇P (ω+|x)

T (x′ − x),
Eqn. 16 is approximately equivalent to:

min
Mx

E{‖∇P (ω+|x)
T (x′ − x)‖2|x} (17)

The core here is to compute the gradient of posterior

∇P (ω+|x). Recall our proposed OL-MANS approach, a

local linear classifier w where Mx = wwT is learned for

sample x via a standard kernel SVM framework. So the

posterior of x in a logistic sigmoid function form is:

P (ω+|x) =
1

1 + eζx(wT x+b)−γ
, P (ω−|x) = 1− P (ω+|x)

(18)

The gradient of P (ω+|x) can be easily computed:

∇P (ω+|x) = ζxP (ω+|x)P (ω−|x)w (19)

Substituting Eqn. 19 for ∇P (ω+|x) in Eqn. 17 gives us:

min
Mx

E{‖ζxP (ω+|x)P (ω−|x)w
T (x′ − x)‖2|x}

= min
Mx

(x′ − x)T wwT (x′ − x)
(20)

Recall our optimization objective Eqn. 6, for the positive

samples, we have 1 − (x′ − x)T Mx(x
′ − x) ≥ 1 which is

equal to (x′ − x)T Mx(x
′ − x) ≤ 0. On the other hand,

(x − x′)T Mx(x − x′) ≥ 0 is always true for a PSD Mx,

so (x′ − x)T Mx(x
′ − x) ≡ 0 always holds. It is obvious

Eqn. 20 is always optimized by adopting the local metric

Mx learned by our algorithm Eqn. 6.

4.3. Consistency and Sample Complexity Analysis

A set of samples {x0, x1, ..., xk} is identically drawn

from a D-dimensional space D ∈ R
D where li is the la-

bel of xi, then a paired sample set Spair
k = {si}

k
i=1 =

{(x0, xi)}
k
i=1 of size k is formed. For our proposed learning

objective Eqn. 6, the true risk over the whole distribution D

and the empirical error based on Spair
k are defined as:

Errλ(ML,D) = Exi,xj∼Dφ
λ(ML, (xi, xj))

Errλ(ML, S
pair
k ) =

1

k

k
∑

i=1

φλ(ML, si)

where φλ (ML, si) is the hinge loss function:

φλ(ML, si) = λ[ζi
(

(xi − x0)
T ML(xi − x0)

)

− γζi ]+

where ζi = −1 if li = l0 and 1 otherwise, [A]+ =
max(0, A) is the hinge loss and γζi is the desired mar-

gin between samples. The empirical risk minimizing met-

ric based on Spair
k can be readily defined as M∗

L =

argminML
Errλ(ML, S

pair
k ). Our goal is to compare the

generalization performance of M∗
L over the unknown D.

Theorem 3 Let φλ(ML, si) be a distance-based loss func-

tion that is λ-Lipschitz in the first argument. Then with

probability at least 1−δ over {s1, ..., sk} from an unknown

B-bounded-support (each (x, l) ∼ D, ||x|| ≤ B) distribu-

tion D, we have:

Sup
ML∈M

[

Errλ(ML,D)− Errλ(ML, S
pair
k )

]

≤ O
(

λB2
√

D ln(1/δ)/k
)

(21)

Theorem. 3 proves that to achieve an estimation error rate ǫ,
k = Ω

(

(λB2/ǫ)2D ln(1/δ)
)

samples are sufficient.

Theorem 4 Let ML be any class of weighting metrics

on the feature space X = R
D, and define d :=

Sup
ML∈M ‖ML‖

2
F . Following the same parameter setting

in Theorem. 3, we have:

Sup
ML∈M

[

Errλ(ML,D)− Errλ(ML, S
pair
k )

]

≤ O
(

λB2
√

d ln(1/δ)/k
)

(22)

From Theorem. 4, we observe that if the learned met-

ric ML has a low metric learning complexity d ≪ D,

it can help sharpen the sample complexity result, yielding

a dataset-dependent bound. Recall our objective Eqn. 6,

d := SupML∈M ‖ML‖
2
F is already optimized via our pro-

posed learning objective. Therefore, the bound is further

tighter under the same number of samples.
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5. Experiments

5.1. Experiment Settings

Data & Evaluation. We have performed thorough ex-

periments and comparative studies to evaluate our method

on five most widely-used benchmark datasets: VIPeR [7],

QMUL GRID [19], CUHK Campus [10], CUHK03 [11]

and Market-1501 [34]. The last three large-scale datasets

are pretty challenging due to the extremely complicated

variance of person appearance and abundant distractors. For

a fair comparison, the training data of each dataset are used

as the negative training samples for itself Yneg = Xtrain, so

no more extra information is utilized in the experiment. For

all the experiments, the single-shot evaluation setting (ex-

cept for the CUHK Campus dataset where the multi-shot

matching setting is applied) is adopted and all the results

are shown in the form of Cumulated Matching Characteris-

tic (CMC) curves. Due to space limitation, we only report

the cumulated matching accuracy at selected ranks in tables.

The plot of the full curve is included in the supplementary

materials.

Feature. The recently proposed high-dimensional fea-

ture LOMO [14] is adopted as the visual feature represen-

tation. Since it is not practical to directly use such a high

dimensional feature in metric learning, we employ principal

component analysis (PCA) to reduce the feature dimension.

Baselines. For fair comparisons, several global metric

learning approaches [15, 14, 30] whose code is available to

access and the feature can be replaced are compared to our

proposed method under the same experiment setting and

using the same LOMO feature. Besides, the most recent

state-of-the-art published results are also reported for a thor-

ough comparison. For all the experiments, the global metric

learner, MLAPG [15] is chosen as the underlying baseline

so that our online local metric adaptation algorithm is ap-

plied on top of it.

5.2. Influence of Global Metric Learning Quality

Our proposed OL-MANS algorithm is applied on top

of a global metric MG, thus its overall performance may

depend on the learning quality of adopted global metric

learner. In order to verify whether our OL-MANS can al-

ways be helpful, global metrics obtained at various learning

stages of a global metric learner [15] are tested, as in general

the performance of a global metric learner improves with

more training (e.g., more training iterations). As shown in

Fig. 4, even the learned global metric does perform poorly

(in its early training stages), our online local metric adap-

tation is able to consistently and significantly improve the

performances by a large margin. This is because the lo-

cal discriminative information introduced by hard negative

samples is able to capture the specific crux of one identity

which is quite helpful for identification.
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Figure 4. Demonstration about the influence of the quality of

global metric. The x-axis means the maximum iteration time for

global metric learning and the y-axis is the identification rate.

Methods GRID VIPeR

R=1 R=20 R=1 R=20

Euc 9.12 29.76 15.32 50.66

Euc+OL-MANS 20.88 45.12 21.99 56.11

XQDA[14] 12.96 43.52 38.99 91.94

XQDA+OL-MANS 29.20 50.96 43.54 92.15

MLAPG[15] 17.60 56.08 40.28 93.39

MLAPG+OL-MANS 30.16 59.36 44.97 93.64

DNSL[30] 15.12 53.12 40.19 93.54

DNSL+OL-MANS 28.96 56.96 43.67 93.61

Table 1. Comparison of identification rate with/without proposed

OL-MANS on VIPeR and GRID. All the experiments are under

the same setting and use the same LOMO feature. +OL-MANS

means implementing our OL-MANS on the original global metric

learner. Red represents the better results.

5.3. Influence of Global Metric Learner Choice

An interesting question is whether our OL-MANS can

always work for any global metric learners as promised.

To verify it, we conduct the following experiment that dif-

ferent kinds of global metric learners, Euclidean distance,

XQDA [14], MLAPG [15] and DNSL [30] are adopted as

the underlying global metric that our OL-MANS algorithm

will be readily applied on. For each learner, we compare

the identification rates without and with our online local

metric adaptation. The 10-run-average results on VIPeR

and GRID datasets are reported in Table. 1, as well as the

complete CMC curves (included in the supplementary ma-

terials). We observe that for all the learners, our proposed

online local metric adaptation algorithm is able to boost

the identification performance with a significantly improve-

ment, even double the identification accuracy (on GRID).

Even for the most state-of-the-art global metric learner [30],

applying our OL-MANS to it can still achieve a non-trivial

improvement.

5.4. Training Costing Analysis and Comparison

Although every test probe needs to learn a local Maha-

lanobis metric at the test stage, solving a kernel SVM prob-

lem instead of solving the original PSD problem makes the

learning efficient and largely reduces the training time. Ta-
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Method ITML [5] MLAPG [15] LADF [12]

Ave Time 20.5 25.8 31.7

Method LMNN [27] PRDC [36] OL-MANS

Ave Time 152.9 394.6 4.8

Table 2. Average training time (seconds) on VIPeR.

Method XQDA [30] MLAPG [15] MFA [28]

Training 3233.8 2732.8 437.8

Method kLFDA [28] DNSL [30] OL-MANS

Training 995.2 3149.7 19.60

Table 3. Training time (seconds) on the Market-1501.

ble. 2 2 provides a thorough comparison of average train-

ing time of various state-of-the-art metric learning-based

methods on VIPeR dataset. Besides, Table. 3 shows the

training time of different advanced global metric learners

on a large-scale dataset, Market-1501. All the experiments

are conducted on a remote server with an Intel i7-5930K

@3.50GHz CPU and 32G memory. The total average train-

ing time of our method on VIPeR is only 4.81 seconds

for the adaptation of all the 316 probes, much shorter than

learning a single global metric in 25.82 seconds. For the

large scale dataset Market-1501, the efficiency advantage

of ours is much more pronounced. Our local metric adapta-

tion time is 10 ∼ 100 times less than the other global metric

learners. So the extra time spent in our local metric adap-

tation is indeed nominal compared with learning a global

metric.

5.5. Extensive Comparisons on Benchmarks

Experiments on VIPeR: The VIPeR dataset [7] is a

widely used benchmark dataset for PRID. It contains 632

pedestrian image pairs taken from 2 different cameras in an

outdoor environment. We follow the widely adopted exper-

imental protocol on VIPeR: 632 pairs are randomly divided

into half for training and the other half for testing, and use

10-run-average for performance. We conducted the com-

parison experiment under the same experiment setting and

using the same LOMO feature and the results are reported

in Table. 4. Our proposed algorithm achieves the best per-

formances on all the ranks. For the important Rank-1 evalu-

ation, our performance 44.97% outperforms the second best

approach LSSCDL by 2.31%. This promising performance

indicates that the proposed local metric adaptation method

is consistently effective, several representative examples are

shown in Fig. 2. Besides, more results on state-of-the-art

comparison are included in the supplementary materials.

Experiments on QMUL GRID: The QMUL under-

Ground Re-IDentification (GRID) dataset [19] contains 250

2The total learning time of OL-MANS includes the local metric adap-

tation time and gallery ranking time for all probes.

Method R=1 R=5 R=10 R=20

Ours 44.97 74.43 84.97 93.64

LSSCDL[31] 42.66 - 84.27 91.93

DNSL[30] 42.28 71.46 82.94 92.06

MLAPG[15] 40.73 69.94 82.34 92.37

XQDA[14] 40.00 68.13 80.51 91.08

TMA[21] 39.88 - 81.33 91.46

KISSME[9] 34.81 60.44 77.22 86.71

ITML[5] 24.64 49.78 63.04 78.39

LMNN[27] 29.43 59.78 73.51 84.91

kCCA[17] 30.16 62.69 76.04 86.80

MFA[28] 38.67 69.18 80.47 89.02

kLFDA[28] 38.58 69.15 80.44 89.15

Table 4. Comparison results on VIPeR (P = 316). All the methods

use the same LOMO feature. RED color is the best result and

BLUE color is the second best one.

Method R=1 R=5 R=10 R=20

Ours 30.16 42.64 49.20 59.36

LSSCDL(LOMO)[31] 22.40 - 51.28 61.20

DNSL(LOMO)[30] 15.12 31.92 40.72 53.12

MLAPG(LOMO)[15] 17.60 33.52 43.36 56.08

XQDA(LOMO)[14] 12.96 26.80 34.56 43.52

EPKFM[3] 16.30 35.80 46.00 57.60

MtMCML[20] 14.08 34.64 45.84 59.84

RQDA[13] 15.20 30.08 39.20 49.28

M-RankSVM[18] 12.24 27.84 36.32 46.56

M-PRDC[18] 11.12 26.08 35.76 46.56

PRDC[36] 9.68 22.00 32.96 44.32

Table 5. Comparison results on GRID (P = 900).

pedestrian image pairs taken from 8 disjoint camera views

and 775 additional images that do not belong to the 250

persons. GRID is also a pretty tough dataset because of

the large viewpoint variations and the low-resolution image

quality. The experimental protocol for GRID is the same

as [15, 3, 20]: we randomly divide the 250 identities into

half for training and the other half for testing as well as

the extra 775 images are used as distractors to enlarge the

gallery set. The average performance of 10 random trials

is provided in Table. 5. It can be clearly observed that the

proposed algorithm outperforms all the existing algorithms

at Rank-1 by a very significant 7.76% improvement on the

identification rate. Although the GRID dataset is more chal-

lenging than VIPeR, our proposed algorithm can still han-

dle it well by adapting the local similarity structure of each

probe.

Experiments on CUHK Campus: The CUHK Campus

dataset [10] consists of 971 persons captured from two cam-

era views in a campus environment, two images per person

in each camera view. We split the set to 485 for training and

486 for testing and multi-shot matching scenario is applied

to CUHK Campus dataset for evaluation [14, 1, 23, 28]. We
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Method R=1 R=5 R=10 R=20

Ours 68.44 87.16 92.67 95.88

LSSCDL[31] 65.97 - -

DNSL(LOMO)[30] 64.98 84.96 89.92 94.36

MLAPG(LOMO)[15] 64.24 85.41 90.84 94.92

XQDA(LOMO)[14] 63.21 83.89 90.04 94.16

kFLDA(LOMO)[28] 54.63 80.45 86.87 92.02

MFA(LOMO)[28] 54.79 80.08 87.26 92.72

kCCA(LOMO)[17] 54.63 80.45 86.87 92.02

IDLA[1] 47.53 - - -

Mid-L-F[33] 34.30 - 64.96 74.94

TSRPR[23] 32.70 51.20 64.40 76.30

SalMatch[32] 28.45 - 55.67 67.95

K-Ensb2[28] 24.00 38.90 46.70 55.40

Table 6. Comparison results on CUHK Campus (P = 486).

Method R=1 R=5 R=10 R=20

Ours 61.68 88.39 95.23 98.47

MLAPG(LOMO) [15] 57.96 87.09 94.74 98.00

XQDA(LOMO) [14] 52.20 82.23 92.14 96.25

DNSL(LOMO) [30] 58.90 85.60 92.45 96.30

DeepReID[11] 20.65 51.50 66.50 80.00

Im-Deep[1] 54.74 86.50 93.88 98.10

Table 7. Comparison results on CUHK03 Labeled (P=100).

Method R=1 R=5 R=10 R=20

Ours 62.71 87.59 93.80 97.55

MLAPG(LOMO)[15] 51.15 83.55 92.05 96.90

XQDA(LOMO)[14] 46.25 78.90 88.55 94.25

DNSL(LOMO)[30] 53.70 83.05 93.00 94.80

DeepReID[11] 19.89 50.00 64.00 78.50

Im-Deep[1] 44.96 76.01 83.47 93.15

Table 8. Comparison results on CUHK03 Detected (P = 100).

evaluate the performance by fusing scores of all the probe

images of the same identity. As shown in Table. 6, the pro-

posed method consistently outperforms other state-of-the-

art methods in all identification rates.

Experiments on CUHK03: The CUHK03 dataset [11]

contains 13164 images of 1360 pedestrians. All the images

are captured by six surveillance cameras. Each person is ob-

served by two disjoint camera views with an average of 4.8

images in each view. Two kinds of data are provided: man-

ually cropped pedestrian images and images detected with a

pedestrian detector. We follow the same experimental pro-

tocol [11, 15, 14]: splitting all the pedestrians into a training

set of 1160 persons and a test set of 100 persons. The results

in Table. 7 and Table. 8 show that for both two datasets, the

proposed algorithm achieves the best performances at all

ranks. It outperforms the second best approach by almost

10% in Rank-1 rate, even for the data under such a compli-

cated practical situation, which is very significant.

Experiments on Market-1501: Market-1501 [34] is the

Methods Single-Q Multi-Q

R=1 R=20 R=1 R=20

Baseline[34] 35.84 67.64 44.36 73.25

Kissme(LOMO)[34] 40.50 N/A N/A N/A

MFA-χ2(LOMO)[28] 45.67 N/A N/A N/A

kLFDA(LOMO)[28] 51.37 N/A 52.67 N/A

Hist-Loss[24] 59.47 91.09 N/A N/A

Euc(LOMO) [34] 32.93 63.87 40.33 69.40

Euc+OL-MANS 40.93 74.06 51.45 80.98

MLAPG(LOMO)[15] 43.87 88.40 61.33 96.40

MLAPG+OL-MANS 44.93 89.20 62.40 94.27

XQDA(LOMO)[14] 45.87 81.73 56.27 85.07

XQDA+OL-MANS 51.87 84.40 74.00 94.00

DNSL(LOMO)[30] 51.73 88.67 57.70 88.59

DNSL+OL-MANS 60.67 91.87 66.80 92.19

Table 9. Comparison results on the Market-1501 database under

both single-shot and multiple-shot evaluation settings. Red rep-

resents the better result.

largest image-based PRID benchmark dataset to date which

contains 32668 bboxes of 1501 identities. Each person is

recorded by six cameras at most, and two at least. For

training and testing, the given fixed training and test set

are utilized and both single-shot and multi-shot settings are

used for evaluation. As shown by Table. 9, directly using

Euclidean distance without metric learning and a state-of-

the-art deep embedding-based method [24] are compared

as baselines. We perform our OL-MANS to different global

metric learners [15, 14, 30] based on the same LOMO fea-

tures and experiment setting. As shown by the result, for all

the global metric learners even for the Euclidean distance, a

significant improvement on Rank-1 can be achieved by per-

forming our OL-MANS algorithm to it, no matter under the

single-shot or multi-shot evaluation setting.

6. Conclusions

In this paper, we proposed a novel online local metric

adaptation algorithm to learn a dedicated Mahalanobis met-

ric for each probe at the test stage. Our new approach only

uses negative samples for metric adaptation, which is prac-

tical in real situation. It largely reduces the demand for a

large number of positive training data as in existing PRID

methods, and it only incurs minimum computational costs

to perform online training. In-depth theoretical analysis

well justifies our algorithm and extensive experiments also

demonstrate that our new approach consistently and signif-

icantly outperforms the state-of-the-art methods.
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