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Abstract

Convolutional neural networks showed the ability in

stereo matching cost learning. Recent approaches learned

parameters from public datasets that have ground truth dis-

parity maps. Due to the difficulty of labeling ground truth

depth, usable data for system training is rather limited,

making it difficult to apply the system to real applications.

In this paper, we present a framework for learning stereo

matching costs without human supervision. Our method up-

dates network parameters in an iterative manner. It starts

with a randomly initialized network. Left-right check is

adopted to guide the training. Suitable matching is then

picked and used as training data in following iterations.

Our system finally converges to a stable state and performs

even comparably with other supervised methods.

1. Introduction

Stereo matching is a fundamental problem in computer

vision for estimating depth from digital images. As shown

in Figure 1, stereo matching takes two images of the same

scene after rectification and outputs the disparity map by

computing relative displacement of pixels between these

two images. Finally, relative depth can be obtained accord-

ing to the disparity map.

Along the pipeline of stereo matching, computing and

aggregating the matching cost are the two key steps [10].

Several methods are developed to estimate distances vary-

ing from pixel space to feature space. Recently, convo-

lutional neural networks (CNN) were exploited to learn

the matching cost of two image patches for stereo vision

[33, 8, 3, 18, 32]. These approaches treat the matching-cost

problem as a binary classification one. Given two patches,

the network predicts whether the two patches match or not.

The probability is directly taken as the initial matching cost.

Afterwards, cost aggregation updates local information ac-

cording to image structure.

∗This work is in part supported by a grant from the Research Grants

Council of the Hong Kong SAR (project No. 413113).

Figure 1: Stereo matching approaches take left and right

images as input as shown in (a) and (b), and output the dis-

parity map (c).

Problems of Current CNNs Current CNN-based ap-

proaches improve performance in stereo matching in chal-

lenging public benchmark [6, 28, 23]. However, they do

not produce similarly satisfying results for real-life photos.

It is due to the limitation of currently available training data.

First, most datasets are of specific scenes. For example, the

KITTI dataset is for autonomous driving and all image pairs

are taken with street views. Networks trained on them can

hardly perform similarly well in general scenes.

Second, sizes of datasets with real photos are small.

Large-scale depth data [20, 5] are mostly synthesized from

3D models. Images in these datasets are different from real-

world images in appearance and structure. On the other

hand, collecting high-accuracy depth data from stereo im-

age pairs in various scenarios is very difficult, because of

involvement of 3D sensors such as light detection and rang-

ing (LIDAR). In short, the insufficient-data problem largely

hinders this community from developing more advanced so-

lutions or making better use of learning in stereo matching.
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Our Contribution To address the data limitation prob-

lem, we in this paper propose an unsupervised learning

scheme for stereo matching, which enables learning for di-

verse scenarios without labeled matching ground truth. As

shown in Figure 3, our approach takes rectified left and right

images without ground truth disparity as input, and predicts

the disparity map.

The framework starts from a random disparity map and

updates network parameters in an iterative manner. To bet-

ter learn the disparity map, we develop a new network archi-

tecture as illustrated in Figure 2. The left and right images

are fed into the cost-volume branch (CVB) to produce the

cost-volume. To incorporate color information from the in-

put images, we extract feature by the image-feature branch

(IFB). Afterwards, each channel of the cost-volume is con-

catenated with the input image feature, processed by the

joint filtering branch (JFB) for cost aggregation. We finally

produce the disparity map using the Soft Argmax operator

from the aggregated cost-volume.

Experiments show that our framework is suitable for

matching data from different scenarios and achieves reason-

able performance. The major contributions are threefold.

• We learn stereo matching without matching ground

truth.

• We develop a CNN framework with branches for spe-

cific tasks in stereo matching learning.

• We conduct evaluation to show that our unsupervised

learning method accomplishes comparable results with

other strong-supervising schemes.

2. Related Work

We in this section review related stereo matching

schemes and deep learning techniques.

Traditional Stereo Matching Early stereo matching

methods [12, 13] refine initial matching costs computed

with various metrics such as Euclidean distance of pixel

values. Fitting hyper-parameters of graphical models [16,

26, 34] with ground truth data was also popular. Estimating

confidence of computed matching costs is studied in recent

work [7, 27]. These methods train a random forest classifier

to either combine several confidence measures or integrate

with a Markov random field.

CNN-based Matching Cost Learning Convolutional

neural network (CNN) has also been widely applied to

matching cost learning. Zbontar and LeCun [33] formu-

lated matching as a binary classification problem to deter-

mine if two patches match using the network. The siamese

architecture contains two branches with the same structure

and sharing the same set of weights. Later methods fol-

lowed this work improved network architecture. Match-

Net [8] adopts AlexNet [14]. Pooling layers are used to

reduce feature dimension and increase robustness against

scale variation. Chen et al. [3] solved the scale problem

where two siamese networks receiving the same patch pairs

with different scales produce matching scores respectively.

The final score is weighted average of the two.

To speed up training and testing, Luo et al. [18]

simplified the metric network as an inner product layer.

Zagoruyko and Komodakis [32] conducted study on the

performance of different network architectures in match-

ing cost computation. Dosovitskiy et al. [5] proposed an

end-to-end optical flow estimation network by introducing

the correlation layer that produces cost-volume given fea-

ture representation of each image patch. The performance

of these methods is highly dependent of their training data.

Different from all above stereo matching methods, we

explore the possibility of training matching cost networks

without human supervision.

Unsupervised Deep Learning Unsupervised learning is

popular in deep learning and was applied to video predic-

tion [19], auto-encoder [11, 24, 25], visual representation

[4, 29], to name a few. There are also nice work of unsu-

pervised learning of edges [17] and optical flow [31]. Li et

al. [17] exploited the relevance of motion boundaries and

object edges. Alternating between motion estimation and

edge detection forms the basic step of edge learning. Yu

et al. [31] defined a loss function with data and smooth-

ing terms analogous to objective functions in energy min-

imization schemes. Thus this method is up-bounded by

the optimal solution of the loss function. In contrast, our

method defines matching as a classification problem, which

is solved better in occluded regions.

Unsupervised Optical Flow Optical flow estimation and

stereo matching are two closely related problems. Recently,

unsupervised deep learning [1] and [31] for optical flow

estimation were proposed. With slight modification, these

frameworks can be applied to stereo matching. Both meth-

ods use traditional optical flow energy functions as the loss

function in their neural networks. The key difference be-

tween our method and these ones is that we can update our

network in an iterative way by gradually adding useful train-

ing data. Our framework is therefore simple and powerful.

3. Unsupervised Stereo Matching Learning

We in this section detail our unsupervised stereo match-

ing scheme and the corresponding convolutional neural net-

works.
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Figure 2: Our stereo matching learning network takes stereo images as input, and generates a disparity map. The architecture

is with two branches where the first is for computing the cost-volume and the other is for jointly filtering the volume.

Algorithm 1 Iterative Unsupervised Learning

1: for t = 0 . . .T do

2: Obtain matches ML(t)
and MR(t)

using parameter

Et−1

3: Select confidential matches M t from ML(t)
and

MR(t)

4: Sample training data P t from I using M t

5: Train new parameter Et using P t

6: end for

7: return ET

3.1. Stereo Matching Learning Network

As shown in Figure 2, our stereo matching network is an

end-to-end trainable framework taking stereo image pairs as

input, and produce the disparity maps. Our network mainly

includes cost-volume computation, cost-volume aggrega-

tion and disparity prediction. The detailed configuration is

shown in Table 1. We explain them in what follows.

Cost-volume Computation As shown in Figure 2, we

compute the cost-volume in the corresponding branch,

which takes the left and right images as input, and gener-

ate the cost-volume. This branch employs the siamese ar-

chitecture containing eight convolutional layers. Each layer

is followed by batch normalization and ReLU. These lay-

ers produce feature maps for all patches of the two images.

The maps are then fed into a correlation layer to compute

the cost-volume. The correlation layer is the same as that of

[21]. Detailed configuration is included in Table 1.

Cost-volume Aggregation Previous methods used edge-

preserving filter to aggregate the cost-volume. We instead

use an image-feature network to learn this process consid-

ering image structure. As shown in Figure 3, it extracts fea-

tures from the two input images, similar to the scheme of Li

et al. [15]. There are three convolutional layers followed by

ReLU. They extract features (Fc) with size 1× h×w from

the input h× w-pixel image.

After getting image features, we apply the joint filter-

ing branch to incorporate the cost-volume with the color

information from input. The feature (Fc) is concatenated

with each channel of the cost-volume, and is further pro-

cessed by three convolutional layers to produce the final

cost-volume. This mimics the process of volume aggrega-

tion in traditional stereo matching methods. The learning

scheme performs better because it automatically finds suit-

able parameters. We will discuss the performance details

later.

Disparity Prediction With the filtered cost-volume, we

produce the disparity map using the winner-take-all strat-

egy. However, the Argmax operator is not derivable in back

propagation. To address the issue, we use a soft Argmax

operator [2], which returns the index of the maximum value

in the cost-volume for each pixel.

With the above three components, our networks can

learn stereo matching directly in an end-to-end manner. It is

further enhanced by a unsupervised learning scheme in the

following.

3.2. Unsupervised Learning Scheme

Let I = {ILi , I
R
i }Ni=1 be the dataset with N stereo im-

age pairs. We obtain the initial match using randomly ini-

tialized network or DeepMatching [30] by ignoring vertical

displacements. Both methods work. We will analyze them
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Figure 3: Our iterative unsupervised training framework consists of four parts: disparity prediction, confidence map estima-

tion, training data selection and network training.

in the experiment section.

We train our network in an iterative way. At each itera-

tion t, we compute matches from the left image to the right

one, denoted as ML(t)
, and also from right to left, denoted

as MR(t)
. We then develop a scheme to select confidential

match M t from ML(t)
and MR(t)

. M t are used to sample

training data P t = {IL(p), IR(p)} from I, where IL(p)
denotes the patch of IL at position p.

Afterwards, parameters Et of our network are learned

from P t. The iterative process is illustrated in Figure 3 and

Algorithm 1. The accuracy of the produced disparity maps

and the number of confident matches increase in each iter-

ation. The number of iterations T is around 50. We detail

this process more in the following.

Confidential Match Selection The confidence map is

computed using the information provided by the left and

right disparity. Left-right consistency check is the simplest

way to obtain this map. We warp the disparity of the left

ML using the disparity of right MR by the forward warping

function WML(MR). By thresholding the difference be-

tween ML and WML(MR), we obtain the confidence map

C. This process is expressed as

Cq =

{

0, ‖WML(MR)q −ML
q ‖ < tc

1, ‖WML(MR)q −ML
q ‖ > tc

, (1)

where WM (I) means backward warping I using motion

field M , and tc is a threshold selected between 3 and 7 in

our experiments.

This method is fast and effective. As shown in Figure

4, the confidence region grows with increasing iterations.

We also statistically analyze the effectiveness. The accuracy

of our final confidence map estimate on the KITTI 2015

dataset reaches 96%.

Training Data Selection Given a confident disparity

ML(p) of the patch in position p in the left image IL, we

pick the corresponding patch in position p+ML(p) in the

right image IR. To avoid flat patches, we manually remove

them with low total variation values, computed as

tv(p) =
∑

q∈Ω(p)

|(∂I(p))q|, (2)

where Ω(p) is the rectangular region centered at p. We pick

patches with this value higher than the threshold td.

Post Processing Several modern stereo matching algo-

rithms applied sophisticated post-processing, typically in-

cluding cost aggregation, semi-global matching and slanted

plane. As we already integrate the cost aggregation step in

the network, we no longer need it. Our post processing con-

tains only two steps to smooth the disparity maps produced

by the network.

We first perform left-right consistency check. The in-

consistent region, which is likely to be occlusion, is inter-

polated. Then we jointly filter the disparity using weighted

median filter, where the radius of window is set to 7. Figure

5 shows the difference with and without post-processing.
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Figure 4: The area of the confidence map grows along with the iteration number, indicating that the network is well shaped

after a few iterations. The white region in the confidence map means the confident region.

CVB1 CVB2 CVB3
conv layer

(96, 7x7, 1x1),

BatchNorm,
ReLU

conv layer

(96, 5x5, 1x1),

BatchNorm,
ReLU

conv layer

(48, 5x5, 1x1),

BatchNorm,
ReLU

CVB4 CVB5 CVB6
conv layer

(24, 3x3, 1x1),

BatchNorm,
ReLU

conv layer

(12, 1x1, 1x1),

BatchNorm,
ReLU

conv layer

(24, 3x3, 1x1),

BatchNorm,
ReLU

CVB7 CVB8
conv layer

(48, 5x5, 1x1),

BatchNorm,
ReLU

conv layer

(96, 7x7, 1x1),

BatchNorm

IFB1 IFB2 IFB3
conv layer

(96, 9x9, 1x1),

ReLU

conv layer

(48, 1x1, 1x1),

ReLU

conv layer

(1, 5x5, 1x1),

ReLU

JF1 JF2 JF3
conv layer

(64, 9x9, 1x1),

ReLU

conv layer

(32, 1x1, 1x1),

ReLU

conv layer

(1, 5x5, 1x1),

ReLU

Table 1: Configuration of each component, cost-volume

branch (CVB), image feature branch (IFB) and joint filter-

ing branch (JF), of our network. Torch notations (channels,

kernel, stride) are used to define the convolutional layers.

3.3. Analysis

Convergence Analysis We experimentally analyze con-

vergence of our unsupervised learning scheme. Figure 4

shows update of the predicted disparity and confidence map

Figure 5: After processing, the network output results

shown in (b) and (c), we obtain a better result (d).

in iterations. The disparity map gets smoother and is with

more details in later iterations. The confident region also in-

creases. For the KITTI 2015 dataset, the average percentage

of confident regions in the confidence map reaches 75%.

Most of them are rich in texture and edges, which means our

selected confident patches are suitable for training. Gener-

ally 50 iterations are enough to let the maps stable.

Relations and differences to Previous methods Previ-

ous unsupervised methods [1] and [31] define their loss

function following traditional optical-flow energy written as

E(u,v; I(x, y, t), I(x, y, t+∆t) =

Ephotometric(u, v; I(x, y, t), I(x, y, t+∆t))+ (3)

λEsmoothness(u, v),
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given two temporally consecutive images I(x, y, t) and

I(x, y, t + ∆t). Ahmadi et al. [1] took the energy as the

loss function. Yu et al. [31] applied the similar idea and

used a coarse-to-fine scheme during test.

Our method has several advantages compared with these

methods. First, our method learns feature representation for

patches and compare them in feature domain, instead of in-

tensity domain. Thus our method does not require to satisfy

the strong assumption of intensity consistency. In compari-

son, many previous methods do not work well when image

pairs are taken under different lighting or camera setting.

Second, methods adopting traditional optical flow en-

ergy functions naturally inherit the drawback of traditional

schemes, such as occlusion handling. The smooth term is

needed to compromise computation on these regions. Our

method does not find matches from the other image for the

occluded patches. They are thus naturally removed in unsu-

pervised learning.

Finally, if a method adopts the loss function similar to the

traditional energy function, the performance of the neural

networks is accordingly up-bounded considering traditional

solvers to this function. Our method does not have this lim-

itation, and therefore has the ability to produce comparable

results with supervised learning methods.

We also make improvement on the architecture of the

neural network. The key steps of stereo matching cost com-

putation, cost aggregation and winner-take-all cascade form

an end-to-end learnable framework in our system. The joint

filtering branch is new with color information from the input

images, which was shown to be useful in [10]. The joint fil-

tering branch consists of convolutional layers and runs fast.

Moreover, with the ability of learning, the filtering kernel is

better than manually crafted ones. We show the comparison

between our joint filtering network and other filters in the

experiment section.

The above mentioned key differences boost the perfor-

mance. Our scheme does not heavily correspond to tradi-

tional energy minimization schemes, and thus performs dif-

ferently.

4. Experiments and Evaluations

4.1. Setting

We use the KITTI 2015 dataset [22], which includes 200

color image pairs to train and evaluate our method. In our

experiments, we randomly pick 160 image pairs for train-

ing, and the other 40 images pairs for validation.

The training images are preprocessed by normalizing

them to zero mean and standard deviation ones. In each un-

supervised iteration, we first train the cost-volume branch

by fixing other parts of the network. The branch is trained

by minimizing cross-entropy loss similarity to that of [33]

and [18]. We use the AdaGrad algorithm with learning rate
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Figure 6: The loss decreases while the validation accuracy

increases in our unsupervised iterations.

1e−2 ∗ 0.8t−1, where t is the iteration number of our unsu-

pervised method.

We train the cost-volume branch for 2,000 iterations.

The batch size is fixed to 128. The image size is 1,242 ×
375 with RGB channels. After the cross-entropy loss of the

cost-volume branch gets steady, we train remaining parts in

an end-to-end scheme. We set the learning rate as 1e−2.

It takes around 50 unsupervised iterations with random ini-

tialization. For each iteration, we train the network using

around 8,000 steps. The entire training process takes about

20 hours on a single NVIDIA TitanX card. The testing time

is around 0.39 second for each image pair.

To evaluate results, we apply the bad pixel error, which

calculates the percentage of disparity errors below a fixed

threshold. We also evaluate the end-point-error (EPE) tra-

ditionally in optical flow estimation. Both the errors in non-

occluded region (NOC) and all (ALL) pixels are reported.

For existing methods to compare, we directly quote respec-

tively reported results if available, and use our implementa-

tion otherwise.

4.2. Evaluations

Different Initialization As mentioned in earlier sections,

either random initialization or other schemes can be used in

our framework. For random initialization, we initialize the

network weights using Xavier initialization. The network is

then directly used for disparity prediction. As shown in Fig-

ure 4, although the network produces poor disparity in the

first iteration, the shape is reasonable. These correctly pre-

dicted pixels are selected as training data to update the net-

work parameters. With more iterations, the network gains

stronger capability to predict correct disparity.

We also attempts to obtain initial matching using Deep-

Matching [30]. As shown in Figure 6, these two kinds

of initialization result in similar performance. However,

random initialization converges slower using 50 iterations,

while DeepMatching initialization takes half of the itera-

tions. Table lists the final accuracy.
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Figure 7: Some of our results on KITTI 2015. All results are directly produced by our network without any post processing.

> 2 pixel > 3 pixel > 5 pixel

Random 9.63 7.81 6.01

DeepMatching [30] 9.50 7.69 5.67

Table 2: Comparisons of different initialization methods.

> 3 pixel > 5 pixel

Without Cost Aggregation 9.23 7.12

With Box Filter 7.33 5.42

With Guided Filter [9] 7.13 5.28

Ours 6.81 5.01

Table 3: We compare our cost aggregation with existing

popular methods including box filter and guided filter. Our

method outperforms others.

Effectiveness of Joint Filtering Branch We evaluate the

effectiveness of the cost aggregation branch. First, we com-

pare the performance with and without the cost aggrega-

tion branch. To show the advantage over traditional cost

aggregation methods, we also compare our scheme with

the widely used box filter and guided image filter [9]. For

fair comparison, we train our network on the KITTI 2015

dataset in a supervised manner. The quantitative result is

listed in Table 3 with the >3-pixel and >5-pixel error mea-

sure. As indicated by our experimental results, with the

cost aggregation branch, both the >3-pixel and >5-pixel

errors drop significantly. Our cost aggregation method out-

performs box filter and guided image filter naturally.

Supervised Learning Although our framework is flexi-

ble where the network architecture can be replaced with

other types for stereo matching, our proposed network out-

performs existing ones. To show the effectiveness, we train

our network in a supervised manner, and compare our result

with others on the KITTI 2015 dataset. For fair compari-

son, we compare raw-network output without applying any

smoothing or post processing for all methods. As shown

in Table 4, our method achieves the best result regarding

almost all metrics, while the computational time is compa-

rable.

1573



Approaches
> 2 pixels > 3 pixels > 4 pixels > 5 pixels End-Point Runtime(s)

NOC All NOC All NOC All NOC All NOC All

MC-CNN [33] 13.20 15.83 11.35 13.21 11.14 11.67 10.11 11.59 3.41 px 4.55 px 23

Deep Embed [3] 9.81 11.26 7.29 8.51 5.83 7.32 5.26 6.48 1.92 px 2.65 px 3.1

Content-CNN [18] 10.10 11.37 7.14 8.55 5.74 7.51 5.41 6.49 1.91 px 2.76 px 0.34

DispNet [21] 9.56 10.74 7.19 8.23 6.01 7.55 5.16 6.98 1.82 px 2.55 px 0.12

Ours 9.23 10.96 6.81 7.29 5.55 7.28 5.01 6.22 1.57 px 2.29 px 0.39

Table 4: Comparison of supervised methods on KITTI 2015. Our neural network architecture is effective to produce decent

results.

Approaches
NOC All

train test train test

USCNN [1] 12.41 11.17 18.12 16.55

Yu et al. [31] 14.72 15.32 22.69 19.14

Ours 8.35 8.61 9.41 9.91

Table 5: Comparison of our method and existing unsuper-

vised ones. Our method performs the best on KITTI 2015.

Unsupervised Learning Unsupervised optical flow and

stereo matching methods are similar. So optical flow ap-

proaches can be applied to the stereo matching task with

slight modification. Recent unsupervised optical flow meth-

ods using convolutional neural networks [1] and [31] define

their loss function following the traditional optical flow en-

ergy (3), given two temporally consecutive images I(x, y, t)
and I(x, y, t+∆t). These methods rely on a strong assump-

tion that the two input frames are consistent in intensity.

Further, it has been discussed extensively in the literature

that a lower loss does not necessarily correspond to better

quality of the results.

We compare our method with those of [1] and [31] on

KITTI 2015 validation dateset and report the >3-pixel error

in Table 5. Our method achieves the smallest error among

all existing unsupervised methods for both training or test-

ing. Comparing the results in Table 4, our unsupervised

method is even comparable with existing supervised meth-

ods. We show some of our unsupervised learning results on

KITTI 2015 in Figure 7. All the results are raw network

output without any postprocessing for fair comparison.

5. Conclusion

Convolutional neural networks show its strong capability

in various tasks, including stereo matching. However, due

to the difficulty of ground truth data collection, supervised

stereo matching methods can hardly produce satisfying re-

sults for real cases. Our main contribution is to propose a

flexible unsupervised learning scheme suitable for various

stereo matching network architectures. Our unsupervised

method produces comparable results even with supervised

methods. Moreover, we come up with a novel network

structure that jointly filters the cost-volume. The network

structure results in satisfying performance.
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