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Abstract

An emerging problem in computer vision is the recon-

struction of 3D shape and pose of an object from a sin-

gle image. Hitherto, the problem has been addressed

through the application of canonical deep learning methods

to regress from the image directly to the 3D shape and pose

labels. These approaches, however, are problematic from

two perspectives. First, they are minimizing the error be-

tween 3D shapes and pose labels - with little thought about

the nature of this “label error” when reprojecting the shape

back onto the image. Second, they rely on the onerous and

ill-posed task of hand labeling natural images with respect

to 3D shape and pose. In this paper we define the new task

of pose-aware shape reconstruction from a single image,

and we advocate that cheaper 2D annotations of objects

silhouettes in natural images can be utilized. We design

architectures of pose-aware shape reconstruction which re-

project the predicted shape back on to the image using the

predicted pose. Our evaluation on several object categories

demonstrates the superiority of our method for predicting

pose-aware 3D shapes from natural images.

1. Introduction

Reliably predicting the 3D shape and pose of an object

from a single image has only become feasible in computer

vision over the last few years due to advances in deep learn-

ing. A substantial barrier to success stems from the inher-

ent lack of natural training images with labeled 3D shape

and pose information. Some efforts have been undertaken

recently to rectify this including the construction of PAS-

CAL3D+ [27], ObjectNet3D [26] and IKEA [13] datasets.

In all these cases images of several object categories are

manually annotated with corresponding 3D CAD models

and pose information.

Such datasets, however, suffer from several limitations.

First, they are limited to very few object categories and sam-

ples. Second, the human labeler must choose a CAD model

Figure 1: Input natural images with bounding box (left),

reprojected silhouettes (middle), and reconstruction (right)

results. The yellow arrow shows the canonical camera.

from a finite dictionary of models. This is problematic and

error prone as the dictionary of CAD models made available

rarely covers the actual variation encountered in natural im-

agery (e.g. only 7 CAD models are used to describe all

natural images of category “aeroplane” in PASCAL3D+).

Third, the pose of the CAD model is determined by anno-

tating coarse landmarks within the natural image that corre-

spond to points on the CAD model - pose is then recovered

through a PnP process [15]. This is also error prone due to

the shape mismatch of the CAD model with the natural im-

age. Given the above limitations, directly training or even

fine-tuning with such datasets is not desirable.

Recently, the vision community has shifted their atten-

tion to synthetically rendering images directly from tex-

tured CAD models [19, 2]. Notable efforts that use syn-

thetic imagery for training deep models to estimate pose or

reconstruct 3D shape include [19, 6, 1, 4, 11, 17, 20, 18].

This trend offers two advantages. First, it alleviates the

need for using images with error prone hand labeled pose
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and 3D shapes. Further, the textured CAD models can

be used to synthesize nearly limitless amounts of realis-

tic rendered training images with accurate ground truth

pose and 3D model labels [19]. Second, the proven po-

tential of deep networks to model complicated patterns can

be exploited to handle large amounts of appearance vari-

ations [6, 3, 24]. While these approaches have shown

promising results on rendered images, there is a noticeable

drop in performance [17] when applied to natural (i.e. non-

rendered) images. We shall refer to this herein as the “ren-

der gap”. Efforts have been made to fine-tune these net-

works using a small amount of labeled natural images [3]

to overcome this problem but the intrinsic errors associated

with the labeling process limits its effectiveness.

Unlike labelling object shape and pose, annotating the

silhouette of an object within a natural image can be per-

formed extremely efficiently and accurately by human la-

belers. Instance segmentation tools (as they are often re-

ferred to) have evolved in such a manner that are has now

become feasible to hand segment tens of thousands of im-

ages from an object category for a reasonable amount of

cost and effort (e.g. more than 13k segmentation for chairs

in MS COCO [14]).

Contributions: In this paper we want to explore how one

could take advantage of this, hitherto, untapped resource

for training a deep network for predicting 3D shape and

pose that addresses the “render gap”. Specifically, we pro-

pose a novel scheme to extend current state-of-the-art meth-

ods [24, 6] to predict pose-aware 3D (voxelized) shape of

an object from a single natural image using cheap silhou-

ette labels of natural images (see Fig. 1). The key observa-

tion behind our approach is, the pose-aware shape estimate

should match well with the silhouette of the object in the im-

age when reprojected back to the image plane. This insight

allows us to leverage a much larger set of hand segmented

natural images for training a deep network that alleviates

the “render gap”.

Our method differs from previous related works [29, 6,

24, 3] in several ways. First, our method is capable of learn-

ing from both rendered image-shape pairs as well as natural

images with annotated silhouettes - the only approach thus

far to our knowledge to do so. Second, unlike [6, 29, 24, 3]

which output 3D voxelized shapes in canonical viewpoint

(we refer to as aligned shapes throughout the paper), our ap-

proach also simultaneously predicts the shape in full 6 DOF

of pose. During training we jointly optimize over pose

and style as our proposed reprojection metric is dependent

on both. This differs from previous approaches that learn

pose [19] and style (i.e. aligned shapes) [6, 24, 3] inde-

pendently. Third, we argue that reprojection error rather

than 3D reconstruction error is a preferable loss for train-

ing deep networks for predicting pose and 3D shape when

single natural images lack 3D shape ground-truth.

Our proposed scheme is applicable to current approaches

of predicting aligned shapes, such as 3D-VAE-GAN [24] or

the TL-embedding network [6]. As illustrated in Fig. 2, we

build the architecture of pose-aware reconstruction based on

these two methods (see Appendix I in supplementary ma-

terial), respectively named as p-TL and p-3D-VAE-GAN.

Fine-tuning on natural images is performed in our training

pipeline with a novel reprojection loss. At testing time,

an input natural image of an object is fed into the fine-

tuned network (Fig. 2(part 3)) to estimate its pose-aware 3D

shape. No silhouette is needed in the testing stage. More

details are provided throughout the rest of the paper.

This strategy closes the loop for pose-aware shape recon-

struction both in training and testing: being able to repro-

ject back onto the image frame gives an extra metric of how

nice the reconstruction is by just looking at how well the

reprojected shape matches the object in the image. We also

demonstrate later that, in our scheme this metric of repro-

jection error also speaks for quality 3D reconstruction; in

other words, out strategy does not degrade 3D reconstruc-

tion performance.

Notation: Vectors are represented with lower-case bold

font (e.g. a). Matrices are in upper-case bold (e.g. M) while

scalars are italicized (e.g. a or A). Variables with a sub-

script gt, e.g. Mgt, are the ground truth of the correspond-

ing variable M. For denoting the lth sample in a set (e.g.

images, shapes), we use superscript with parentheses (e.g.

M(l)). Uppercase calligraphic symbols (e.g.F(x)) denote

functions which take in a vector or a scalar.

2. Related Work

Shape from a Single Image: Approaches and Data Non-

learning approaches address the problem of shape recon-

struction from a single image mainly through optimization.

Shape priors are either acquired from CAD datasets [25], or

learned with structure from (sub)category techniques [22,

9]. In these methods weaker annotations are often required

for optimizing shape or pose, such as key points [22] or in-

stance segmentation [9], limiting the application and perfor-

mance of these methods. Moreover, imperfect shape prior

and optimization procedure have led to smooth but fuzzy

reconstructions, and pose optimization from a single image

has been error-prone.

For learning based methods, Xiang et al. [25] develop

exemplar detectors of pose-aware shapes through annotated

image-shape pairs. Such detectors, however, are acquired

with very limited amount of natural images. This drasti-

cally limits the application of this method for 3D inference

in the wild, where objects display severe occlusion, uncom-

mon pose, and large intra-class variation. To alleviate the

problem, domain adaptation has been applied in the feature

level with rendered-natural image pairs [17]. This methods

still requires annotated natural image-shape pairs.
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Part 1.a. 

TL-embedding Network

Part 1.b.

pose regressor

Part 3

natural image fine-tuning

Part 2.a.

3D-VAE-GAN

Part 2.b.

pose regressor

Figure 2: The proposed methods for reconstructing pose-aware 3D voxelized shapes (details in the text): p-TL (part 1 & 3)

and p-3D-VAE-GAN (part 2 & 3).

Recently the emerging field of deep 3D vision has wit-

nessed rapid development in this task. Among these meth-

ods, the TL-embedding network [6], 3D-VAE-GAN [24]

and 3D-R2N2 [3] take advantage of generative networks

to embed 3D representation in latent space as shape prior,

and develop regressors from image domain to the shape do-

main. Moreover, 3D-R2N2 introduces LSTM to the hidden

representation to accommodate sequential inputs. The main

drawback of these methods, however, is that they are either

purely trained on rendered samples [6, 24], or fine-tuned on

very few natural image-shape pairs [3]. This nature un-

avoidably limits the generalization ability of these methods

to natural testing images due to the statistical difference be-

tween features extracted from rendered images and the nat-

ural images (“render gap”).

Representation and Factors of Shape In the age of non-

learning methods, mesh representation [9, 22] is prominent

due to its flexibility during optimization. In later learning-

based methods, voxelized shapes are in more favor because

the quantized voxel grid they live in enables easy label-

ing [25] and better suits convolutional operations in deep

learning [24, 6, 3]. Skeleton (connections among key

points) has also been considered [23] but beyond the dis-

cussion of shape in this paper.

For the factors influencing shapes, most works con-

sider shapes in canonical viewpoint (pose). In this case,

only style variations are parametrized. However, datasets

have been developed for pose-aware shape annotations, e.g.

PASCAL3D+ [27] and IKEA dataset [13]. A few works

take advantage of these datasets and perform pose-aware re-

construction [9, 22, 23]. These works mostly infer the cor-

rect pose and shape in mesh form in a non-learning manner,

and require instance segmentation as input [9, 22]. Another

stream of works focus on estimating pose alone from a sin-

gle image, e.g. [21, 17] and [19].

Reprojection Loss as Supervision The role of reprojection

loss in related tasks has been explored in various occasions,

including constraining 3D reconstruction with multi-view

annotations [29], weakly-supervised shape optimization [9,

22], or structure from silhouettes [5]. However in the task

of learning shape from natural images, the rich repository of

segmentation annotations on natural image sets have never

been explored as supervision.

3. Proposed Method

3.1. Assumption

We follow [6, 24, 3] by making the following assump-

tions. (1) We assume weak-perspective projection to avoid

estimating camera intrinsics. (2) We have the bounding box

of the object throughout the approach. (3) Shape is repre-

sented as binary voxels in a regular grid, written as a func-

tion V(x) = {0, 1} : R
3 → B, which is sampling the

single channel voxelized shape at location x = [x, y, z]T in

the voxel grid. (4) Realistic rendering is done with random

lighting and original texture from the CAD models as an

approximation to real-world statistics.

3.2. Shape Parametrization

We propose to model 3D pose-aware shape of an object

by both pose and style parameters. We can express a shape

as a function V(x; s, p) parametrized by the style parameter

s ∈ R
M and pose parameter p ∈ R

N. These parameters

will be recovered at testing time, and used to estimate pose-

aware 3D shapes from natural images. By this definition,

shapes in canonical pose but varying in styles are named

“aligned shapes”.

In the recent works of [6, 24, 3] only shapes in canonical

pose are considered, reflecting variations in style. In these

works, a generative network is applied to learn an embed-

ding of style parameters and a generator to recover the shape

from the embedding. However, for pose-aware shapes, they

are also heavily influenced by the 6 DOF pose of the object,

or equivalently, the extrinsics of the camera. Hence, pose-

aware shapes can be readily embedded in a space with style

and pose parameters coupled together. However, we argue
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that this is a suboptimal goal to aim for because the space

of pose-aware shapes grows in a multiplicative manner with

the degree of freedom imposed by the pose parametrization,

demanding accordingly increased capacity of the generative

model.

Instead, given 6 DOF pose can be explicitly parametrized

with p ∈ R
N in our camera model, we propose to decou-

ple style and pose parameters by estimating explicit pose

independently from style, and apply an rigid transformation

operation to the aligned shape generated from style parame-

ters to impose pose. This results in unchanged capacity de-

mand of the generative model, and an additively increased

parameter space rather than multiplicatively. This discus-

sion echos with [11] where transformations of head pose in

a facial image are disentangled from appearance variations

when learning an autoencoder. Experiments can be found

in Section 4.2 where a comparison between learning with

coupled and decoupled style and pose parameters is drawn

in the case of 3D VAE [10] and 3D-VAE-GAN [24].

3.3. Overview of the Training Pipeline

The approach consists of three main stages. (1) Train

an style regressor and a shape generator which maps from

a rendered image to an aligned shape. (2) Train a pose re-

gressor which regresses from the image to the pose param-

eters. Note that this training procedure can be carried out in

parallel with the first step. (3) Append a pose transforma-

tion and reprojection layer after the generator to transform

the aligned shape according to the estimated pose and then

reproject it back to the image frame. Fine-tune the style

regressor and pose regressor to natural image sets by min-

imizing reprojection loss between the ground truth silhou-

ettes and reprojected ones. We build two architectures for

pose-aware shape reconstruction following our approach,

under the name of p-TL (pose-aware TL-embedding net-

work; part 1 & 3 in Fig. 2) and p-3D-VAE-GAN (pose-

aware 3D-VAE-GAN; part 2 & 3 in Fig. 2), respectively

upon TL-embedding network [6] and the state-of-the-art

3D-VAE-GAN [24].

Encoder and Generator for Aligned Shapes: For the first

stage, the architecture is explored in works of [6, 24, 3]. We

build our architectures of style encoder and aligned shape

generator upon [6] and [24] with minor improvements,

and leave [3] for future exploration.

In our version of p-TL (see part 1.a in Fig. 2), the vanilla

autoencoder is replaced with more recent volumetric varia-

tional autoencoder (VAE) [10] to learn a compact style em-

bedding space for aligned shapes. After the VAE is learned,

a style regressor connects images to style space. For p-3D-

VAE-GAN, we adapt the architecture from [24] (see part

2.a in Fig. 2) to fit the grid size of 30×30×30, and use re-

construction loss of convolution features instead of voxels

as suggested in [12]. Network parameters and training de-

tails can be found in Appendix I in supplementary material.

Image to Pose Regressor: At the second stage, we train an

extra pose regressor (part 1.b & 2.b in Fig. 2) to regress ren-

dered images to their ground truth pose parameters. Given

3-channel rendered RGB images as a function of subpixel

location u = [u, v]T , parametrized by the pose parame-

ters p and style parameters s of the object in the image:

{I(l)(u; s(l), p(l)) : R2 → R
3}Ll=1, we train a pose regres-

sor Rp(I(s, p)) = p to map an image I to ground truth

pose pgt by minimizing the Euclidean loss between p and

pgt. Here we abuse the notation a bit by denoting I(s, p) as

a concatenation of I(u; s, p) over all pixels:

I(s, p) =







I(u1; s, p)
...

I(uD; s, p)






∈ R

3D×1 (1)

Pose-aware Shape Reconstruction and Fine-tuning on

Natural Images: The last part of our framework (Fig. 2

part 3) fine-tunes style and pose regressors on natural im-

ages. We denote the style regressor as Rs(I(s, p)) = s.

The aligned shape generator takes in s and outputs the re-

constructed aligned shape V(x; s).
To impose the correct pose on the reconstructed shape,

we design a rigid transformation layer to transform the re-

constructed aligned shape with the predicted pose of p.

We define the transformation function as an inverse warp

parametrized by p: W−1(x; p) : R3 → R
3, which will be

discussed later. In such case, the transformed shape in vec-

torized form is

V(s, p) =







V(W−1(x1; p); s)
...

V(W−1(xQ3 ; p); s)






∈ R

Q3

(2)

where Q is the side length of the voxel grid. The in-

verse warp can be implemented as inverse sampling of orig-

inal voxels with the rigid transformation parametrized by p.

This transformation layer retains the style of the predicted

shape and only changes its pose.

A reprojection operation is then applied after the trans-

formation layer to project the rotated voxels onto the image

plane, assuming that a weak-perspective projection camera

is placed at a fixed canonical viewpoint. This returns a mask

M(x[1:2]) ∈ [0, 1] : R2 → R where x[1:2] = [x, y]T . As-

suming the shape V(W−1(x; p); s) is reprojected along its

3rd dimension (which we assume as axis z here), then we

write the reprojection as:

M(x[1:2]; s, p) = max
z

V(W−1(x; p); s) (3)
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The max operation can be considered as performed

along the optical axis of the camera, analogous to ray-

tracing where the value of first non-zero cubic is returned.

Given a ground truth natural image with annotated

silhouette Mgt(x[1:2]; s, p) and the predicted silhouette

M(x[1:2]; s, p), the reprojection loss is defined with binary

cross-entropy:

Lrp(M,Mgt) = (4)

1

Q2

Q2

∑

j=1

−Mgt(x[1:2]j ; s, p) log(M(x[1:2]j ; s, p))

− (1−Mgt(x[1:2]j ; s, p)) log(1−M(x[1:2]j ; s, p))

The network is then fine-tuned end-to-end by minimiz-

ing reprojection loss on natural images. The shape genera-

tor is fixed in this step to function as a prior on the learned

style space. Moreover, natural images are mixed with ren-

dered images in equal portions within a batch to stabilize

fine-tuning. Details of fine-tuning will be shown later.

Pose Parametrization: In our setting, we intend to recover

full 6 DOF pose, which is 3 DOF of rotation and 3 DOF

of translation in a weak-perspective model. However we

find the generative model learns well the interpolation be-

tween shapes of varying scale, thus we treat the DOF of

scale (depth) as one latent factor of style, that is, an aligned

shape under different scales are considered to be different

in style, instead of in pose. The repository of CAD mod-

els is then accordingly augmented with random scale. As

a result our model recovers shapes in full 6 DOF by using

pose parameters p ∈ R
5 (3 for rotation plus 2 for in-plane

translation).

For rotation, the parametrization of Euler angles [19]

works well in pose classification tasks among limited view-

points. Euler angles, however, suffer from the issue of gim-

bal lock [7]1 and non-uniformly distributed pose space. An-

other popular choice for rotation parametrization is quater-

nion. This parametrization, however, is strongly limited by

the unit norm constraint which is not suitable for regression

tasks. We choose to parametrize rotation using the exponen-

tial twist, where an rotation around an unit axis for less or

equal than 180° clockwise is parametrized by the axis vector

and rotation angle. More specifically, for a rotation around

unit axis n = [n1, n2, n3]
T for radian φ, the rotation matrix

is given by R = e[n]×φ, where [n]× is the skew-symmetric

matrix, defined as:

[n]× =





0 −n3 n2
n3 0 −n1
−n2 n1 0



 (5)

By setting the rules for exponential twist, the twist pa-

rameters w = φn ∈ R
3 is only constrained within a ball

1when elevation of the camera reaches 90°, 1 degree of freedom is lost

between azimuth and yaw.

of radius π in R
3. This constraint can be implemented with

the tanh function to limit the norm of w. Another interest-

ing property of exponential twist is that the derivative of R

with respect to w is readily available which makes it feasible

for optimization with first-order methods [8]. By explicitly

parametrizing pose with exponential twist, the dimension

of rotation parameters is 3. For in-plane translation, two

scalars are represented in t = [tx ty 0]T ∈ R
3. Thus the

final inverse warp function can be written as:

W−1(x̃; p) =

[

R t

0 1

]

−1

x̃ (6)

where x̃ is the homogeneous coordinates of x in the voxel

grid, p = [wT tx ty]
T ∈ R

5.

As for the choice between classification and regression

for pose estimation as discussed in [16], we favor regres-

sion over classification because, in our case the estimated

pose needs to be converted to a transformation matrix as in

Eq. 6, and this conversion as a function needs to be smooth

in the step of fine-tuning. However this would not be the

case if we follow [19] by outputting an one-hot vector of

p over the pose space, considering we will need a lookup

table for this purpose, which in nature is not differentiable.

4. Experiments

4.1. Data Preparation

Given there is no publicly available dataset for our pur-

pose, we collect and process the data from some existing

datasets. We select three object categories, including aero-

plane, chair, and car which have datasets available for both

3D CAD models (for rendering training data), natural im-

ages with annotated segmentation masks (silhouettes for

natural image fine-tuning) and natural images with anno-

tated 3D shapes (for evaluation). We use CAD models from

the ShapeNet dataset [19] and their CAD-to-voxel pipeline

to voxelize CADs into 30×30×30 voxel grids. We use the

rendering procedure provided in [19] to generate rendered

images with sampled lighting and 6 DOF poses, over back-

ground natural images from the SUN dataset [28]. Poses are

sampled from the distribution in PASCAL3D+ dataset [27]

with random perturbations. The natural image-silhouette

pairs for fine-tuning are obtained from the instance seg-

mentation masks in the MS COCO [14] dataset, cropped,

normalized and centered in the 227 × 227 image frame.

We pruned the dataset beforehand to remove samples with

strong perspective effect or severe occlusion to facilitate

natural image fine-tuning as we did not take care of such sit-

uations in our assumptions. Natural image-shape pairs for

testing are acquired from PASCAL3D+ with ground truth

pose and style annotation, and the same preprocessing is

applied as to the data from MS COCO. The size of data we

used for training and testing is listed in Table. 1.
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aeroplane chair car

rendered with shapes 206,296 345,001 382,144

MS COCO with masks 4,734 3,200 2,942

PASCAL3D+ with shapes 125 220 279

Table 1: Size of dataset for each object category.

aligned shape pose-aware shape

V2V im2V V2V im2V

3D VAE 0.876 - 0.544 -

3D-VAE-GAN - 0.752 - 0.403

p-3D-VAE-GAN - - - 0.665

Table 2: Average precision (AP) of learning 3D VAE, 3D-

VAE-GAN and p-3D-VAE-GAN with aligned shapes and

pose-aware shapes of three categories.

4.2. Pose as a Latent Shape Factor

As discussed in Section 3.2, decoupling pose from style

when parametrizing pose-aware shapes helps to reduce the

demand for model capacity, hence improves reconstruction

performance. To evaluate this assertion, we develop two

experiments on rendered dataset, including (1) volumetric

reconstruction with 3D VAE, and (2) volumetric reconstruc-

tion from single image with 3D-VAE-GAN and p-3D-VAE-

GAN using rendered image-shape pairs for both aligned and

pose-aware shapes. The results can be found at Table 2

measuring average precision (AP) of reconstruction aver-

aged over three categories, following the practice of [24].

In this table, V2V shows the reconstruction AP of the out-

put voxels compared to input voxels, and im2V shows the

rfeconstruction AP of the output voxels to the ground truth

voxel of the input image. See Appendix I in supplementary

material for details of the implementation.

The first experiment of 3D VAE shows drastically

dropped performance when trying to encode pose-aware

shapes compared with encoding aligned models (V2V

aligned versus V2V pose-aware shape reconstruction),

since the space of pose-aware shapes is substantially larger

than that of aligned shapes. Thus, generative models such as

VAE are not able to efficiently encode such a large space of

style parameters. The second experiment shows that com-

pared to 3D-VAE-GAN, p-3D-VAE-GAN performs much

better at learning generative models to directly generate

pose-aware shapes from natural images (im2V pose-aware

shape reconstruction). This demonstrates the efficiency of

p-3D-VAE-GAN which decouples style from pose over two

separate regressors for pose-aware shape reconstruction, in-

stead of treating pose as part of the latent parameters and

learning a latent representation of style and pose altogether.

4.3. Qualitative Evaluation

We evaluate the performance of our approach on PAS-

CAL3D+ images with annotated masks, pose and 3D

shapes, before and after fine-tuning. However, it should be

noted that although we use these annotations as approxi-

mate ground truth in our setting of low resolution shapes,

the limitations of this dataset- as we mentioned earlier- still

make it a suboptimal target to evaluate against.

Fig. 3 and Fig. 4 visualize qualitative results showing

style and pose improvements after fine-tuning on natural

images, respectively. The yellow arrows show the canonical

camera, and larger cubes with warmer colors indicate higher

confidence scores. At Fig. 3, we show ground truth and

reconstructed shapes (before and after fine-tuning) in both

canonical and predicted poses (i.e. pose-aware shape recon-

struction). The effect of fine-tuning on predicting more ac-

curate styles can be seen by comparing the reconstructed

aligned shapes and reprojected silhouettes before and af-

ter fine-tuning against ground-truth. Fig. 4 shows the im-

provement in pose estimation after fine-tuning. For this

qualitative evaluation, we show pose-aware ground truth as

well as pose-aware shapes predicted before and after fine-

tuning. Again, by comparing the ground truth silhouettes

with those generated before and after fine-tuning, one can

see that silhouettes after fine-tuning are visually more simi-

lar to ground truth. These qualitative results show that fine-

tuning improves the estimated pose and projected silhou-

ettes. Moreover, these qualitative results demonstrate that

in addition to predicting more accurate pose and style, natu-

ral image based fine-tuning improves the robustness against

ambiguous poses. For the case of the first sample of aero-

plane in Fig. 4 (top left), the shape recovered before fine-

tuning suffers from ambiguity in azimuth. By constrain-

ing the reprojected aeroplane towards its ground truth body

length, the pose parameters are optimized in the continu-

ous pose space (particularly the DOF of azimuth in this ex-

ample) in a way to produce more accurate silhouette. This

significantly diminishes the pose ambiguity.

Failure Cases Analysis: Fig. 5 illustrates some failure

cases, which either end up with wrong shape before fine-

tuning, or fail to improve after fine-tuning. We categorize

the failure cases generally into three scenarios, including

(1) Ambiguous pose: Fig. 5 (up), (2) Occlusion: Fig. 5

(middle), this sample was mistakenly labelled clean in PAS-

CAL3D+ but in fact seriously occluded, leading to broken

results, and (3) Low image quality: Fig. 5 (bottom). Deteri-

orated (murky) images may result in wrong reconstruction

because their appearance statistics deviate too far from that

of the photorealistically rendered training images.

4.4. Quantitative Evaluation

In Table 3 and 4, we evaluate our performance by means

of AP between 3D shapes (3D AP) or 2D silhouettes (2D
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Figure 3: Examples of improvement in style with fine-tuning. For each sample, illustrations include: input image, aligned

& shape-aware shapes, reprojected silhouette of ground truth (left), before fine-tuning (middle) and after fine-tuning (right).
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Figure 4: Examples of improvement in pose with fine-tuning. Identical arrangements are made as in Fig. 3 except that

aligned models are not shown here.

AP) as an indication of reconstruction error. In particu-

lar, AP between aligned shapes indicates the error in style,

while AP between pose-aware shapes measures the overall

error in shape, influenced by both style and pose. We follow

the practice in [19] in evaluation of pose estimation.

Considering the central goal of our paper is the fine-

tuning scheme on natural images with reprojection loss, all

these evaluations are comparisons in various metrics before

and after fine-tuning. For pose estimation, we achieve com-

parable results as in [19]; and more importantly, we are able

to further improvewith fine-tuning. For style estimation (re-

flected by reconstruction performance of aligned shapes in

Table 4), results before fine-tuning on aligned shapes (shad-

owed in grey) are reflecting the performance of the prior ap-

proaches of TL-embedding network [6] and 3D-VAE-GAN

[24] in our experiment setting, given this part of experiment

is only re-implementation of their original works. Based

on this evaluation, our approach is able to improve aligned

shape reconstruction upon these two methods.

We may observe from Table 3 that, after fine-tuning by

minimizing reprojection loss, not only the reprojected sil-

houettes better fit their ground truth, but also improvements

on style (3D AP) and pose (rotation error) are achieved, in-

dicating that pose-aware shapes are improved on our test
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p-TL p-3D-VAE-GAN

aero chair car aero chair car

2D AP
before 0.589 0.844 0.815 0.627 0.852 0.851

after 0.704 0.849 0.872 0.720 0.878 0.894

3D AP
before 0.211 0.531 0.630 0.183 0.527 0.642

after 0.219 0.552 0.639 0.249 0.577 0.664

rotation

Accπ

6
/

MedErr

before 0.67/23.0 0.78/8.2 0.83/4.8 0.67/23.2 0.76/8.2 0.86/5.0

after 0.68/17.3 0.80/8.3 0.80/5.2 0.70/17.2 0.80/8.1 0.86/4.7

Su et al. 0.76/15.1 0.85/9.7 0.86/6.1 0.76/15.1 0.85/9.7 0.86/6.1

translation

MedErr

before 0.092 0.074 0.060 0.088 0.079 0.061

after 0.077 0.072 0.058 0.073 0.079 0.050

Table 3: Quantitative evaluation on pose-aware reconstruction. Error in 3D & 2D shapes are measured in AP (higher

is better) as in [24]. Error in rotation parameters is measured in Accπ

6
(accuracy over π

6 ; higher is better) and MedErr

(median error; smaller is better) based on geodesic distance over the manifold of rotation [21]. Results form [19] are also

listed. Error in translation is measured by ratio of the absolute offset against the frame size of the silhouette (30px), and we

report the median number (smaller is better).

aero chair car

p-TL
before 0.552 0.709 0.775

after 0.580 0.731 0.791

p-3D-VAE-GAN
before 0.669 0.727 0.781

after 0.676 0.763 0.816

Table 4: Quantitative evaluation on reconstruction of

aligned shapes. We also use 3D AP as the metric to mea-

sure the aligned shape error. Gray shadowed results are

from re-implemented baseline methods of [6, 24].

image
gt

shape

recon

shape

gt

silhoutte

reproj

silhoutte

ambiguous

pose

occlusion

low image

quality

Figure 5: Failure cases in fine-tuning, mainly caused by am-

biguous pose, occlusion and low image quality.

set. This illustrates that the reprojection loss acts as a suf-

ficient constraint during fine-tuning without degrading the

reconstruction performance in 3D. We explain this obser-

vation with two factors. First, the generator is locked dur-

ing the fine-tuning, which provides a constant prior, map-

ping from style parameters to shape space. As long as the

fine-tuned style parameters are still within the valid scope of

this generator’s input space, the reconstructed shape will be

valid without degradation. Second, in the fine-tuning pro-

cess, the loss from rendered images in a training batch helps

constrain the two regressors from over-fitting or explosion.

We acknowledge that in the task of shape reconstruction

from a single image, optimizing the 2D reconstruction alone

does not necessarily guarantee desired performance in 3D.

More particularly, it can easily lead to reconstructing de-

graded shapes. However, by following our fine-tuning ap-

proach, which uses prior from the generator and constraint

from rendered images, the reprojection loss turns out to be

informative in fine-tuning as well as testing stage.

Details and analysis of fine-tuning are provided in Ap-

pendix II in supplementary material.

5. Conclusion

We define the new task of pose-aware shape reconstruc-

tion from a single natural image, and update the recent

methods of TL-embedding Network and 3D-VAE-GAN to

close the loop for this task, by minimizing reprojection er-

ror over reprojected and ground truth silhouettes, in both

training and evluation. The updated framework offers two

advantages. First, it is capable of learning from cheaper an-

notation of object silhouettes in natural image sets. Second,

our fine-tuning scheme is able to not only refine pose-aware

shape reconstruction, but also improve upon current state-

of-the-arts on the task of aligned shape reconstruction as

well as pose estimation.
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