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Abstract

In this paper we propose a new salient object detec-

tion method via structured label prediction. By learning

appearance features in rectangular regions, our structural

region representation encodes the local saliency distribu-

tion with a matrix of binary labels. We show that the lin-

ear combination of structured labels can well model the

saliency distribution in local regions. Representing region

saliency with structured labels has two advantages: 1) it

connects the label assignment of all enclosed pixels, which

produces a smooth saliency prediction; and 2) regular-

shaped nature of structured labels enables well definition

of traditional cues such as regional properties and center

surround contrast, and these cues help to build meaningful

and informative saliency measures. To measure the con-

sistency between a structured label and the corresponding

saliency distribution, we further propose an adaptive label

ranking algorithm using proposals that are generated by a

CNN model. Finally, we introduce a K-NN enhanced graph

representation for saliency propagation, which is more fa-

vorable for our task than the widely-used adjacent-graph-

based ones. Experimental results demonstrate the effective-

ness of our proposed method on six popular benchmarks

compared with state-of-the-art approaches.

1. Introduction

Saliency detection aims to annotate the most attractive

regions in a scene. An accurate saliency detection method

is able to recommend regions that are informative, atten-

tive and above all, it implies the presence of prototype of

objects [12]. Compared with the research focusing on eye

fixation and eye movement tracking, the work on Saliency

Object Detection is more popular in the computer vision

community as it is designed for general salient object dis-

covery from an image [33]. Saliency object detection has
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been introduced in many tasks such as segmentation [54],

image retrieval [6], and object recognition [46].

Since the first computational attention model [17] was

published, the interest in saliency detection related research

has increased rapidly. Intuitively, a salient object should

visually stands out from its surroundings [23]. Follow-

ing this idea, it is natural to compute the saliency of a

pixel/region by the center-surround contrast [13,14,17,23].

Features for describing pixels/regions can be empirically

defined, or more comprehensively, can be learned by re-

gressors such as Random Forest, SVM, and Boosting-

based approaches [18, 21, 31, 50]. Very recently, deep-

learning-based approaches have stepped into this field and

demonstrated the broad prospects of such data driven mod-

els [26, 29, 55, 59].

Although the main stream in this field works on contrast

definition and feature selection for improvement, there still

are problems in existing pixel-based and segment-based re-

gion representations. Pixel-based approaches compute the

saliency of a pixel as the contrast between a center and a sur-

rounding regions. As the pixel-wise prediction ignores the

relationship between pixels, inner regions of a proto-object

may take very different salient values. Segment-based re-

gions usually refer to superpixels, which are helpful for

smoothing the predictions of nearby pixels with similar ap-

pearance. However, features that are extracted from super-

pixels may result in less informative saliency measures [53].

In this paper, we propose a new saliency detection

method that takes the structural representation of rigid grids

as receptive fields. Inspired by the work of edge pat-

tern [9], we learn a Structured Saliency Pattern (SSP) that

parses the saliency assignment of a local rectangular region.

More specifically, SSP captures the spatial distribution of

binary labels of a local region (patch) and indicates the fore-

ground/background attribute in a region. During training,

we learn SSP by saliency cues such as regional properties

and center-surround contrast. During prediction, we com-

bine a small number of SSPs to vote for pixel-level saliency

in a region with arbitrary appearance.
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Previous local contrast-based model typically annotates

all the regions that fit the center-surrounding structure, in-

cluding isolated background regions. To address this issue,

we propose using SSP for regularization by integrating the

global semantic information derived from a CNN model.

Finally, a K-NN enhanced graph-based saliency propaga-

tion is developed to refine the saliency map.

In a nutshell, the main contributions of this paper are

1) We explore a new structural representation of pixel-level

saliency over a local rectangular region. The representa-

tion maps appearance features to matrices of binary la-

bels. On the one hand, it captures more informative fea-

tures from non-homogeneous regions than superpixels.

On the other hand, it considers the connection among

adjacent pixels and thus smooths the prediction.

2) Region saliency is computed as a weighted combination

of structured labels. We propose an adaptive ranking

method to decide the most appropriate labels that repre-

senting the local saliency distribution.

3) We propose a K-NN enhanced graph for saliency prop-

agation, which considers neighboring relationships in

both spatial and feature spaces.

2. Previous work

Saliency detection usually utilizes one or both of two hu-

man visual attention processes [42]. Bottom-up attention

refers to detect salient objects from the perceptual data that

only comes from images itself. By contrast, top-down atten-

tion is influenced by the experience, the goal, or the current

mental state of the agent [60]. Although top-down attention

is very important for perception, it is not always possible to

obtain prior knowledge. This makes the bottom-up saliency

more popular recently. Related applications mainly work

on two aspects: eye fixation prediction and object segmen-

tation, and the latter is concerned in this paper.

Among those bottom-up saliency methods, the Feature

Integration Theory (FIT) [51] serves as the basis for many

biologically motivated models. It suggests a pixel-based,

multi-channel, parallel conspicuous maps computation and

a fusion system. Follow this idea, Itti et al. [17] first propose

a saliency model for computing the center-surround contrast

and searching the local maximum response in the multi-

scale DoG space. Harel et al. [15] extend it and compute the

saliency in a graph-based way. The performance of the FIT

model is further improved by integrating different feature

channels and different contrast metrics [24, 37, 47]. There

are also some variants and simplified versions of the FIT

model, for example, using single scale or adopting different

surround definition [3, 34, 48, 53]. Those methods usually

suffer from two problems: first, since every pixel is evalu-

ated independently, nearby pixels with the same semantics

may take very different salient values due to the variation

of local context. Second, it is very hard to achieve pre-

cise saliency assignment around the foreground/background

boundary when edge information is absent.

To address the above issues, research on segment-based

saliency becomes very popular by using superpixel extrac-

tion [2, 10]. Since hundreds of superpixels are usually suf-

ficient, the local and global segment-based contrast can be

computed efficiently [7,11,41,44]. The small number of su-

perpixels benefits the application of graph-based techniques

on saliency detection [4, 38, 43, 57, 58]. There are how-

ever two problems of segment-based methods: first, fea-

tures from homologous region may result in less informa-

tive saliency measures. Some research addresses the prob-

lem by learning the effective features via traditional regres-

sors [18, 21, 31, 50], or Deep Convolutional Neuronal Net-

work (DCNN) [26, 29, 30, 59]. Note that, due to the input

requirement of such DCNN models, deep features are actu-

ally extracted from a larger rectangular region centered at

each segment rather than itself. Second, it is difficult for

segment-based saliency models to construct a rigid center-

surround structure for contrast computation. Existing ap-

proaches usually build such structure using segments and

their immediate neighbors [28, 45, 58], or by grouping seg-

ments according to their visual properties [39, 60]. How-

ever, the shape and size of edge-preserving segments are

very sensitive to the image content, which always produces

irregular center-surround structure with different scales.

3. The proposed saliency model

Fig. 1 shows the flowchart of our proposed model. It gen-

erates candidate proposals that may enclose the salient ob-

jects as shown in Fig. 1a. Then, as shown in Fig. 1b, pixel-

wise saliency is voted by predicting and ranking SSP (see

Section 3.1) in each proposal. Finally, a K-NN enhanced

graph-based saliency diffusion method is used to refine the

saliency map as shown in Fig. 1c.

3.1. Salient region representation

From the perspective of perceptual psychology, people

seeks interesting regions in an image by analyzing high-

level features in a relatively large receptive field [12]. In

this sense, structural information is very appropriate in de-

scribing local appearance on the semantic level [25].

Let R refer to a rectangular region of size d × d and x

refer to the appearance features defined on R. We deter-

mine the probability of saliency assignment P (s|x) of all

enclosed n = d2 pixels: pi ∈ R, i = 1, 2, ..., n, where

s = [s1, s2, ..., sn] and si refers to the salient value of pi.
We assume that P (s|x) can be represented by a linear com-

bination of T binary vectors as:

P (s|x) =
∑

j

wj · lj , j = 1, 2, ..., T (1)
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Figure 1: Flowchart of the proposed algorithm. (a) A CNN model is trained to generate a binary proposal map. The bounding

box of each connected component is taken as the proposal. (b) SSPs are predicted in each proposal and are further combined

to vote for the pixel-level saliency. (c) The saliency map is refined by K-NN enhanced graph-based saliency propagation.
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Figure 2: Regions with different appearance patterns share

similar saliency patterns.

where lj = [l1j , l
2

j , ..., l
n
j ], l

i
j ∈ {0, 1} and wj refers to the

weight of binary vector lj . Since R is rectangular, lj can

be reshaped to a matrix of size d × d. This representation

enables an illustration of the spatial distribution of binary

elements in lj . Therefore lj is a kind of structured label

and two examples l1 and l2 are shown in Fig. 2.

Intuitively, a certain lj can be a representative for the

saliency structure of many different image patches if con-

sidering their pixel-level salient values as binary. Taking

Fig. 2 for example, R1 and R2 have very different appear-

ance but their spatial saliency distributions l1 and l2 are

similar. Therefore, we take lj as a common saliency pat-

tern which is capable of describing saliency assignment for

a large number of image regions. The explanation may be

that, the binary segmentation in local region depends on the

crossing edge, which exhibits some forms of local structure.

Since lj encodes the saliency structure of image patches,

we call it a Structured Saliency Pattern (SSP). In this paper,

we employ the structured trees [9] for learning SSPs.

3.1.1 Learning SSP by structured decision trees

As shown in Fig. 3, we learn SSP from the images with

human-labeled ground truths. Let zi refer to a ground-truth

patch of size d × d and Z = {z1, z2, ..., zM}. Our goal

is to learn several decision trees for extracting SSPs from

Z . In a standard decision tree, samples with a single label

are routed by the split function in non-leaf nodes. However,

traditional node splitting optimization is impractical for zi,

since it is very expensive to investigate all possible label

distributions when the output space is high dimensional.

As suggested by [9], we employ an efficient PCA-based

method to map zi into a binary variable bi. Let Z ⊂ Z, Z =
{z1, z2, ..., zm} refer to m ground-truth patches that reach

a node. We first represent Z as a matrix where each row of

Z is a vectorized zi, then compute the mapping as:

Zs = W ∗ PCA(WT), W = Z −
1

m

m
∑

i=1

Z(i, :)

bi =

{

1, if Zs(i, 1) > 0

0, otherwise
, (2)

where Z(i, :) refers to the ith row of Z. At each leaf node,

we define an SSP as the most representative one zSSP that

summarizes the spatial distributions of all zi as

zSSP = Z(p, :), p = argmin
i

(

n
∑

j=1

[W ]2(i, j)
)

, (3)

where [·]2 refers to the element-wise square. At every split

node, a split function is optimized to split a subset of Z
depending on each zi and its corresponding features.
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Figure 3: Rectangular samples are randomly extracted from

an image and its ground truth. We selected features from

samples for learning structured trees. During the test stage,

SSPs are collected from the leave of these trees.

3.1.2 Feature selection for SSP

For feature selection, we first include following inner-

region attributes: 1) color-based features, including the

mean and variance of components in four color spaces

(RGB, LAB, HSV and OPPONENTS), the hue and satu-

ration histograms, 2) gradient-based features, including the

average gradient magnitude in X and Y directions, the his-

tograms of orientated gradient and difference of Gaussian

descriptor, 3) the average edge intensity and focusness [19],

and 4) the normalized center coordinates of regions.

We further use contrast-based features to measure the re-

gional prominence. As shown in Fig. 4, those features are

extracted from the structure comprising a region Rs that

surrounds a center region Rc. Specifically, the contrast-

based features are: 1) all features except the center coor-

dinates, the hue and saturation histograms that are used for

measuring inner-region attributes, 2) histogram-based fea-

tures in the aforementioned four color spaces, 3) texture

features, including the LM filter [27], Gabor filter and LBP.

Two metrics are used for computing feature contrast: the χ2

distance for histogram-based features, and the dimensional-

wise absolute difference for other features.

At last, we introduce the pseudo-background assumption

that is proved to be effective recently [18,21,50]. As shown

in Fig. 4, we take four boundaries of an image as the back-

ground region Rb and use above regional contrast features

to measure the differences between Rc and Rb.

In our method, multi-scale features are used in both

training and prediction. This is achieved by resizing an im-

age to several scales rather than changing the size of SSP.

3.2. SSP ranking by binary proposals

Since an SSP detects local prominence, predicting an

SSP for all pixels in an image may highlight locally pop-

out background regions. Additionally, millions of predic-

tions are required at every pixel in a sliding window manner,

Rc

Rs

Rb

Figure 4: Illustration of three different types of regions.

which is very time consuming. In practice, it is fortunately

unnecessary to predict all pixels. We observe that salient re-

gions roughly occupy 10% to 40% of pixels in an image on

average. Therefore, we only search several regions rather

than the whole image if high quality proto-object proposals

are available. One possible solution is to use the object pro-

posal [8, 52, 61]. However, not all objects in an image are

salient. Moreover, those approaches tend to enclose large

object or cluster of objects rather than small ones.

To generate high quality proposals, we first learn a two-

class classifier to obtain pixel-level foreground/background

labels. It produces a binary map that indicates the rough

locations of salient objects. We call this map as a Binary

Proposal Map (Fig. 5a). Then a proposal is defined as an en-

larged box from the bounding box of each connected com-

ponent in the binary proposal map. The gap between two

boxes is fixed to the size of SSP. On one hand, it ensures

that every pixel in the box receives predictions from a re-

ceptive field with same size. On the other hand, it allows us

to extract SSPs from the components that are smaller than

a SSP even they contain only one pixel. In our model, we

employ RefineNet [35] to generate the binary proposal map.

RefineNet proposes a refinement network based on Resid-

ualNet [16]. It fuses multi-resolution feature maps at each

down-sampling layer recursively, thus avoids large memory

cost in generating the high-dimensional and high-resolution

feature maps [5]. In our method, we change the output rep-

resentation of RefineNet to fit the binary prediction.

As introduced in Eq. 1, the salient values of all pixels in

each sliding window of a proposal are the weighted com-

bination of selected SSPs. A higher wj in Eq. 1 implies

that the corresponding SSP is in more accordance with the

real saliency distribution than others in the window. We

compute wj adaptively by considering both the output of

all structured trees and the segmentation result of the CNN

classifier. As shown in Fig. 5b, let s refer a patch cropped

from the segmentation result and lj , j = 1, 2, ..., T refer to

the SSP given by the jth tree of total T trees at the same

location with s. We compute wj as follows:

wj =
1

N
exp

(

−
1

k
· L2

j/Var(Lj)
)

, (4)

where Var(·) refers to the variance, N is the normalization
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(b) Reference (c) Ranked patterns(a) Binary proposal map 

0.101 0.064 0.022

0.011 0.005 0.001
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Figure 5: SSP ranking. (a) A binary proposal map generated

by the CNN model. (b) A sample patch cropped from (a).

(c) SSPs ranked according to the reference in (b), with the

calculated weights shown under each SSP.

factor ensuring
∑

j wj = 1, k is a damping constant and we

set k = 0.6 in our experiments, and Lj is defined as the loss

of each SSP, which contains two terms:

Lj = α
∣

∣

∣
lj −

1

T

∑

j

lj

∣

∣

∣
+ (1− α)

∣

∣lj − s
∣

∣ . (5)

The first term refers to the loss towards the general averaged

labels predicted by all trees. Since each tree is trained inde-

pendently, the diversity of predictions makes the averaged

labels more likely to the correct one. The second term refers

to the loss towards the segmentation of CNN model. It gives

large weight to the predicted label that is in accordance with

the CNN’s output. For computation efficiency, the absolute

difference is adopted to calculate both losses. α balances

two losses and we set it as 0.4 in our experiments. Fig. 5c

shows several SSPs with descending weights.

3.3. Saliency propagation

Taking some high confidential salient regions as ‘seed’,

most saliency propagation methods require an adjacent sim-

ilarities to distribute saliency mass to similar nearby regions

along graph edges [32, 38, 49, 58]. In our method, we pro-

pose a new graph representation by combining adjacent and

Nearest Neighbor (NN) similarities. Introducing NN con-

nection enables the exchange of saliency mass between sim-

ilar regions regardless their spatial connectivities. It helps to

obtain a balance saliency assignment on separated objects.

Let X = {x1, · · · , xn} indicate segments of an im-

age, which are obtained by superpixel extraction [2]. We

construct a weighted graph model G = {X ,E} where

E = {eij} and eij is the edge between xi and xj . We

define E as a fusion of two graphs with different types:

E = (1− β) ·Wa + β ·Wk, (6)

where β balances two graphs Wa and Wk. We set it to 0.8
in the experiments. Wa refers to the adjacent similarities as

Wa(i, j) = exp
(

−
(

|ci − cj |2/σ1

)2
)

· ai,j , where ci is the

feature of xi in CIE-LAB color space and σ1 controls the

fall-off rate of color distance. ai,j is a binary matrix and

ai,j = 1 if xi is spatially connected to xj . We model this

distance as a normal distribution and adaptively set σ1 =
maxi,j

(

|ci − cj |2
)

/3 following the Three Sigma Rule.

Wk refers to the nearest neighbor similarities. Here we

represent it as a K-NN similarity matrix:

Wk(i, j) =







exp
(

−
(

|ci − cj |2/σ2

)2
)

, j ∈ Ni,

0, otherwise
(7)

where Ni refers to the K-neighbor system of segment xi in

the CIE-LAB color space. σ2 controls the descending rate

of each color channel in similarity estimation. To ensure

that saliency mass can be smoothly transferred along graph

edges based on the similarities, σ2 can be identified by min-

imizing the following reconstruction error [20]:

argmin
σ2

n
∑

i=1

||ci −
1

dii
·
∑

j∈Ni

Wk(i, j) · cj ||
2, (8)

where dii =
∑

j Wk(i, j) refers to the elements on the di-

agonal of the degree matrix of Wk(i, j).
Saliency propagation can be formulated as a standard

semi-supervise learning task once the graph E is speci-

fied. Following [4], we solve the following quadratic energy

model to obtain the salient value yi for segment xi:

argmin
yi

∑

i

kii(yi − vi)
2 +

1

2

∑

i,j

E(i, j)(yi − yj)
2, (9)

where vi ∈ v is the averaged salient value of all pixels

in segment xi. Similar to dii, kii =
∑

j E(i, j) refers

to the elements on the diagonal of degree matrix K =
diag{k11, k22, ..., knn}. Eq. 9 has a close form solution:

yi = (2 ·K−E)
−1 ∗ (K ∗ v) , (10)

which can be effectively computed under the condition of

only hundreds of segments. After yi is obtained, we up-

sample the saliency map using bilateral filtering [44] to get

the finial pixel-level saliency map.

4. Experiment results

We evaluate the proposed method on six popular bench-

marks that are widely used for saliency object detec-

tion: THUR15K [7], DUT-OMRON [58], ECSSD [49],

PASCAL-S [33], SOD [18] and TCD [53]. Our pro-

posed method is compared with 11 recently published ap-

proaches, including: DRFI [18], GRAB [57] and other

nine deep-learning-based methods: MDF [29], MCDL [59],
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(a) image (b) GT (c) ours (d) DCL (e) DHS (f) RFCN (g) SSD (h) GRAB (i) ELD (j) MTD (k) MCDL (l) MDF (m) LEGS (n) DRFI

Figure 6: Visual comparison of all evaluated method. From left to right: original image, ground truth, our approach, DCL,

DHS, RFCN, SSD, GRAB, ELD, MTD, MCDL, MDF, LEGS and DRFI.

LEGS [55], ELD [26], MTD [32], DCL [30], DHS [36],

RFCN [56] and SSD [22]. Note that, some approaches are

not evaluated on certain benchmarks due to two reasons:

1) neither saliency maps nor codes are available, including:

evaluations of SSD on THUR15K and TCD; evaluations of

MTD on TCD. Additionally, evaluations of GRAB are only

available on ECSSD. 2) Benchmarks are included in train-

ing, such as DHS and LEGS use partial images of DUTOM-

RON and PASCAL-S in their training sets, respectively.

Our source code is made publicly available at: https:

//github.com/zhulei2016/RST-saliency/.

4.1. The setup of evaluations

In this section, we explain the experimental setup and

the selection of the parameters in our system. For a fair

comparison, we select only THUS10K [7] as the training

set. The pretrained ResNet-101 layers are chosen as the

basis of the RefineNet and we transfer its representations

to fit the binary classification task. Two learning rates are

adopted in our training process, that is, 5×10−5 for the first

160 epochs and 5 × 10−6 for another 100 epochs. We did

not fine-tune RefineNet specifically and other parameters

are kept as the default values.

For learning SSP, totally 200 structured trees are assem-

bled in parallel. Each tree has a maximum depth of 64 and a

minimum 8 children in each node. Gini impurity is chosen

as the measure in node split function. The training samples

are image patches of size 17 × 17 and three kinds of train-

ing samples are collected: 1) positive patches, at least 50%
of pixels in it are salient; 2) weak positive patches, the per-

centage of salient pixels is in the range of (0, 50%); 3) neg-

ative patches, all pixels belong to the background. We ran-

domly select 750k positive, 750k weak positive and 1500k

negative patches from THUS10K. To enclose multi-scale

information, every image is rescaled according to factors

{1, 0.75, 0.5} before sample collection.

4.2. Visual comparison of salient maps

We first compare the results of all evaluated methods

qualitatively. As shown in Fig. 6, we select several typical

examples for demonstrating the robustness of our approach.

Form top to bottom, those examples include images with:

1) clutter background, 2) salient object with monotonous

color, 3) large salient objects, 4) small salient objects, 5)

multiple salient objects, 6) salient object with low contrast,

7) salient region touches image boundaries. The results

illustrate that our approach achieves higher visual consis-

tency with the ground truth compared with other methods.

4.3. Segmentation by fixed thresholds

Precision versus Recall (PR) curve measurement is a

straightforward way for evaluating saliency models via test-

ing the segmentation precision over all possible thresholds.

For every test image, we first normalize each saliency map
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Figure 7: PR curves for all evaluated methods using fixed thresholds on six popular saliency datasets. All methods are sorted

by descending Area Under Curve (AUC) (this figure is best viewed in color).

to the range of [0, 255] then test all available integer to get

the binary map. The PR values are calculated by comparing

the binary map with the human-labeled ground truth. Fi-

nally, we average PR values over all test images to get an

overall evaluation. Figure 7 shows PR curves measurement

for all evaluated methods on six popular saliency datasets.

The result shows that our method outperforms others

with clear margins on THUR15K, DUTOMRON, ECSSD

and TCD. Our method is still superior to others in the 70%
recall range on SOD. While on PASCAL-S, our method is

less effective than several methods in this evaluation.

4.4. Segmentation by adaptive threshold

Quantitative comparison can also be achieved by com-

paring the segmented saliency map with the correspond-

ing ground truth. A simple and effective way of segmen-

tation is to compute the threshold according to the image

statistics adaptively. As introduced in [1], this threshold

T for a saliency map s can be obtained as T = 2/(W ·
H)

∑

i

∑

j s(i, j), where W and H refer to the width and

height of saliency map s, respectively. We can calcu-

late so called F-measure by comparing this binary map to

the human-labeled ground truth as Fβ = (1 + β2) · p ·
r/

(

β2 · p + r
)

, where β is a trade-off parameter that con-

trols the weight between precision p and recall r. A small

β means precision values are more counted in F-measure

computation than recall values. Following the setting in [1],

we set β2 to 0.3 in the evaluation. As shown in Figure 8, the

1st to 3rd bins of each bar group respectively show the pre-

cision, recall and F-measure of all evaluated methods using

adaptive thresholding on six saliency datasets.

We observe that the precision, recall and F-measure do

not consider the true negative saliency predictions. In other

word, these measures care more about the performance of

methods on detecting the salient regions than their ability

of avoiding highlighting non-salient regions. Therefore,

we additionally include Matthews Correlation Coefficient

(MCC) [40] in the comparison, which is defined as MCC =

(tp · tn − fp · fn) /
(

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
)1/2

,

where tp, tn, fp, fn refer to the true positive, true negative,

false positive and false negative, respectively. MCC can

be taken as a fair measurement for evaluating binary

classification task even if two classes are very unbalanced.

It is suitable for our evaluation as foreground pixels usually

take 10% to 40% of all pixels in a test image on average1.

As shown in Figure 8, the 4th bin of each bar group shows

the the MCC measure of all evaluated methods using

adaptive thresholding on six saliency datasets. Taking the

evaluations of RFCN and our method on PASCAL-S for

example, RFCN achieves recognizable higher AUC score

and Fβ than our method does, however, our method is

slightly better than RFCN in the evaluation of MCC score.

Finally, we employ the Mean Absolute Error

1This can be inferred from Figure 7. As all pixels are binarized to fore-

ground when recall equals to 1, the corresponding precision value equals

to the percentage of foreground pixels in a ground truth image.
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Figure 8: The precision, recall, F-measure, MCC (using adaptive thresholding) and MAE of all evaluated methods on six

saliency datasets. All methods are sorted by descending ‘MCC’ measure (the bin in gold color of each bar group).

(MAE) [44] for evaluation, which is defined as

MAE = 1/ (W ·H)
∑

i

∑

j

∣

∣s(i, j)− gt(i, j)
∣

∣, where

gt is the ground truth associated with s. As shown in

Figure 8, the 5th bin of each bar group shows the the MAE

measure2 of all evaluated methods on six saliency datasets.

4.5. The effectiveness of saliency propagation

In this section, we evaluate the performance of our

saliency propagation method. Fig. 9 compares the perfor-

mance of SSP prediction and the saliency propagation with

different values of β in Eq. 6 on DUTOMRON. It shows

that our refinement method improves the AUC score by 3%
based on the result of SSP prediction. Fig. 9 also shows that,

our proposed NN similarity contributes more than the com-

monly used adjacent similarity does to the improvement of

AUC score, which proves the effectiveness of our saliency

propagation method.

5. Conclusion and future work

In this paper we propose to use Structured Saliency Pat-

tern (SSP) for describing local saliency distributions. We

further introduce an adaptive ranking method for SSP re-

finement via learning a CNN model. Finally, a new K-NN

enhanced graph model is proposed for saliency propagation.

Our method is validated on six popular benchmarks and

outperforms seven recently published state-of-the-art ap-

proaches with several evaluation measures. In future work,

2For better illustration, we plot ‘1− MAE’ instead of MAE.
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Figure 9: Evaluation of the proposed saliency propagation

method. ’beta’ refers to β in Eq. 6. The larger β indicates

that larger weight is assigned to the NN similarity in our

K-NN enhanced graph.

we plan to learn SSP from the feature maps of CNN models

directly rather than from the hand-crafted features.
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