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Abstract

Weakly supervised object localization remains challeng-

ing, where only image labels instead of bounding boxes are

available during training. Object proposal is an effective

component in localization, but often computationally ex-

pensive and incapable of joint optimization with some of

the remaining modules. In this paper, to the best of our

knowledge, we for the first time integrate weakly super-

vised object proposal into convolutional neural networks

(CNNs) in an end-to-end learning manner. We design a

network component, Soft Proposal (SP), to be plugged into

any standard convolutional architecture to introduce the

nearly cost-free object proposal, orders of magnitude faster

than state-of-the-art methods. In the SP-augmented CNNs,

referred to as Soft Proposal Networks (SPNs), iteratively

evolved object proposals are generated based on the deep

feature maps then projected back, and further jointly op-

timized with network parameters, with image-level super-

vision only. Through the unified learning process, SPNs

learn better object-centric filters, discover more discrimina-

tive visual evidence, and suppress background interference,

significantly boosting both weakly supervised object local-

ization and classification performance. We report the best

results on popular benchmarks, including PASCAL VOC,

MS COCO, and ImageNet. 1

1. Introduction

The success of object proposal methods greatly drives

the progress of the object localization. With the popularity

of deep learning, object detection is evolving from pipelined

frameworks [11, 12] to unified frameworks [17, 21, 22],

thanks to the unprecedentedly learning capability of con-

volutional neural networks (CNNs) and abundant object

bounding box annotations.

†Corresponding Authors
1Source code is publicly available at yzhou.work/SPN
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Figure 1. Soft Proposal (SP) module can be inserted after any CNN

layer. A proposal map M is generated based on deep feature maps

U and then projected back, which results in feature maps V . Dur-

ing the end-to-end learning procedure, M iteratively evolves and

jointly optimizes with the feature maps to spotlight informative

object regions.

Despite the unified frameworks achieve remarkable per-

formance in supervised object detection, they can not be

directly applied to weakly supervised object localization

where only image-level labels, i.e., the presence or absence

of object categories, are available during training.

To tackle the problem of weakly supervised object local-

ization, many of the conventional methods follow a multi-

instance learning (MIL) framework by using object pro-

posal methods [5, 8, 14, 31, 34]. The learning objective

is designed to choose an instance (a proposal) from each

bag (an image with multiple proposals) to minimize the im-

age classification error; however, the pipelined proposal-

and-classification method is sub-optimal as the two steps

can not be jointly optimized. Recent research [6] demon-

strates that the convolutional filters in CNN can be seen as

object detectors and their feature maps can be aggregated to

produce Class Activation Map (CAM) [36], which specifies
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the spatial distribution of discriminative patterns for differ-

ent image classes. This end-to-end network demonstrates

a surprising capability to localize objects under weak su-

pervision. However, without the prior knowledge of infor-

mative object regions during training, conventional CNNs

can be misled by co-occurrence patterns and noisy back-

grounds, Fig. 2. The weakly supervised setting increases

the importance of high-quality object proposals, but the

problem to integrate the proposal functionality into a uni-

fied framework for weakly supervised object localization

remains open.

In this paper, we design a network component, Soft Pro-

posal (SP), to be plugged into standard convolutional archi-

tectures for nearly cost-free object proposal (∼0.9ms per

image, 10×faster than RPN [22], 200×faster than Edge-

Boxes [37]), Fig. 1. CNNs using SP module are referred

to as Soft Proposal Networks (SPNs). In SPNs, iteratively

evolved object proposals are projected back on the deep

feature maps, and further jointly optimized with network

parameters, using image-level labels only. We further ap-

ply the SP module to successful CNNs including CNN-S,

VGG, and GoogLeNet, and upgrade them to Soft Proposal

Networks (SPNs), which can learn better object-centric fil-

ters and discover more discriminative visual evidence for

weakly supervised localization tasks.

The meaning of the word “soft” is threefold. First of all,

instead of extracting multiple materialized proposal boxes,

we predict objectness score for each receptive field, based

on the deep feature maps. Next, the proposal couples with

deep activation in a probabilistic manner, which not only

avoids threshold tuning but also aggregates all information

to improve performance. Last but not least, the proposal

iteratively evolves along with CNN filters updating.

To summarize, the main contributions of this paper are:

• We design a network component, Soft Proposal (SP),

to upgrade conventional CNNs to Soft Proposal Net-

works (SPNs), in which the network parameters can

be jointly optimized with the nearly cost-free object

proposal.

• We upgrade successful CNNs to SPNs, including

CNN-S, VGG16, and GoogLeNet, and improve the

state-of-the-art of weakly supervised object localiza-

tion by a significant margin.

2. Related Work

Weakly supervised object localization problems are of-

ten solved with a pipelined approach, i.e., an object pro-

posal method [30, 37] is first applied to decompose images

into object proposals, with which a latent variable learning

method, e.g., multi-instance learning (MIL), is used to iter-

atively perform proposal selection and classifier estimation

CNN SPN

cow

person

train

Image

Figure 2. Visualization of Class Activation Maps (CAM) [36] for

generic CNN and the proposed SPN. CNNs can be misled by noisy

backgrounds, e.g., grass for “cow”, and co-occurrence patterns,

e.g., rail for “train”, and thus miss informative object evidence. In

contrast, SPNs focus on informative object regions during training

to discover more fine-detailed evidence, e.g., hands for “person”,

while suppressing background interference. Best viewed in color.

[8, 15, 32, 26, 3, 5, 14]. With the popularity of deep learn-

ing, the pipelined approaches have been evolving to end-to-

end MIL networks [20, 27] by learning convolutional filters

as detectors and using response maps to localize objects.

2.1. Object Proposal

Conventional object proposal methods, e.g., Selective

Search (SS) [30] and EdgeBoxes (EB) [37], use redundant

proposals generated with hand-craft features to hypothe-

size objects locations. Region Proposal Network (RPN)

regresses object locations using deep convolutional fea-

tures [22], reports the state-of-the-art proposal performance.

The success of RPN roots in the localization capability of

deep convolutional features; however, such capability is not

available until the network is well trained with precise anno-

tations about object locations, i.e., bounding boxes, which

limits its applicability to weakly supervised methods.

Our SPN is specified for weakly supervised object lo-

calization task with only image-level annotations, i.e., pres-

ence or absence of object categories. The key difference

between our method to existing ones is that the “soft” pro-

posal is an objectness confidence map instead of material-

ized boxes. Such a proposal couples with convolutional ac-

tivation and evolves with the deep feature learning.

2.2. Weakly Supervised Localization

Pipelined methods. Weakly supervised localization

methods often use a stepwise strategy, i.e., first extracting

candidate proposals and then learning classification model

together with selecting proposals to localize objects. Many

approaches have been explored to prevent the learning pro-

cedure from getting stuck to a local minimum, e.g., prior
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Figure 3. The first row shows the Soft Proposal Network architecture. The second row illustrates the evolution of the proposal map during

training epochs (corresponding to the outer loop of Algorithm 1). The third row presents the evolution of the response map for “cow”. The

proposal map produced by SP module iteratively evolves and jointly optimizes with convolutional filters during the learning phase, leading

SPN to discover fine-detailed visual evidence for localization. Best viewed in color.

regularization [3], multi-fold learning [8], and smooth op-

timization methods [26, 3]. One representative method is

WSDDN [5], which significantly improves the object detec-

tion performance by performing proposal selection together

with classifier learning. ContextLoc [14] updates WSDDN

by introducing two context-aware modules which try to ex-

pand or contract the fixed proposals in learning procedure

to leverage the surrounding context to improve localization.

Attention net [29] computes an attention score for each pre-

computed object proposals. ProNet [27] uses parallel CNN

streams for multiple scales to propose possible object re-

gions and then classify these regions via cascaded CNNs.

To the best of our knowledge, we are the first to inte-

grate proposal step into CNNs and achieve jointly updating

among proposal generation, object region selection, and ob-

ject detector estimation under weak supervision.

Unified frameworks. Another line of research shows

up in weakly supervised localization uses unified network

frameworks to perform both localization and classification.

The essence of the method Oquab et al. [20] is that the

deep feature maps are interpreted as a “bag” of instances,

where only the highest responses of feature maps contribute

to image label prediction in an MIL-like learning proce-

dure. Zhou et al. [36] achieve remarkable localization per-

formance by leveraging a global average pooling layer be-

hind the top convolutional layer to aggregate class-specific

activation. In the following works, Zhang et al. [35] formu-

late such a class activation procedure as conditional prob-

ability backward propagation along convolutional layers to

localize discriminative patterns in generic CNNs. Bency et

al. [2] propose a heuristic search strategy to hypothesize lo-

cations of feature maps in a multi-scale manner and grade

the corresponding receptive fields by the classification layer.

The main idea of these methods is that the convolutional

filters can behave as detectors to activate locations on the

deep feature maps, which provide informative evidence for

image classification. Despite the simplicity and efficiency

of these networks, they are observed missing useful object

evidence, as well as being misled by complex backgrounds.

The reason behind this phenomenon can be that the filters

learned for common object classes are challenged with ob-

ject appearance variations and background complexity. Our

proposed SPN targets at solving such problems by utiliz-

ing image-specific objectness prior and coupling it with the

network learning.

3. Soft Proposal Network

In this section, we present a network component, Soft

Proposal (SP), to be plugged into standard convolutional ar-

chitectures for nearly cost-free object proposal. CNNs us-

ing SP module are referred to as Soft Proposal Networks

(SPNs), Fig. 3. Despite the SP module can be inserted after

any CNN layer, we apply it after the last convolutional layer

where the deep features are most informative. For weakly

supervised object localization, SPN has an spatial pooling

layer with the output features connected to image labels, as

illustrated later.

In the learning procedure of SPN, the Soft Proposal Gen-

eration step spotlights potential object locations via per-

forming graph propagation over the receptive fields of deep

responses, and the Soft Proposal Coupling step aggregates

feature maps with the generated proposal map. With itera-

tive proposal generation, coupling, and activation, SPN per-

forms weakly supervised learning in an end-to-end manner.

3.1. Soft Proposal Generation

The proposal map, M ∈ R
N×N , is an objectness map

generated by SP module based on the deep feature maps,
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Figure 4. Soft Proposal Generation in a single SPN feedforward

pass (corresponding to the inner loop of Algorithm 1). Experi-

mentally, the generation reaches stable in about ten iterations.

Fig. 4. Consider a SP module is inserted after the l-th con-

volutional layer, let U l ∈ R
K×N×N denote the deep feature

maps of the l-th convolutional layer, where K is the num-

ber of feature maps (channels), N × N denotes the spatial

size of a feature map. Each location (i, j) on U l has a deep

feature vector ul
ij = U l

·,i,j ∈ R
K from all K channels of

U l. To generate M , a fully connected directed graph G is

first constructed by connecting every location on U l, with

the weight matrix D ∈ R
N2

×N2

where DiN+j,pN+q indi-

cating the weight of edge from node (i, j) to node (p, q).
To calculate the weight matrix D, two kinds of ob-

jectness measures are utilized: 1). Image regions from

the same object category share similar deep features. 2).

Neighboring regions exhibit semantic relevance. The ob-

jectness confidence are reflected with a dissimilarity mea-

sure that combines feature difference and spatial distance,

as D′

iN+j,pN+q , ‖ul
ij−u

l
pq‖·L(i−p, j−q), and L(a, b) ,

exp(−a2
+b2

2ǫ2
), where ǫ is empirically set as 0.15N in all ex-

periments. And then the weights of the outbound edges of

each node are normalized to 1, i.e., Da,b =
D′

a,b∑
N
a=1

D′

a,b

.

With the weight matrix D defining the edge weight be-

tween nodes, a graph propagation algorithm, i.e., random

walk [18], is utilized to generate the proposal map M . The

random walk algorithm iteratively accumulates objectness

confidence at the nodes that have high dissimilarity with

their surroundings. A node receives confidence from in-

bound directed edges, and then the confidence among the

nodes can be diffused along the outbound directed edges

which are connected to all other nodes, Fig. 4. In this pro-

cedure, a location transfer confidence to others via globally

objectness flow, which not only collects local object evi-

dence but also depresses noise regions. For the convenience

of random walk operation, we first reshape the 2D proposal

map M to a vector with N2 element, initialized with the

value 1

N2 . M is updated with iteratively multiplying with

the weight matrix D, as

M ← D ×M. (1)

The above procedure is a variant of the eigenvector central-

ity measure [19], which outputs a proposal map to indicate

the objectness confidence of each location on the deep fea-

ture maps. Note that the weight matrix D is conditional

on the deep feature maps U l, and U l is conditional on the

convolutional filters of the l-th layer, W l, in the learning

procedure. To show such dependency, Eq. 1 is updated as

M ← D
(

U l(W l)
)

×M. (2)

The random walk procedure can be seen as a Markov chain

that can reach unique stable state because the chain is er-

godic, a property which emerges from the fact that the graph

G is by construction strongly connected [13]. Given deep

feature maps U , Eq. 2 usually reaches its stable state in

about ten iterations, and the output M is reshaped from a

vector to a 2D proposal map M ∈ R
N×N .

3.2. Soft Proposal Coupling

The proposal map generated with the deep feature maps

in a weakly supervised manner can be regarded as a kind

of objectness map, which indicates possible object regions.

From the perspective of image representation, the proposal

map spotlights “regions of interest” that are informative to

image classification. M can be integrated into the end-to-

end learning via SP module, Fig. 1, to aggregate the image-

specific discriminative patterns from deep responses.

In the forward propagation of a SP-augmented CNN, i.e.,

SPN, each feature map of the coupled V ∈ R
N×N is the

Hadamard product of the corresponding feature map of U

and M ,

Vk = U l
k(W

l) ◦M, k=1,2,...,K, (3)

where the subscript k denotes the channel index and “◦”
denotes element-wise multiplication. The coupled feature

maps V pass forward to predict scores y ∈ R
C of C classes,

and then the prediction error E = ℓ(y, t) of each sample

comes out according to the image labels t. ℓ(·) is the loss

function. In the back-propagation procedure of SPN, the

gradient is apportioned by M , as

W l = W l +∆W (M)

∆W (M) = −η
∂E

∂W l
(M)

(4)

where η is the network learning rate. ∆W (M) means that

W l is conditional on M , as the gradients of filters ∂E
∂W l are

conditional on M , Eq. 7. Since W l is conditional on M , the

SPN learns more informative image regions in each image

and depresses noisy backgrounds.
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Algorithm 1 Learning SPN with Soft Proposal Coupling

Input: Training images with category labels

Output: Network parameters, proposal map for each im-

age.

1: repeat

2: initial each element in M with 1

N2

3: repeat

4: M ← D
(

U l(W l)
)

×M

5: until stable state reached

6: V = U l(W l) ◦M , feed forward.

7: W l = W l +∆W (M), backward.

8: for all the convolutional layers l do

9: U l = W l ∗ U l−1

10: end for

11: until Learning converges

Given the Soft Proposal Generation defined by Eq. 2, the

Soft Proposal Coupling defined by Eq. 3, and the back prop-

agation procedure defined by Eq. 4, it is clear that U l, W l,

and M are conditional on each other. During training, once

the convolutional filters W l changed by Eq. 4, U l will also

change. Once U l is updated, a random walk procedure, de-

scribed in Sec. 3.1, is utilized to update the proposal map

M . The proposal map M helps SPNs to progressively spot-

light feature maps U l and learn discriminative filters W l,

thus the proposals and filters are jointly optimized in SPNs,

Fig. 3. The procedure is described in Algorithm 1.

3.3. Weakly Supervised Activation

The weakly supervised learning task is performed by

firstly using an spatial pooling layer to aggregate deep fea-

ture maps to a feature vector, and connecting such a feature

vector to image categories with a fully connect layer, Fig. 3.

Such an architecture uses weak supervision posed from the

end of the network, i.e., the image category annotations, to

activate potential object regions.

In the forward propagation of SPN, proposal map M is

generated by the SP module inserted behind the l-th convo-

lutional layer. The feature maps U l is computed as

U l
j = (

∑

i∈Sj

U l−1

i ∗W l
ij + blj) ◦M, (5)

where Sj is a selection of input maps, blj is the additive bias,

and W l
ij is the convolutional filters between the i-th input

map in U l−1 and the j-th output map in U l.

In the backward propagation of SPN, the error propa-

gates from layer l + 1 to layer l via the δ, as

δl =
∂E

∂U l
=

∂E

∂U l+1

∂U l+1

∂U l

= δl+1 ∂[(U
l ∗W l+1 + bl) ◦M ]

∂U l

= δl+1 ∗W l+1 ◦M,

(6)

which indicates that the proposal map M spotlights not only

informative regions on feature maps but also worth-learning

locations. Since the M flows along with gradients δ, in-

serting one SP module after the top convolutional layer can

effect all CNN filters.

Once δl is calculated, we can immediately compute the

gradients for filters as

∂E

∂W l
ij

=
∑

p,q

(δlj)pq(x
l−1

i )pq

=
∑

p,q

(δl+1

j ∗W l+1

j· )pqMpq(x
l−1

i )pq,
(7)

and compute the gradients for bias as

∂E

∂blij
=

∑

p,q

(δlj)pq

=
∑

p,q

(δl+1

j ∗W l+1

j· )pqMpq,
(8)

where W l+1

j· denotes the filters of layer l+1 that are used to

calculate U l
j , and (xl−1

i )pq denotes the patch centered (p, q)

on U l−1

i . With Eq. 7 and Eq. 8, the proposal map M which

indicates the objectness confidence of an image combines

with the gradient maps in the weakly supervised activation

procedure, driving SPN to learn more useful patterns.

For weakly supervised object localization, we calculate

the response map Rc for the c-th class, similar to [36], Rc =
∑

k wk,c · Ûk ◦M where Ûk is the k-th feature map of the

last convolutional layer, wk,c is the weight value of the fully

connected layer which connects the c-th output node and the

k-th feature vector, Fig. 3.

4. Experiment

We upgrade state-of-the-art CNN architectures, e.g.,

VGG16 and GoogLeNet, to SPNs, and evaluate them on

popular benchmarks. In Sec. 4.1, we compare SPN with

conventional object proposal methods, showing that it can

generate high-quality proposals with negligible computa-

tional overhead. In Sec. 4.2, on a weakly supervised point-

based object localization task, we demonstrate SPNs can

learn better object-centric filters, which produce precise re-

sponses on class-specific objects. In Sec. 4.3, SPNs are fur-

ther tested on a weakly supervised object bounding box lo-

calization task, validating its capability of discovering more

fine-detailed visual evidence in complex cluttered scenes.

In Sec. 4.4, the significant improvement of classification

performance on PASCAL VOC [10] (20-classes, ∼10k im-

ages), MS COCO [16] (80-classes, ∼160k images), and

ImageNet [23] (1000-classes, ∼1300k images), shows the

superiority of SPNs beyond weakly supervised object lo-

calization tasks2. We train SPNs using SGD with cross-

2Please refer to supplementary materials for more results.
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Figure 5. Proposal examples. The first row presents input images.

The second row presents proposal coupled images, by compos-

ing the proposal map with the original images. The third row

shows top-100 scored receptive fields according to the proposal

map. Best viewed in color.

Method ObjectEnergy(%) Time(ms)

Selective Search [30] 53.7 2000

EdgeBoxes [37] 58.8 200

RPN (supervised) [22] 63.3 10.5

SPN (weakly supervised) 62.2 0.9

Table 1. Proposal quality evaluation on VOC2007 test set. The

Object Energy in the second column indicates the percentage of

spotlighted object areas. Note that RPN is learned with object

bounding box annotations (supervised) while SPN is learned with

image label annotations (weakly supervised). The third column

describes the average time cost per image. RPN and SPN are tested

with a NVIDIA Tesla K80 GPU while Selective Search and Edge-

Boxes are tested on CPU due to algorithm complexity.

entropy loss. We use a weight decay of 0.0005 with a mo-

mentum of 0.9 and set the initial learning rate to 0.01.

4.1. Proposal Quality

On the VOC2007 dataset, we assess the quality of pro-

posals by an Object Energy metric defined below. For the

compared Selective Search [30], EdgeBoxes [37] and RPN

[22] methods, the energy value of a pixel is the sum of

scores of the proposal boxes that cover the pixel. Therefore,

all objectness values in an image constitute an energy map

that indicates the informative object regions predicted by

the method. For the SPN, we produce Object Energy maps

by rescaling proposal maps to the image size, Fig. 5. We

further normalize each energy map and compute the sum of

Object Energy of pixels those fall into ground-truth bound-

ing boxes as the Object Energy.

It can be seen from the definition that the Object En-
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Figure 6. (a) Object Energy curves. The x-coordinate is the ratio

between the object area to the image size, and y-coordinate is the

Object Energy. The curves are produced by using a 3-polynomial

regression on the dots, each of which denotes an image. (b) Evolu-

tion of Object Energy during the learning procedure. Best viewed

zooming on screen.

ergy values range in [0.0, 1.0], which indicates how many

informative object areas in the image are spotlighted by the

method. The second column in Tab. 1 demonstrates that the

proposals generated by SPN are of high-quality. The Object

Energy of SPN proposals is significantly larger than those

of Selective Search and EdgeBoxes, which usually produce

redundant proposals and cover many background regions.

Surprisingly, The Object Energy of SPN proposals obtained

by weakly supervised learning is comparable to that of su-

pervised RPN method (62.2% vs. 63.2%). It can be seen

in Fig. 6(a) that the proposed SPN can spotlight small ob-

jects significantly better than the Selective Search and Edge-

Boxes methods, despite that the proposal maps are based on

low-resolution deep feature maps. Fig. 6(b) demonstrates

that the SPN proposals can iteratively evolve and jointly

optimize with network filters during the end-to-end train-

ing. Moreover, the implementation of SPN is simple and

naturally compatible with GPU parallelization. It can be

seen from the third column of Tab. 1 that the proposed SP

module can introduce weakly supervised object proposal to

CNNs in a nearly cost-free manner.

4.2. Pointing Localization

Pointing without prediction. To evaluate whether the

proposed SPN can learn more discriminative filters which

are effective to produce accurate response maps, we test it

on the weakly supervised pointing task. We select three

successful CNNs, including CNN-S [7], VGG16 [25], and

GoogLeNet [28] and upgrade them to SPNs by inserting

the SP module after their last convolution layers, Fig. 3. All

SPNs are fine-tuned on the VOC2007 training set with same

hyper-parameters, and we calculate the response maps as

described in Sec. 3.3 with ground-truth labels for pointing

localization. Following the setting of c-MWP [35], a state-

of-the-art method, we calculate the accuracy of pointing lo-
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Figure 7. Examples of pointing localization, which shows that

SPN is effective in complex scenes: a) Noisy co-occurrence pat-

terns, e.g., leaves for “potted plant”. b) Small objects, e.g., “apple”

in hand. c) Cluttered backgrounds, e.g., “car” on the street. d) In-

frequent form, e.g., closed “umbrella”. Best viewed in color.

calization as below: a hit is counted if the pixel of maximum

response falls in one of the ground truth bounding boxes of

the cued object category within 15 pixels tolerance. Other-

wise, a miss is counted. We measure the per-class localiza-

tion accuracy by Acc = Hits
Hits+Misses

. The overall results

are the mean value of per-class point localization accuracy.

For the VOC2007 dataset, we use two test sets, i.e., All

and Difficult (Diff.) [35]. All means the overall test set

and Diff. means a difficult subset which has mixed cat-

egories and contains small objects. As shown in Tab. 2,

upgrading conventional CNNs to SPNs brings significant

performance improvement. Specifically, the SP-VGGNet

outperforms c-MWP by 7.5% (87.5 % vs 80.0 %) for All

and 11.3% (78.1% vs 66.8%) for Diff.. The SP-GoogLeNet

outperforms c-MWP by 3.1% and 6.8% for All and Diff.,

respectively. The significant improvement of pointing lo-

calization performance validates the effectiveness of the SP

module for guiding SPNs to learn better object-centric fil-

ters, which can pick up accurate object responses.

We made multiple observations in Tab. 2. 1). SP-

VGGNet has better performance than SP-GoogLeNet on

pointing localization. The reason can be that the recep-

tive fields of SP-VGGNet are smaller than that of SP-

GoogLeNet. Without much overlap between receptive

fields, the objectness propagation in SP module can be more

effective. 2). The accuracy improvement on Diff. is larger

Method CNN-S VGG16 GoogLeNet

Center 69.5/42.6 69.5/42.6 69.5/42.6

Grad [24] 78.6/59.8 76.0/56.8 79.3/61.4

Deconv [33] 73.1/45.9 75.5/52.8 74.3/49.4

LRP [1] 68.1/41.3 - 72.8/50.2

CAM [36] - - 80.8/61.9

MWP [35] 73.7/52.9 76.9/55.1 79.3/60.4

c-MWP [35] 78.7/61.7 80.0/66.8 85.1/72.3

SPN 81.8/66.7 87.5/78.1 88.2/79.1

Table 2. Pointing localization accuracy (%) on VOC2007 test set

(All/Diff.). Center is a baseline method which uses the image

centers as estimation of object centers.

Method mAP (%)

Dataset VOC COCO

Oquab et al. [20] 74.5 41.2

Sun et al. [27] 74.8 43.5

Bency [2] 77.1 49.2

SPN 82.9 55.3

Table 3. Mean Average Precision (mAP) of location prediction on

VOC2012 val. set and COCO2014 val. set.

than that on All, which shows that the proposal functionality

of SPNs is particularly effective in cluttered scenes.

Pointing with prediction. We further test SPN on a

more challenging pointing-with-prediction task. The task

requires the network output not only the correct predic-

tion of the presence/absence of the object categories in test

images, but also the correct pointing localization of ob-

jects, i.e., the point of maximum response falls in one of

the ground truth bounding boxes within 18 pixels tolerance

[20].

We upgrade a pre-trained VGG16 model to SPN and re-

spectively fine-tune it on VOC2012 and COCO2014 dataset

for 20 epochs. Results are reported in Tab. 3. Without multi-

scale setting, SPN outperforms the state-of-the-art method

[2] by a significant margin (5.8% mAP for VOC2012, 6%

mAP for COCO2014). This evaluation demonstrates that

the Soft Proposal module endows CNNs accurate localiza-

tion capability while keeping its classification ability. In

Sec. 4.4, we will show that upgrading CNNs to SPNs can

even improve the classification performance.

4.3. Bounding Box Localization

Although without object-level annotations involved in

the learning phase, our method can also be used to estimate

object bounding boxes with the help of response maps. We

calculate each response map with ground truth labels and

convert them to binary maps with the mean value as thresh-

olds. We then rescale them to the original image size and

extract the tightest box covering the foreground pixels as the

predicted object bounding box.

The Correct Localization (CorLoc) metric [9] is used
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mean

Bilen et al. [4] 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7

Wang et al. [31] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5

Cinbis et al. [8] 65.3 55.0 52.4 48.3 18.2 66.4 77.8 35.6 26.5 67.0 46.9 48.4 70.5 69.1 35.2 35.2 69.6 43.4 64.6 43.7 52.0

WSDDN [5] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

ContextLoc [14] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1

SP-VGGNet 85.3 64.2 67.0 42.0 16.4 71.0 64.7 88.7 20.7 63.8 58.0 84.1 84.7 80.0 60.0 29.4 56.3 68.1 77.4 30.5 60.6

Table 4. Correct Localization rate (CorLoc [9]) on the positive trainval images of the VOC2007 dataset (%).

so
fa
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o
n

Our  response map SPN WSDDN

Figure 8. Bounding box localization results on the VOC2007 test

set. By activating fine-detailed evidence like arm or leg for “per-

son”, paw for “cat”, and texture fragments for “sofa”, the esti-

mated bounding boxes are more precise than those by WSDDN.

to evaluate the bounding box localization performance. It

can be seen in Tab. 4 that the mean CorLoc of our method

outperforms the state-of-the-art ContextLoc method [14] by

about 5%. Surprisingly, on the “dog”, “cat”, “horse”, and

“person” classes, SPN outperforms the compared method

up to 20-30%. It can be seen from Fig. 8 that the con-

ventional method tends to use the most discriminative part

for each category, e.g., faces, while SPN can discover more

fine-detailed object evidence, e.g., hands and legs, thanks to

the objectness prior introduced by the SP module. On the

”sofa” and ”table” classes, our method outperforms other

methods by 10%, demonstrating the capability of SPN to

correctly localize the occluded objects, Fig. 8, which shows

that the graph propagation in the Soft Proposal Generation

step helps to find object fragments of similar appearance.

4.4. Image Classification

Although to predict the presence/absence of object cat-

egories in an image does not require accurate located and

comprehensive visual cues, the proposal functionality of

SPNs which highlights informative regions while suppress-

ing disturbing backgrounds during training should also ben-

efit the classification performance.

We use GoogLeNetGAP [36], a simplified version of

GoogLeNet, as the baseline. By inserting SP module after

Method CAM c-MWP MWP Fb[35] SPN

Error (%) 48.1 57.0 38.7 38.8 36.3

Table 5. Bounding box localization errors on ILSVRC2014 val.

set.

Method ImageNet COCO VOC

GoogLeNetGAP[36] 35.0/13.2 54.4 83.4

SP-GoogLeNetGAP 33.5/12.7 56.0 84.2

Table 6. Classification results. The second column is the top-1/top-

5 error rate (%) on ILSVRC2014 val. set. The third and fourth

column are mAP (%) on VOC2007 test set and COCO val. set.

the last convolution layer, the GoogLeNetGAP is upgraded

to a SPN. The SPN is trained on the ILSVRC2014 dataset,

i.e., ImageNet, for 90 epochs with the SGD method. It can

be seen in the second column of Tab. 6 that the SPN signif-

icantly outperforms the baseline GoogLeNetGAP by 1.5%,

which shows that the SPNs can learn more informative fea-

ture representation. We then fine-tune each trained model

on COCO2014 and VOC2007 by 50 and 20 epochs to as-

sess the generalization capability of SPN. As shown in the

third column of Tab. 6. SP-GoogLeNetGAP surpasses the

baseline by a large margin, e.g., 4.5% on VOC2007. This

further demonstrates that the weakly supervised object pro-

posal is effective for both localization and classification.

5. Conclusions

In this paper, we proposed a simple yet effective tech-

nique, Soft Proposal (SP), to integrate nearly cost-free ob-

ject proposal into CNNs for weakly supervised object lo-

calization. We designed the SP module to upgrade conven-

tional CNNs, e.g., VGG and GoogLeNet, to Soft Proposal

Networks (SPNs). In SPNs, iteratively evolved object pro-

posals are generated based on the deep feature maps then

projected back, leading filters to discover more fine-detailed

evidence through the unified learning procedure. SPNs sig-

nificantly outperforms state-of-the-art methods on weakly

supervised localization and classification tasks, demonstrat-

ing the effectiveness of coupling object proposal with net-

work learning.
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